organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1175

Di­methyl 1-(4-cyano­benz­yl)-1H-pyrazole-3,5-di­carboxyl­ate

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhaohong@seu.edu.cn

(Received 15 April 2009; accepted 27 April 2009; online 30 April 2009)

The title compound, C15H13N3O4, was synthesized from dimethyl 1H-pyrazole-3,5-dicarboxyl­ate and 4-(bromo­meth­yl)benzonitrile. The inter­planar angle between the pyrazole and cyano­benzyl ring planes is 71.74 (17)° and an intramolecular C—H⋯O interaction occurs. The crystal structure is stabilized by ππ stacking inter­actions between the neighbouring pyrazole and benzene rings [centroid–centroid distances of 3.5074 (16) and 3.9401 (15) Å, respectively]. One of the methyl groups is disordered over two positions of equal occupancy.

Related literature

For the biological activity of pyrazoles, see: Chambers et al. (1985[Chambers, D., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1985). J. Org. Chem. 50, 4736-4738.]); Lee et al. (1989[Lee, H. H., Cain, B. F., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1989). J. Org. Chem. 54, 428-431.]). Nitrile derivatives are important materials in the synthesis of some heterocyclic mol­ecules (Radl et al., 2000[Radl, S., Hezky, P., Konvicka, P. & Krejci, J. (2000). Collect. Czech. Chem. Commun. 65, 1093-1108.]). For related structures, see: Dai et al. (2008[Dai, W., Wang, W.-X., Zhao, Y.-Y. & Zhao, H. (2008). Acta Cryst. E64, o1017.]); Fu & Zhao (2007[Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.]); Xiao & Zhao (2008a[Xiao, J. & Zhao, H. (2008a). Acta Cryst. E64, o965.],b[Xiao, J. & Zhao, H. (2008b). Acta Cryst. E64, o986.],c[Xiao, J. & Zhao, H. (2008c). Acta Cryst. E64, o1436.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O4

  • Mr = 299.28

  • Triclinic, [P \overline 1]

  • a = 7.4981 (13) Å

  • b = 9.1753 (9) Å

  • c = 12.2884 (18) Å

  • α = 69.820 (5)°

  • β = 88.900 (6)°

  • γ = 68.818 (5)°

  • V = 734.51 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 292 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.968, Tmax = 0.975

  • 7543 measured reflections

  • 3330 independent reflections

  • 1972 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.161

  • S = 1.03

  • 3330 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O2 0.97 2.38 2.966 (3) 119
C14—H14A⋯O4i 0.96 2.41 3.312 (4) 156
Symmetry code: (i) x+1, y-1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazole-related molecules have attracted considerable attention due to their biological activities (Lee et al., 1989; Chambers et al., 1985). In addition, the nitrile derivatives are important materials in the synthesis of some heterocyclic molecules (Radl et al., 2000). Recently, we have reported a few benzonitrile compounds (Dai et al.,2008; Fu et al., 2007; Xiao et al.,2008a, 2008b 2008c). As an extension of our work on the structural characterization of the nitrile compounds, the structure of the title compound is reported here. The bond lengths and angles have normal values. The interplanar angle between the pyrazole and cyanobenzyloxy ring planes is 71.74 (17) °. The crystal structure is stabilized by week interactions: C—H···O interactions, C—H···π-electron ring interactions (Tab. 1) and π-π-electron ring stacking interactions (Tab. 2).

Related literature top

For the biological activity of pyrazoles, see: Chambers et al. (1985); Lee et al. (1989). Nitrile derivatives are important materials in the synthesis of some heterocyclic molecules (Radl et al., 2000). For related structures, see: Dai et al. (2008); Fu & Zhao (2007); Xiao & Zhao (2008a,b,c).

Experimental top

1H-pyrazole-3,5-dicarboxylic acid dimethyl ester (0.185 mg, 1 mmol) and 4-(bromomethyl)benzonitrile (0.196 mg, 1 mmol) were dissolved in acetone (10 ml) in the presence of K2CO3 (0.138 mg, 1 mmol) and heated under reflux for 1 day. After the mixture had been cooled to room temperature, the solution was filtered and the solvent removed in vacuum to afford a white precipitate of the title compound. Colourless prisms (average size: 0.8×1.2×1.0 mm) suitable for X-ray diffraction were obtained by slow evaporation in 7 days from a solution of 100 mg of the crude product in 15 ml of diethylether.

Refinement top

All the hydrogens were discernible in the difference electron density maps. In the case of the methyl C14 the corresponding triplet of maxima was broad with shallow saddles between them. All the hydrogens were situated into the idealized positions and those of C14 were modelled as disordered with two triplets of the hydrogens with equal occupation rotated by 60° to each other. The hydrogens were treated in the riding mode approximation: Caryl-H, Cmethylene-H, Cmethyl-H = 0.93, 097 and 0.96 Å, respectively. Uiso(Haryl)=1.2Ueq(Caryl); Uiso(Hmethylene)=1.2Ueq(Cmethylene); Uiso(Hmethyl)=1.5Ueq(Cmethyl).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title molecule, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
Dimethyl 1-(4-cyanobenzyl)-1H-pyrazole-3,5-dicarboxylate top
Crystal data top
C15H13N3O4Z = 2
Mr = 299.28F(000) = 312
Triclinic, P1Dx = 1.353 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4981 (13) ÅCell parameters from 1468 reflections
b = 9.1753 (9) Åθ = 2.6–27.4°
c = 12.2884 (18) ŵ = 0.10 mm1
α = 69.820 (5)°T = 292 K
β = 88.900 (6)°Prism, colourless
γ = 68.818 (5)°0.35 × 0.30 × 0.25 mm
V = 734.51 (18) Å3
Data collection top
Rigaku SCXmini
diffractometer
3330 independent reflections
Radiation source: fine-focus sealed tube1972 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 13.6612 pixels mm-1θmax = 27.4°, θmin = 2.9°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.968, Tmax = 0.975l = 1515
7543 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0703P)2 + 0.0489P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3330 reflectionsΔρmax = 0.26 e Å3
202 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
62 constraintsExtinction coefficient: 0.023 (5)
Primary atom site location: structure-invariant direct methods
Crystal data top
C15H13N3O4γ = 68.818 (5)°
Mr = 299.28V = 734.51 (18) Å3
Triclinic, P1Z = 2
a = 7.4981 (13) ÅMo Kα radiation
b = 9.1753 (9) ŵ = 0.10 mm1
c = 12.2884 (18) ÅT = 292 K
α = 69.820 (5)°0.35 × 0.30 × 0.25 mm
β = 88.900 (6)°
Data collection top
Rigaku SCXmini
diffractometer
3330 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1972 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.975Rint = 0.038
7543 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
3330 reflectionsΔρmin = 0.15 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5650 (2)0.3342 (2)0.04531 (15)0.0655 (5)
O20.5168 (3)0.3555 (2)0.22929 (16)0.0819 (6)
O30.0543 (3)0.2623 (2)0.24779 (14)0.0728 (5)
O40.1136 (3)0.4051 (2)0.14182 (15)0.0793 (6)
N10.2237 (2)0.0155 (2)0.13109 (15)0.0491 (5)
N20.0980 (2)0.1342 (2)0.06034 (16)0.0503 (5)
N30.8678 (4)0.2304 (3)0.4352 (3)0.0966 (9)
C10.3321 (3)0.1079 (3)0.06994 (19)0.0468 (5)
C20.2698 (3)0.0139 (3)0.04608 (18)0.0479 (5)
H20.31430.04300.10980.057*
C30.1264 (3)0.1341 (3)0.04801 (19)0.0472 (5)
C40.4791 (3)0.2778 (3)0.1258 (2)0.0530 (6)
C50.0081 (3)0.2824 (3)0.1475 (2)0.0515 (6)
C60.2365 (3)0.0489 (3)0.25677 (19)0.0550 (6)
H6A0.27610.16860.29910.066*
H6B0.11020.00620.27650.066*
C70.3779 (3)0.0122 (3)0.29447 (18)0.0479 (5)
C80.3384 (3)0.1819 (3)0.2585 (2)0.0576 (6)
H80.22520.25810.21040.069*
C90.4644 (3)0.2392 (3)0.2932 (2)0.0581 (6)
H90.43680.35380.26870.070*
C100.6333 (3)0.1255 (3)0.36490 (19)0.0529 (6)
C110.6731 (3)0.0434 (3)0.4016 (2)0.0588 (6)
H110.78570.11970.45040.071*
C120.5455 (3)0.1000 (3)0.36587 (19)0.0548 (6)
H120.57310.21460.39020.066*
C130.7641 (4)0.1848 (3)0.4034 (2)0.0678 (7)
C140.7145 (4)0.5000 (3)0.0858 (3)0.0785 (8)
H14A0.79100.51430.02390.118*0.50
H14B0.65690.58240.10900.118*0.50
H14C0.79490.51360.15120.118*0.50
H14D0.70420.55920.16550.118*0.50
H14E0.83830.49110.08040.118*0.50
H14F0.70030.56000.03820.118*0.50
C150.0426 (5)0.4051 (3)0.3519 (2)0.0935 (10)
H15A0.17840.44720.34650.140*
H15B0.02030.37220.41870.140*
H15C0.00630.49120.36000.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0637 (10)0.0628 (11)0.0658 (11)0.0157 (9)0.0118 (8)0.0270 (9)
O20.0996 (15)0.0687 (12)0.0564 (12)0.0095 (10)0.0079 (10)0.0207 (10)
O30.0945 (13)0.0599 (11)0.0487 (10)0.0175 (9)0.0097 (9)0.0142 (9)
O40.0846 (13)0.0677 (12)0.0629 (12)0.0017 (10)0.0013 (10)0.0251 (10)
N10.0473 (10)0.0587 (11)0.0463 (11)0.0240 (9)0.0023 (8)0.0206 (9)
N20.0470 (10)0.0549 (11)0.0505 (11)0.0196 (9)0.0001 (9)0.0201 (9)
N30.0848 (18)0.0871 (18)0.114 (2)0.0326 (15)0.0303 (16)0.0297 (16)
C10.0425 (11)0.0548 (13)0.0514 (13)0.0252 (10)0.0057 (10)0.0218 (11)
C20.0472 (12)0.0558 (13)0.0479 (13)0.0250 (11)0.0070 (10)0.0216 (11)
C30.0470 (12)0.0546 (13)0.0464 (12)0.0260 (11)0.0028 (10)0.0186 (10)
C40.0532 (13)0.0561 (14)0.0552 (15)0.0251 (11)0.0009 (11)0.0217 (12)
C50.0556 (13)0.0526 (13)0.0524 (14)0.0250 (12)0.0041 (11)0.0213 (11)
C60.0576 (14)0.0660 (15)0.0458 (13)0.0274 (12)0.0074 (11)0.0210 (11)
C70.0491 (12)0.0580 (13)0.0382 (12)0.0194 (10)0.0045 (9)0.0201 (10)
C80.0542 (14)0.0533 (14)0.0529 (14)0.0120 (11)0.0119 (11)0.0127 (11)
C90.0589 (14)0.0514 (13)0.0596 (15)0.0179 (11)0.0050 (12)0.0176 (11)
C100.0506 (13)0.0596 (14)0.0501 (13)0.0184 (11)0.0016 (11)0.0243 (11)
C110.0503 (13)0.0623 (15)0.0535 (14)0.0091 (11)0.0097 (11)0.0210 (12)
C120.0565 (14)0.0491 (13)0.0527 (14)0.0123 (11)0.0022 (11)0.0188 (11)
C130.0599 (15)0.0705 (17)0.0711 (18)0.0220 (14)0.0092 (13)0.0254 (14)
C140.0675 (17)0.0608 (16)0.099 (2)0.0087 (14)0.0076 (15)0.0363 (16)
C150.143 (3)0.0669 (18)0.0445 (15)0.0241 (19)0.0060 (17)0.0054 (14)
Geometric parameters (Å, º) top
O1—C41.323 (3)C7—C81.380 (3)
O1—C141.445 (3)C8—C91.371 (3)
O2—C41.203 (3)C8—H80.9300
O3—C51.330 (3)C9—C101.386 (3)
O3—C151.440 (3)C9—H90.9300
O4—C51.189 (3)C10—C111.373 (3)
N1—N21.343 (2)C10—C131.436 (3)
N1—C11.364 (3)C11—C121.382 (3)
N1—C61.465 (3)C11—H110.9300
N2—C31.345 (3)C12—H120.9300
N3—C131.136 (3)C14—H14A0.9600
C1—C21.371 (3)C14—H14B0.9600
C1—C41.471 (3)C14—H14C0.9600
C2—C31.387 (3)C14—H14D0.9600
C2—H20.9300C14—H14E0.9600
C3—C51.468 (3)C14—H14F0.9600
C6—C71.510 (3)C15—H15A0.9600
C6—H6A0.9700C15—H15B0.9600
C6—H6B0.9700C15—H15C0.9600
C7—C121.376 (3)
C4—O1—C14117.1 (2)C11—C10—C13120.0 (2)
C5—O3—C15115.7 (2)C9—C10—C13119.9 (2)
N2—N1—C1112.02 (17)C10—C11—C12119.9 (2)
N2—N1—C6117.49 (18)C10—C11—H11120.1
C1—N1—C6130.25 (19)C12—C11—H11120.1
N1—N2—C3104.47 (18)C7—C12—C11120.3 (2)
N1—C1—C2106.61 (19)C7—C12—H12119.8
N1—C1—C4123.3 (2)C11—C12—H12119.8
C2—C1—C4130.0 (2)N3—C13—C10179.2 (3)
C1—C2—C3105.17 (19)O1—C14—H14A109.5
C1—C2—H2127.4O1—C14—H14B109.5
C3—C2—H2127.4H14A—C14—H14B109.5
N2—C3—C2111.72 (19)O1—C14—H14C109.5
N2—C3—C5118.3 (2)H14A—C14—H14C109.5
C2—C3—C5130.0 (2)H14B—C14—H14C109.5
O2—C4—O1124.4 (2)O1—C14—H14D109.5
O2—C4—C1125.6 (2)H14A—C14—H14D141.1
O1—C4—C1110.0 (2)H14B—C14—H14D56.3
O4—C5—O3123.3 (2)H14C—C14—H14D56.3
O4—C5—C3126.0 (2)O1—C14—H14E109.5
O3—C5—C3110.7 (2)H14A—C14—H14E56.3
N1—C6—C7112.00 (17)H14B—C14—H14E141.1
N1—C6—H6A109.2H14C—C14—H14E56.3
C7—C6—H6A109.2H14D—C14—H14E109.5
N1—C6—H6B109.2O1—C14—H14F109.5
C7—C6—H6B109.2H14A—C14—H14F56.3
H6A—C6—H6B107.9H14B—C14—H14F56.3
C12—C7—C8119.4 (2)H14C—C14—H14F141.1
C12—C7—C6120.5 (2)H14D—C14—H14F109.5
C8—C7—C6120.0 (2)H14E—C14—H14F109.5
C9—C8—C7120.6 (2)O3—C15—H15A109.5
C9—C8—H8119.7O3—C15—H15B109.5
C7—C8—H8119.7H15A—C15—H15B109.5
C8—C9—C10119.6 (2)O3—C15—H15C109.5
C8—C9—H9120.2H15A—C15—H15C109.5
C10—C9—H9120.2H15B—C15—H15C109.5
C11—C10—C9120.1 (2)
C1—N1—N2—C31.0 (2)C15—O3—C5—C3175.6 (2)
C6—N1—N2—C3175.97 (16)N2—C3—C5—O40.4 (3)
N2—N1—C1—C21.3 (2)C2—C3—C5—O4179.6 (2)
C6—N1—C1—C2175.37 (19)N2—C3—C5—O3179.86 (18)
N2—N1—C1—C4179.11 (18)C2—C3—C5—O30.1 (3)
C6—N1—C1—C46.8 (3)N2—N1—C6—C787.3 (2)
N1—C1—C2—C30.9 (2)C1—N1—C6—C786.6 (3)
C4—C1—C2—C3178.6 (2)N1—C6—C7—C12113.0 (2)
N1—N2—C3—C20.4 (2)N1—C6—C7—C867.8 (3)
N1—N2—C3—C5179.58 (17)C12—C7—C8—C90.1 (4)
C1—C2—C3—N20.3 (2)C6—C7—C8—C9179.2 (2)
C1—C2—C3—C5179.7 (2)C7—C8—C9—C100.1 (4)
C14—O1—C4—O20.4 (3)C8—C9—C10—C110.5 (4)
C14—O1—C4—C1179.79 (19)C8—C9—C10—C13178.8 (2)
N1—C1—C4—O22.2 (4)C9—C10—C11—C120.7 (4)
C2—C1—C4—O2175.2 (2)C13—C10—C11—C12179.0 (2)
N1—C1—C4—O1177.99 (18)C8—C7—C12—C110.2 (3)
C2—C1—C4—O14.7 (3)C6—C7—C12—C11179.0 (2)
C15—O3—C5—O44.7 (4)C10—C11—C12—C70.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O20.972.382.966 (3)119
C14—H14A···O4i0.962.413.312 (4)156
C2—H2···Cg2ii0.933.043.952 (3)166
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H13N3O4
Mr299.28
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)7.4981 (13), 9.1753 (9), 12.2884 (18)
α, β, γ (°)69.820 (5), 88.900 (6), 68.818 (5)
V3)734.51 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.968, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
7543, 3330, 1972
Rint0.038
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.161, 1.03
No. of reflections3330
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.15

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O20.972.382.966 (3)118.6
C14—H14A···O4i0.962.413.312 (4)156.4
C2—H2···Cg2ii0.933.043.952 (3)166.01
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y, z.
π-π interactions in the title compound.
α is the interplanar angle, DCC is the length of the vector centroid to centroid - CC), τ is the angle subtended by the plane normal to CC. Cg1 is the centroid of the ring N1\N2\C3\C2\C1; Cg2 is the centroid of the ring C7\C8\C9\C10\C11\C12.
top
Ring 1Ring 2α (°)DCC (Å)τ (°)
Cg1Cg1iii0.003.5074 (16)18.75
Cg2Cg2iv0.003.9401 (15)28.26
Symmetry codes: (iii) -x, -y, -z; (iv) 1-x, -y, 1-z
 

Acknowledgements

This work was supported financially by Southeast University for Young Researchers (4007041027).

References

First citationChambers, D., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1985). J. Org. Chem. 50, 4736–4738.  CSD CrossRef CAS Web of Science Google Scholar
First citationDai, W., Wang, W.-X., Zhao, Y.-Y. & Zhao, H. (2008). Acta Cryst. E64, o1017.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, H. H., Cain, B. F., Denny, W. A., Buckleton, J. S. & Clark, G. R. (1989). J. Org. Chem. 54, 428–431.  CSD CrossRef CAS Web of Science Google Scholar
First citationRadl, S., Hezky, P., Konvicka, P. & Krejci, J. (2000). Collect. Czech. Chem. Commun. 65, 1093–1108.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, J. & Zhao, H. (2008a). Acta Cryst. E64, o965.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, J. & Zhao, H. (2008b). Acta Cryst. E64, o986.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, J. & Zhao, H. (2008c). Acta Cryst. E64, o1436.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1175
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds