organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-5-(2-hy­droxy­benzyl­­idene­amino)benzene-1,2-dicarbo­nitrile

aDepartment of Pharmacy, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
*Correspondence e-mail: gaojing_mmu@163.com

(Received 26 February 2009; accepted 29 March 2009; online 8 April 2009)

A new tetra­dentate unsymmetrical Schiff base, C15H10N4O, has been synthesized from 4,5-dicyano-o-phenyl­enediamine and o-vanillin in refluxing ethanol. The dihedral angle between the two benzene rings is 39.0 (1)°. There are intra­molecular O—H⋯N and weak inter­molecular N—H⋯O and N—H⋯N inter­actions.

Related literature

For the biological activity of Schiff bases, see: Boskovic et al. (2003[Boskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Gudel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046-14058.]); Koizumi et al. (2005[Koizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208-1210.]); Oshiob et al. (2005[Oshiob, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568-4569.]). For related structures, see: Kannappan et al. (2005[Kannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383-388.]); Zhang et al. (2003[Zhang, Y., Khoo, L. E. & Ng, S. W. (2003). Acta Cryst. E59, o1496-o1497.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10N4O

  • Mr = 262.27

  • Monoclinic, P 21 /c

  • a = 14.0158 (15) Å

  • b = 12.3650 (13) Å

  • c = 7.3557 (8) Å

  • β = 99.904 (2)°

  • V = 1255.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.989, Tmax = 0.993

  • 7234 measured reflections

  • 2838 independent reflections

  • 1770 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.170

  • S = 1.00

  • 2838 reflections

  • 187 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1B⋯N2i 0.930 (18) 2.205 (17) 3.126 (3) 171 (2)
N3—H1C⋯O1ii 0.930 (19) 2.69 (2) 3.206 (3) 115.5 (17)
O1—H1A⋯N4 0.82 1.91 2.639 (2) 147
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the past decades, Schiff bases have been intensively investigated not only because of their strong coordination capability but also due to their diverse biological activities, such as antibacterial, antitumor, etc. (Koizumi et al., 2005; Boskovic et al., 2003; Oshiob et al., 2005). The halide groups in schiff base ligands could effectively optimize the properties of the coordination complexes.

X-ray diffraction analysis indicates that (I) is an unsymmetrical Schiff base ligand (fig. 1). The imide bond length 1.283 (2)(2) Å for C(1)–N(4) is slightly longer than that of 4-Bromo-2-(2-pyridylmethyliminomethyl)phenol (1.269 (4) Å) (Zhang et al., 2003). It is noteworthy that there exists relatively weak intermolecular interactions involving the NH moieties and one intramolecular interaction with OH as the donor (Table 1), which are similar to those of its derivative 4-Bromo-2-(2-pyridylmethyliminomethyl)phenol (Zhang et al., 2003).

Related literature top

For the biological activity of Schiff bases, see: Boskovic et al. (2003); Koizumi et al. (2005); Oshiob et al. (2005). For related structures, see: Kannappan et al. (2005); Zhang et al. (2003).

Experimental top

(I) was prepared according to the method reported in the literature (Kannappan et al., 2005). 4,5-dicyano-o-phenylenediamine (2.16 g, 0.02 mol) was added to a stirred ethanol solution of O-vanillin (3.04 g, 0.02 mol (10 ml). The reaction mixture was stirred about 3 h and then the mixture was allowed to stand at room temperature for about two days. Yellow cystals suitable for X-ray diffraction analysis were then collected with a yield of 60%.

Refinement top

The H atoms of the amino group were located from difference density maps and were refined with distance restraints of d(N–H) = 0.93 (2) Å. H atoms bound to C and O atoms were visible in difference maps and were placed using the HFIX commands in SHELXL97. All H atoms were allowed for as riding atoms (C–H 0.97 Å, O–H 0.86 Å) with the constraint Uiso(H) = 1.5Ueq(methyl carrier), 1.5Ueq(O) and 1.2Ueq(carrier) for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the atmoic numbering scheme and 30% probability displacement ellipsoids.
4-Amino-5-(2-hydroxybenzylideneamino)benzene-1,2-dicarbonitrile top
Crystal data top
C15H10N4OF(000) = 544
Mr = 262.27Dx = 1.387 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1728 reflections
a = 14.0158 (15) Åθ = 2.2–26.3°
b = 12.3650 (13) ŵ = 0.09 mm1
c = 7.3557 (8) ÅT = 273 K
β = 99.904 (2)°Block, yellow
V = 1255.8 (2) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2838 independent reflections
Radiation source: fine-focus sealed tube1770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1815
Tmin = 0.989, Tmax = 0.993k = 1611
7234 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.105P)2]
where P = (Fo2 + 2Fc2)/3
2838 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.14 e Å3
2 restraintsΔρmin = 0.16 e Å3
Crystal data top
C15H10N4OV = 1255.8 (2) Å3
Mr = 262.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.0158 (15) ŵ = 0.09 mm1
b = 12.3650 (13) ÅT = 273 K
c = 7.3557 (8) Å0.12 × 0.10 × 0.08 mm
β = 99.904 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2838 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1770 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.993Rint = 0.027
7234 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.14 e Å3
2838 reflectionsΔρmin = 0.16 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.91817 (12)0.53191 (15)0.1796 (2)0.0451 (5)
H10.91430.46490.12130.054*
C20.75504 (12)0.55664 (15)0.0486 (2)0.0447 (5)
C30.72462 (12)0.45035 (16)0.0422 (3)0.0467 (5)
H30.76400.39820.10840.056*
C41.01931 (14)0.66149 (16)0.3888 (3)0.0495 (5)
C50.60770 (13)0.60523 (16)0.1573 (3)0.0513 (5)
H50.56870.65680.22580.062*
C60.48595 (14)0.46643 (17)0.2707 (3)0.0517 (5)
C71.00930 (12)0.56357 (15)0.2900 (2)0.0433 (5)
C80.57855 (12)0.49920 (16)0.1632 (3)0.0478 (5)
C90.63646 (13)0.41989 (15)0.0612 (3)0.0487 (5)
C100.69528 (13)0.63652 (15)0.0496 (3)0.0491 (5)
C110.60376 (14)0.30994 (18)0.0585 (3)0.0585 (6)
C121.09021 (14)0.49709 (18)0.2966 (3)0.0551 (5)
H121.08400.43150.23380.066*
C131.10904 (16)0.69001 (19)0.4891 (3)0.0629 (6)
H131.11600.75420.55590.075*
C141.18721 (16)0.6233 (2)0.4895 (3)0.0685 (7)
H141.24720.64370.55540.082*
C151.17898 (14)0.5268 (2)0.3944 (3)0.0671 (7)
H151.23270.48240.39620.080*
N10.57748 (15)0.22349 (18)0.0536 (3)0.0888 (7)
N20.41430 (13)0.43718 (16)0.3475 (3)0.0680 (6)
N30.72491 (14)0.74135 (15)0.0435 (3)0.0700 (6)
N40.84233 (10)0.59191 (12)0.1583 (2)0.0462 (4)
O10.94357 (11)0.72904 (11)0.3901 (2)0.0692 (5)
H1A0.89500.70340.32680.104*
H1B0.6802 (13)0.7949 (13)0.087 (3)0.080*
H1C0.7813 (10)0.7570 (18)0.039 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0428 (10)0.0454 (10)0.0451 (10)0.0030 (8)0.0018 (8)0.0023 (8)
C20.0359 (9)0.0493 (11)0.0464 (10)0.0008 (8)0.0002 (8)0.0008 (8)
C30.0373 (10)0.0505 (11)0.0491 (11)0.0030 (8)0.0015 (8)0.0021 (8)
C40.0475 (11)0.0520 (11)0.0461 (11)0.0053 (9)0.0000 (8)0.0062 (9)
C50.0389 (10)0.0566 (12)0.0540 (12)0.0045 (9)0.0047 (8)0.0050 (9)
C60.0411 (11)0.0574 (12)0.0544 (12)0.0012 (9)0.0019 (9)0.0047 (9)
C70.0367 (10)0.0496 (11)0.0412 (10)0.0016 (8)0.0003 (7)0.0078 (8)
C80.0355 (10)0.0589 (12)0.0464 (11)0.0001 (8)0.0006 (8)0.0024 (8)
C90.0391 (10)0.0527 (12)0.0522 (11)0.0018 (8)0.0019 (8)0.0026 (8)
C100.0408 (10)0.0495 (11)0.0539 (11)0.0007 (8)0.0004 (8)0.0031 (9)
C110.0426 (11)0.0556 (13)0.0708 (15)0.0043 (10)0.0088 (10)0.0018 (10)
C120.0479 (11)0.0643 (13)0.0514 (12)0.0038 (9)0.0036 (9)0.0068 (9)
C130.0586 (13)0.0691 (14)0.0556 (13)0.0205 (11)0.0052 (10)0.0022 (10)
C140.0441 (12)0.0998 (19)0.0557 (13)0.0192 (12)0.0083 (10)0.0163 (13)
C150.0405 (11)0.0969 (19)0.0615 (14)0.0076 (11)0.0022 (10)0.0150 (12)
N10.0665 (13)0.0643 (14)0.124 (2)0.0132 (11)0.0155 (12)0.0018 (12)
N20.0467 (10)0.0788 (14)0.0724 (13)0.0042 (9)0.0071 (9)0.0107 (10)
N30.0556 (11)0.0517 (11)0.0917 (15)0.0012 (9)0.0185 (10)0.0126 (10)
N40.0375 (8)0.0481 (9)0.0490 (9)0.0002 (7)0.0036 (7)0.0033 (7)
O10.0627 (10)0.0562 (9)0.0816 (11)0.0064 (7)0.0076 (8)0.0126 (8)
Geometric parameters (Å, º) top
C1—N41.283 (2)C7—C121.395 (3)
C1—C71.445 (2)C8—C91.405 (3)
C1—H10.9300C9—C111.436 (3)
C2—C31.380 (3)C10—N31.360 (3)
C2—C101.411 (3)C11—N11.133 (3)
C2—N41.414 (2)C12—C151.376 (3)
C3—C91.387 (2)C12—H120.9300
C3—H30.9300C13—C141.371 (3)
C4—O11.352 (2)C13—H130.9300
C4—C131.390 (3)C14—C151.378 (3)
C4—C71.407 (3)C14—H140.9300
C5—C81.372 (3)C15—H150.9300
C5—C101.396 (3)N3—H1B0.930 (18)
C5—H50.9300N3—H1C0.930 (19)
C6—N21.124 (2)O1—H1A0.8200
C6—C81.456 (2)
N4—C1—C7123.06 (17)C3—C9—C11120.39 (17)
N4—C1—H1118.5C8—C9—C11120.79 (16)
C7—C1—H1118.5N3—C10—C5121.11 (18)
C3—C2—C10119.77 (16)N3—C10—C2119.97 (17)
C3—C2—N4123.04 (16)C5—C10—C2118.88 (17)
C10—C2—N4117.10 (16)N1—C11—C9178.9 (3)
C2—C3—C9121.21 (17)C15—C12—C7121.2 (2)
C2—C3—H3119.4C15—C12—H12119.4
C9—C3—H3119.4C7—C12—H12119.4
O1—C4—C13118.65 (19)C14—C13—C4119.9 (2)
O1—C4—C7121.79 (16)C14—C13—H13120.1
C13—C4—C7119.57 (19)C4—C13—H13120.1
C8—C5—C10120.72 (18)C13—C14—C15121.5 (2)
C8—C5—H5119.6C13—C14—H14119.2
C10—C5—H5119.6C15—C14—H14119.2
N2—C6—C8176.6 (2)C12—C15—C14119.1 (2)
C12—C7—C4118.76 (17)C12—C15—H15120.5
C12—C7—C1119.65 (18)C14—C15—H15120.5
C4—C7—C1121.57 (17)C10—N3—H1B118.9 (14)
C5—C8—C9120.58 (16)C10—N3—H1C116.1 (14)
C5—C8—C6121.05 (17)H1B—N3—H1C122 (2)
C9—C8—C6118.34 (17)C1—N4—C2120.57 (16)
C3—C9—C8118.78 (17)C4—O1—H1A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1B···N2i0.93 (2)2.21 (2)3.126 (3)171 (2)
N3—H1C···O1ii0.93 (2)2.69 (2)3.206 (3)116 (2)
O1—H1A···N40.821.912.639 (2)147
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H10N4O
Mr262.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)14.0158 (15), 12.3650 (13), 7.3557 (8)
β (°) 99.904 (2)
V3)1255.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.989, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
7234, 2838, 1770
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.170, 1.00
No. of reflections2838
No. of parameters187
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1B···N2i0.930 (18)2.205 (17)3.126 (3)171 (2)
N3—H1C···O1ii0.930 (19)2.69 (2)3.206 (3)115.5 (17)
O1—H1A···N40.821.912.639 (2)146.7
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge financial support from Mudanjiang Medical University.

References

First citationBoskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Gudel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046–14058.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383–388.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208–1210.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOshiob, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568–4569.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Khoo, L. E. & Ng, S. W. (2003). Acta Cryst. E59, o1496–o1497.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds