organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1078

4′-Chloro-3′,5′-di­meth­oxy­acetanilide

aDepartment of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201300, People's Republic of China
*Correspondence e-mail: chenzhonghua@shiep.edu.cn

(Received 27 February 2009; accepted 7 April 2009; online 22 April 2009)

The title compound, C10H12ClNO3, crystallizes with four independent mol­ecules in the asymmetric unit which are linked by inter­molecular N—H⋯O hydrogen bonds.

Related literature

The natural pyran­oacridone acronycine, which can be synthesized from the title compound, exhibits a broad spectrum of activity against numerous experimental tumor models, see: Nguyen et al. (2006[Nguyen, T. M., Sittisombut, C., Boutefnouchet, S., Lallemand, M.-C., Michel, S., Kock, M., Tillequin, F., Mazinghien, R., Lansiaux, A., David-Cordonnier, M.-H., Pfeiffer, B., Kraus-Berthier, L., Léonce, S. & Pierré, A. (2006). J. Med. Chem. 49, 3383-3394.]). For a related structure, see: Lai et al. (2007[Lai, Q.-L., Zhao, Q.-J., Liu, Z. & Shen, J.-S. (2007). Acta Cryst. E63, o2782.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12ClNO3

  • Mr = 229.66

  • Monoclinic, P 21

  • a = 11.1373 (14) Å

  • b = 15.1159 (19) Å

  • c = 14.2802 (18) Å

  • β = 111.9280 (10)°

  • V = 2230.1 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.908, Tmax = 0.937

  • 11396 measured reflections

  • 6377 independent reflections

  • 5985 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.105

  • S = 1.07

  • 6377 reflections

  • 570 parameters

  • 38 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2293 Friedel pairs

  • Flack parameter: −0.02 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O11i 0.86 (3) 2.03 (4) 2.886 (4) 176 (3)
N2—H2A⋯O2ii 0.895 (18) 1.993 (19) 2.887 (4) 178 (3)
N1—H1A⋯O8iii 0.85 (4) 2.06 (4) 2.906 (4) 176 (4)
N4—H4A⋯O5 0.84 (4) 2.10 (4) 2.909 (4) 163 (3)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) x, y-1, z; (iii) [-x, y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The natural pyranoacridone acronycine was shown to exhibit a broad spectrum of activity against numerous experimental tumor models, including sarcoma, myeloma, carcinoma, and melanoma (Nguyen et al., 2006). The title compound, (I, Fig. 1), can be used as an intermediate in the synthesis of acronycine derivatives. In this paper, we present the X-ray crystallographic analysis of (I), which crystallizes in the monoclinic space group P2(1) with four molecules in the asymmetric unit.

It is interesting to note that there are four independent molecules in the asymmetric unit which is different from a similar structure (Lai et al., 2007) that has two molecules in the asymmetric unit. The dihedral angle between the acetamide groups and the benzene rings is 3.786 (3)°, 15.359 (4)°, 18.189 (3)° and 32.301 (6)° respectively. The torsion angles of the methoxy groups with respect to the benzene rings also vary (from 2.57 (1) to -15.43 (1)°. The molecules are linked into stacks by internolecular N-H···O hydrogen bonding (Fig. 2 and Table 1) with packing between the stacks stabilized by van der Waals forces.

Related literature top

The natural pyranoacridone acronycine exhibits a broad spectrum of activity against numerous experimental tumor models, see: Nguyen et al. (2006). For a related structure, see: Lai et al. (2007).

Experimental top

To a solution of 3,5-dimethoxyanilide (195 mg, 1.0 mmol) in dry CH2Cl2 (4 ml) cooled with an ice-water bath was added N-chlorobutanimide (147 mg, 1.1 mmol) in portions. After 2 h, the reaction was warmed to room temperature and stirred for 30 min and then filtered. The resulting solution was evaporated to give a white solid which was further purified by column chromatography (CH2Cl2) to give (I) (yield 75%, m. p. 493 K). Single crystals of (I) were obtained by slow evaporation of a petroleum ether-ethyl acetate solution. After one week, single crystals suitable for X-ray diffraction were obtained respectively.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride their parent atoms, with N—H = 0.840–0.895 Å, Uiso(H) = 1.2Ueq(N) and C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the a-axis. Hydrogen bonds are shown as dashed lines.
4'-Chloro-3',5'-dimethoxyacetanilide top
Crystal data top
C10H12ClNO3Dx = 1.368 Mg m3
Mr = 229.66Melting point: 493 K
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 11.1373 (14) ÅCell parameters from 7547 reflections
b = 15.1159 (19) Åθ = 2.4–27.2°
c = 14.2802 (18) ŵ = 0.33 mm1
β = 111.928 (1)°T = 296 K
V = 2230.1 (5) Å3Block, colourless
Z = 80.30 × 0.20 × 0.20 mm
F(000) = 960
Data collection top
Bruker SMART CCD area-detector
diffractometer
6377 independent reflections
Radiation source: fine-focus sealed tube5985 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1213
Tmin = 0.908, Tmax = 0.937k = 1317
11396 measured reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0603P)2 + 0.5909P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.25 e Å3
6377 reflectionsΔρmin = 0.18 e Å3
570 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
38 restraintsExtinction coefficient: 0.0059 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2293 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (5)
Crystal data top
C10H12ClNO3V = 2230.1 (5) Å3
Mr = 229.66Z = 8
Monoclinic, P21Mo Kα radiation
a = 11.1373 (14) ŵ = 0.33 mm1
b = 15.1159 (19) ÅT = 296 K
c = 14.2802 (18) Å0.30 × 0.20 × 0.20 mm
β = 111.928 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6377 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5985 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.937Rint = 0.021
11396 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105Δρmax = 0.25 e Å3
S = 1.07Δρmin = 0.18 e Å3
6377 reflectionsAbsolute structure: Flack (1983), 2293 Friedel pairs
570 parametersAbsolute structure parameter: 0.02 (5)
38 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.50814 (9)0.60141 (6)0.49262 (8)0.0642 (3)
O10.2442 (2)0.54965 (16)0.3810 (2)0.0611 (6)
O20.1586 (3)0.97634 (19)0.3086 (2)0.0662 (7)
O30.5250 (2)0.78822 (18)0.4969 (2)0.0568 (6)
N10.0655 (3)0.8428 (2)0.3098 (2)0.0503 (7)
C10.1754 (3)0.7879 (2)0.3532 (2)0.0421 (7)
C20.2992 (3)0.8216 (2)0.4038 (2)0.0424 (7)
H20.31330.88240.40970.051*
C30.4001 (3)0.7634 (2)0.4448 (2)0.0421 (7)
C40.3794 (3)0.6724 (2)0.4367 (2)0.0440 (7)
C50.2560 (3)0.6400 (2)0.3866 (2)0.0455 (7)
C60.1529 (3)0.6973 (2)0.3435 (2)0.0462 (7)
H60.07010.67550.30860.055*
C70.1193 (4)0.5133 (3)0.3338 (4)0.0762 (12)
H7A0.06530.53200.36910.114*
H7B0.12490.44990.33500.114*
H7C0.08260.53330.26510.114*
C80.0608 (3)0.9307 (3)0.2914 (3)0.0535 (8)
C90.0731 (4)0.9684 (3)0.2456 (4)0.0721 (12)
H9A0.06791.03160.24050.108*
H9B0.12070.95410.28740.108*
H9C0.11630.94380.17950.108*
C100.5538 (4)0.8806 (3)0.5012 (3)0.0665 (11)
H10A0.52790.90370.43390.100*
H10B0.64510.88930.53610.100*
H10C0.50770.91080.53660.100*
Cl20.55954 (10)0.15609 (7)0.01677 (8)0.0650 (3)
O40.3842 (2)0.20909 (15)0.11098 (18)0.0527 (6)
O50.3629 (2)0.21934 (17)0.1938 (2)0.0605 (6)
O60.5970 (3)0.03091 (19)0.0383 (2)0.0683 (7)
N20.3041 (3)0.07914 (18)0.2169 (2)0.0441 (6)
C110.3702 (3)0.0277 (2)0.1693 (2)0.0399 (7)
C120.3470 (3)0.0642 (2)0.1676 (2)0.0420 (7)
H120.29380.08700.19860.050*
C130.4040 (3)0.1200 (2)0.1194 (2)0.0415 (7)
C140.4881 (3)0.0857 (2)0.0775 (2)0.0460 (7)
C150.5123 (3)0.0043 (2)0.0808 (2)0.0457 (7)
C160.4517 (3)0.0612 (2)0.1258 (2)0.0460 (7)
H160.46620.12180.12640.055*
C170.6186 (5)0.1241 (3)0.0333 (4)0.0850 (15)
H17A0.53690.15390.00390.128*
H17B0.66890.13420.00750.128*
H17C0.66430.14660.10010.128*
C180.3005 (3)0.1681 (2)0.2249 (3)0.0502 (8)
C190.2165 (4)0.2013 (3)0.2789 (3)0.0629 (10)
H19A0.26910.21300.34830.094*
H19B0.15290.15730.27570.094*
H19C0.17380.25470.24740.094*
C200.2957 (4)0.2457 (3)0.1515 (3)0.0606 (10)
H20A0.33000.23880.22360.091*
H20B0.28340.30740.13490.091*
H20C0.21420.21550.12330.091*
Cl30.01359 (8)0.00462 (6)1.02777 (6)0.0524 (2)
O70.0568 (2)0.18003 (16)1.00635 (18)0.0531 (6)
O80.1927 (2)0.27104 (18)0.73842 (19)0.0609 (7)
O90.1311 (3)0.10568 (15)0.91356 (18)0.0538 (6)
N30.3026 (3)0.1427 (2)0.7915 (2)0.0451 (6)
C210.2327 (3)0.1090 (2)0.8477 (2)0.0392 (7)
C220.1802 (3)0.1657 (2)0.8994 (2)0.0423 (7)
H220.19040.22660.89720.051*
C230.1126 (3)0.1297 (2)0.9542 (2)0.0412 (7)
C240.0979 (3)0.0387 (2)0.9583 (2)0.0389 (6)
C250.1523 (3)0.0168 (2)0.9073 (2)0.0405 (7)
C260.2202 (3)0.0183 (2)0.8522 (2)0.0428 (7)
H260.25700.01890.81850.051*
C270.1790 (5)0.1637 (3)0.8574 (3)0.0682 (11)
H27A0.13970.14940.78690.102*
H27B0.15840.22370.86780.102*
H27C0.27120.15720.87950.102*
C280.2784 (3)0.2203 (2)0.7393 (2)0.0454 (7)
C290.3613 (3)0.2385 (3)0.6798 (3)0.0573 (9)
H29A0.31430.22420.61020.086*
H29B0.43830.20310.70550.086*
H29C0.38460.30000.68560.086*
C300.0697 (4)0.2730 (2)1.0017 (3)0.0606 (9)
H30A0.15960.28871.03070.091*
H30B0.02400.30141.03860.091*
H30C0.03420.29190.93250.091*
Cl41.03856 (8)0.29948 (8)0.49008 (8)0.0684 (3)
O100.8345 (2)0.17496 (18)0.3899 (2)0.0619 (7)
O110.4972 (2)0.53597 (17)0.23430 (19)0.0573 (6)
O120.9289 (2)0.47290 (17)0.47789 (18)0.0566 (6)
N40.4909 (2)0.38854 (19)0.2602 (2)0.0429 (6)
C310.6224 (3)0.3698 (2)0.3182 (2)0.0361 (6)
C320.6607 (3)0.2822 (2)0.3235 (2)0.0430 (7)
H320.60140.23860.28990.052*
C330.7887 (3)0.2602 (2)0.3797 (2)0.0457 (7)
C340.8772 (3)0.3252 (2)0.4263 (2)0.0437 (7)
C350.8372 (3)0.4127 (2)0.4242 (2)0.0410 (7)
C360.7081 (3)0.4349 (2)0.3696 (2)0.0403 (7)
H360.68030.49310.36790.048*
C370.8871 (4)0.5614 (3)0.4803 (3)0.0678 (11)
H37A0.86200.58700.41420.102*
H37B0.95660.59530.52710.102*
H37C0.81460.56180.50120.102*
C380.4380 (3)0.4664 (2)0.2209 (2)0.0426 (7)
C390.2963 (3)0.4632 (3)0.1571 (3)0.0570 (9)
H39A0.25580.51710.16540.086*
H39B0.25720.41400.17740.086*
H39C0.28500.45650.08740.086*
C400.7423 (4)0.1055 (3)0.3627 (3)0.0641 (10)
H40A0.68100.11470.39450.096*
H40B0.78560.05000.38450.096*
H40C0.69770.10480.29070.096*
H3A0.361 (3)0.109 (2)0.786 (2)0.039 (8)*
H2A0.261 (3)0.047 (2)0.247 (3)0.055 (10)*
H1A0.008 (4)0.819 (3)0.295 (3)0.055 (11)*
H4A0.440 (3)0.346 (3)0.235 (3)0.050 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0549 (5)0.0394 (5)0.0880 (6)0.0025 (4)0.0147 (4)0.0066 (5)
O10.0557 (13)0.0326 (14)0.0833 (16)0.0071 (11)0.0123 (12)0.0004 (12)
O20.0690 (16)0.0501 (17)0.0882 (18)0.0024 (13)0.0392 (14)0.0134 (14)
O30.0495 (12)0.0405 (15)0.0749 (15)0.0088 (11)0.0167 (11)0.0075 (12)
N10.0492 (16)0.0429 (17)0.0614 (17)0.0034 (14)0.0237 (14)0.0054 (14)
C10.0497 (16)0.0368 (19)0.0453 (16)0.0035 (14)0.0241 (13)0.0041 (14)
C20.0546 (17)0.0311 (17)0.0483 (16)0.0007 (14)0.0271 (14)0.0018 (13)
C30.0442 (16)0.0391 (19)0.0463 (16)0.0040 (14)0.0206 (14)0.0050 (14)
C40.0514 (17)0.0325 (17)0.0494 (17)0.0002 (14)0.0204 (14)0.0004 (14)
C50.0557 (18)0.0305 (17)0.0524 (18)0.0046 (14)0.0227 (15)0.0050 (14)
C60.0453 (16)0.041 (2)0.0520 (17)0.0029 (15)0.0184 (14)0.0011 (15)
C70.065 (2)0.039 (2)0.116 (3)0.0170 (19)0.025 (2)0.006 (2)
C80.0609 (19)0.049 (2)0.062 (2)0.0056 (18)0.0365 (17)0.0046 (18)
C90.071 (2)0.058 (3)0.095 (3)0.019 (2)0.041 (2)0.018 (2)
C100.064 (2)0.043 (2)0.089 (3)0.0149 (18)0.024 (2)0.008 (2)
Cl20.0837 (6)0.0467 (5)0.0848 (6)0.0072 (5)0.0548 (5)0.0030 (5)
O40.0759 (15)0.0264 (12)0.0671 (14)0.0033 (11)0.0398 (12)0.0016 (11)
O50.0622 (14)0.0320 (14)0.0868 (18)0.0095 (12)0.0270 (13)0.0055 (13)
O60.0870 (18)0.0430 (15)0.0985 (19)0.0058 (14)0.0619 (16)0.0053 (14)
N20.0515 (14)0.0282 (15)0.0535 (15)0.0054 (12)0.0206 (12)0.0033 (11)
C110.0403 (15)0.0311 (17)0.0436 (15)0.0012 (12)0.0101 (12)0.0014 (13)
C120.0457 (15)0.0331 (18)0.0474 (16)0.0024 (14)0.0175 (13)0.0006 (14)
C130.0505 (16)0.0300 (17)0.0429 (15)0.0021 (13)0.0160 (13)0.0027 (13)
C140.0504 (16)0.0415 (19)0.0465 (16)0.0045 (15)0.0186 (14)0.0042 (14)
C150.0467 (16)0.0377 (18)0.0533 (17)0.0019 (14)0.0192 (14)0.0093 (15)
C160.0492 (16)0.0326 (18)0.0502 (16)0.0017 (14)0.0117 (14)0.0044 (14)
C170.121 (4)0.055 (3)0.106 (3)0.027 (3)0.074 (3)0.002 (3)
C180.0464 (16)0.0361 (19)0.060 (2)0.0015 (15)0.0103 (15)0.0037 (16)
C190.074 (2)0.040 (2)0.078 (2)0.0051 (18)0.032 (2)0.0058 (19)
C200.086 (3)0.039 (2)0.073 (2)0.0149 (19)0.048 (2)0.0115 (17)
Cl30.0530 (4)0.0560 (6)0.0536 (4)0.0101 (4)0.0260 (4)0.0017 (4)
O70.0646 (14)0.0405 (14)0.0654 (14)0.0032 (11)0.0370 (12)0.0089 (11)
O80.0659 (15)0.0546 (17)0.0636 (15)0.0218 (13)0.0259 (12)0.0196 (13)
O90.0757 (15)0.0296 (13)0.0619 (14)0.0054 (11)0.0325 (12)0.0049 (10)
N30.0457 (14)0.0422 (17)0.0514 (15)0.0054 (13)0.0230 (12)0.0058 (12)
C210.0375 (14)0.0394 (18)0.0391 (14)0.0013 (13)0.0123 (12)0.0017 (14)
C220.0469 (16)0.0300 (17)0.0499 (17)0.0006 (13)0.0180 (14)0.0005 (13)
C230.0390 (14)0.0423 (19)0.0407 (15)0.0026 (13)0.0132 (12)0.0074 (13)
C240.0391 (14)0.0415 (18)0.0357 (14)0.0034 (13)0.0135 (12)0.0009 (13)
C250.0463 (15)0.0326 (17)0.0396 (14)0.0005 (13)0.0125 (12)0.0005 (13)
C260.0477 (16)0.0401 (19)0.0419 (15)0.0062 (14)0.0181 (13)0.0024 (13)
C270.102 (3)0.035 (2)0.078 (3)0.005 (2)0.046 (2)0.0047 (19)
C280.0445 (15)0.044 (2)0.0424 (15)0.0005 (15)0.0109 (13)0.0064 (15)
C290.0567 (19)0.056 (2)0.061 (2)0.0024 (18)0.0250 (17)0.0147 (18)
C300.077 (2)0.036 (2)0.075 (2)0.0081 (17)0.036 (2)0.0091 (18)
Cl40.0425 (4)0.0693 (7)0.0779 (6)0.0103 (4)0.0048 (4)0.0099 (5)
O100.0555 (14)0.0418 (15)0.0805 (17)0.0127 (12)0.0163 (12)0.0019 (13)
O110.0465 (12)0.0368 (13)0.0775 (16)0.0083 (11)0.0106 (11)0.0043 (12)
O120.0441 (12)0.0495 (16)0.0607 (13)0.0096 (11)0.0018 (10)0.0048 (11)
N40.0352 (12)0.0349 (16)0.0527 (15)0.0069 (12)0.0097 (11)0.0019 (12)
C310.0365 (13)0.0358 (18)0.0352 (13)0.0004 (12)0.0124 (11)0.0028 (12)
C320.0430 (15)0.0372 (18)0.0457 (16)0.0001 (13)0.0128 (13)0.0035 (14)
C330.0473 (16)0.043 (2)0.0460 (16)0.0074 (15)0.0168 (14)0.0003 (14)
C340.0389 (15)0.048 (2)0.0422 (15)0.0054 (14)0.0124 (12)0.0085 (14)
C350.0404 (15)0.0426 (19)0.0367 (14)0.0075 (14)0.0106 (12)0.0024 (13)
C360.0402 (14)0.0378 (17)0.0393 (14)0.0004 (14)0.0106 (12)0.0056 (13)
C370.060 (2)0.047 (2)0.073 (2)0.0112 (18)0.0012 (18)0.0011 (19)
C380.0385 (15)0.0393 (19)0.0488 (16)0.0008 (14)0.0149 (13)0.0010 (14)
C390.0402 (16)0.047 (2)0.075 (2)0.0010 (15)0.0111 (16)0.0036 (18)
C400.074 (2)0.045 (2)0.070 (2)0.008 (2)0.0227 (19)0.0044 (19)
Geometric parameters (Å, º) top
Cl1—C41.729 (3)Cl3—C241.729 (3)
O1—C51.371 (4)O7—C231.366 (4)
O1—C71.412 (5)O7—C301.417 (4)
O2—C81.234 (4)O8—C281.220 (4)
O3—C31.363 (4)O9—C251.372 (4)
O3—C101.428 (5)O9—C271.420 (4)
N1—C81.351 (5)N3—C281.361 (4)
N1—C11.416 (4)N3—C211.405 (4)
N1—H1A0.85 (4)N3—H3A0.86 (3)
C1—C61.390 (5)C21—C261.383 (5)
C1—C21.392 (4)C21—C221.394 (4)
C2—C31.375 (4)C22—C231.384 (4)
C2—H20.9300C22—H220.9300
C3—C41.393 (5)C23—C241.389 (5)
C4—C51.381 (5)C24—C251.390 (4)
C5—C61.385 (5)C25—C261.384 (4)
C6—H60.9300C26—H260.9300
C7—H7A0.9600C27—H27A0.9600
C7—H7B0.9600C27—H27B0.9600
C7—H7C0.9600C27—H27C0.9600
C8—C91.500 (5)C28—C291.495 (5)
C9—H9A0.9600C29—H29A0.9600
C9—H9B0.9600C29—H29B0.9600
C9—H9C0.9600C29—H29C0.9600
C10—H10A0.9600C30—H30A0.9600
C10—H10B0.9600C30—H30B0.9600
C10—H10C0.9600C30—H30C0.9600
Cl2—C141.741 (3)Cl4—C341.729 (3)
O4—C131.362 (4)O10—C331.373 (4)
O4—C201.428 (4)O10—C401.418 (5)
O5—C181.229 (4)O11—C381.219 (4)
O6—C151.359 (4)O12—C351.369 (4)
O6—C171.436 (5)O12—C371.421 (5)
N2—C181.351 (4)N4—C381.341 (4)
N2—C111.408 (4)N4—C311.416 (4)
N2—H2A0.895 (18)N4—H4A0.84 (4)
C11—C161.374 (5)C31—C361.376 (4)
C11—C121.411 (5)C31—C321.385 (5)
C12—C131.384 (5)C32—C331.390 (4)
C12—H120.9300C32—H320.9300
C13—C141.388 (4)C33—C341.375 (5)
C14—C151.385 (5)C34—C351.392 (5)
C15—C161.390 (5)C35—C361.397 (4)
C16—H160.9300C36—H360.9300
C17—H17A0.9600C37—H37A0.9600
C17—H17B0.9600C37—H37B0.9600
C17—H17C0.9600C37—H37C0.9600
C18—C191.504 (5)C38—C391.500 (4)
C19—H19A0.9600C39—H39A0.9600
C19—H19B0.9600C39—H39B0.9600
C19—H19C0.9600C39—H39C0.9600
C20—H20A0.9600C40—H40A0.9600
C20—H20B0.9600C40—H40B0.9600
C20—H20C0.9600C40—H40C0.9600
C5—O1—C7118.1 (3)C23—O7—C30116.9 (3)
C3—O3—C10117.4 (3)C25—O9—C27117.2 (3)
C8—N1—C1128.7 (3)C28—N3—C21125.9 (3)
C8—N1—H1A113 (3)C28—N3—H3A117 (2)
C1—N1—H1A118 (3)C21—N3—H3A116 (2)
C6—C1—C2121.3 (3)C26—C21—C22120.9 (3)
C6—C1—N1116.1 (3)C26—C21—N3118.3 (3)
C2—C1—N1122.6 (3)C22—C21—N3120.7 (3)
C3—C2—C1118.7 (3)C23—C22—C21118.9 (3)
C3—C2—H2120.7C23—C22—H22120.6
C1—C2—H2120.7C21—C22—H22120.6
O3—C3—C2124.2 (3)O7—C23—C22122.9 (3)
O3—C3—C4115.0 (3)O7—C23—C24116.4 (3)
C2—C3—C4120.9 (3)C22—C23—C24120.7 (3)
C5—C4—C3119.7 (3)C23—C24—C25119.6 (3)
C5—C4—Cl1120.9 (3)C23—C24—Cl3119.8 (2)
C3—C4—Cl1119.4 (2)C25—C24—Cl3120.6 (3)
O1—C5—C4116.0 (3)O9—C25—C26123.8 (3)
O1—C5—C6123.5 (3)O9—C25—C24115.9 (3)
C4—C5—C6120.5 (3)C26—C25—C24120.2 (3)
C5—C6—C1118.9 (3)C21—C26—C25119.6 (3)
C5—C6—H6120.5C21—C26—H26120.2
C1—C6—H6120.5C25—C26—H26120.2
O1—C7—H7A109.5O9—C27—H27A109.5
O1—C7—H7B109.5O9—C27—H27B109.5
H7A—C7—H7B109.5H27A—C27—H27B109.5
O1—C7—H7C109.5O9—C27—H27C109.5
H7A—C7—H7C109.5H27A—C27—H27C109.5
H7B—C7—H7C109.5H27B—C27—H27C109.5
O2—C8—N1122.9 (3)O8—C28—N3122.8 (3)
O2—C8—C9122.3 (4)O8—C28—C29121.6 (3)
N1—C8—C9114.8 (3)N3—C28—C29115.6 (3)
C8—C9—H9A109.5C28—C29—H29A109.5
C8—C9—H9B109.5C28—C29—H29B109.5
H9A—C9—H9B109.5H29A—C29—H29B109.5
C8—C9—H9C109.5C28—C29—H29C109.5
H9A—C9—H9C109.5H29A—C29—H29C109.5
H9B—C9—H9C109.5H29B—C29—H29C109.5
O3—C10—H10A109.5O7—C30—H30A109.5
O3—C10—H10B109.5O7—C30—H30B109.5
H10A—C10—H10B109.5H30A—C30—H30B109.5
O3—C10—H10C109.5O7—C30—H30C109.5
H10A—C10—H10C109.5H30A—C30—H30C109.5
H10B—C10—H10C109.5H30B—C30—H30C109.5
C13—O4—C20117.4 (3)C33—O10—C40117.6 (3)
C15—O6—C17118.0 (3)C35—O12—C37117.2 (3)
C18—N2—C11128.9 (3)C38—N4—C31128.1 (3)
C18—N2—H2A118 (2)C38—N4—H4A112 (3)
C11—N2—H2A113 (2)C31—N4—H4A119 (3)
C16—C11—N2124.6 (3)C36—C31—C32121.1 (3)
C16—C11—C12120.1 (3)C36—C31—N4121.9 (3)
N2—C11—C12115.3 (3)C32—C31—N4117.0 (3)
C13—C12—C11119.7 (3)C31—C32—C33119.3 (3)
C13—C12—H12120.2C31—C32—H32120.4
C11—C12—H12120.2C33—C32—H32120.4
O4—C13—C12123.9 (3)O10—C33—C34116.6 (3)
O4—C13—C14116.4 (3)O10—C33—C32123.1 (3)
C12—C13—C14119.7 (3)C34—C33—C32120.2 (3)
C15—C14—C13120.4 (3)C33—C34—C35120.2 (3)
C15—C14—Cl2119.9 (2)C33—C34—Cl4120.7 (3)
C13—C14—Cl2119.6 (3)C35—C34—Cl4119.1 (2)
O6—C15—C14115.7 (3)O12—C35—C34117.0 (3)
O6—C15—C16124.1 (3)O12—C35—C36123.4 (3)
C14—C15—C16120.1 (3)C34—C35—C36119.7 (3)
C11—C16—C15119.9 (3)C31—C36—C35119.3 (3)
C11—C16—H16120.1C31—C36—H36120.3
C15—C16—H16120.1C35—C36—H36120.3
O6—C17—H17A109.5O12—C37—H37A109.5
O6—C17—H17B109.5O12—C37—H37B109.5
H17A—C17—H17B109.5H37A—C37—H37B109.5
O6—C17—H17C109.5O12—C37—H37C109.5
H17A—C17—H17C109.5H37A—C37—H37C109.5
H17B—C17—H17C109.5H37B—C37—H37C109.5
O5—C18—N2123.9 (3)O11—C38—N4124.3 (3)
O5—C18—C19121.3 (3)O11—C38—C39120.5 (3)
N2—C18—C19114.8 (3)N4—C38—C39115.1 (3)
C18—C19—H19A109.5C38—C39—H39A109.5
C18—C19—H19B109.5C38—C39—H39B109.5
H19A—C19—H19B109.5H39A—C39—H39B109.5
C18—C19—H19C109.5C38—C39—H39C109.5
H19A—C19—H19C109.5H39A—C39—H39C109.5
H19B—C19—H19C109.5H39B—C39—H39C109.5
O4—C20—H20A109.5O10—C40—H40A109.5
O4—C20—H20B109.5O10—C40—H40B109.5
H20A—C20—H20B109.5H40A—C40—H40B109.5
O4—C20—H20C109.5O10—C40—H40C109.5
H20A—C20—H20C109.5H40A—C40—H40C109.5
H20B—C20—H20C109.5H40B—C40—H40C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O11i0.86 (3)2.03 (4)2.886 (4)176 (3)
N2—H2A···O2ii0.90 (2)1.99 (2)2.887 (4)178 (3)
N1—H1A···O8iii0.85 (4)2.06 (4)2.906 (4)176 (4)
N4—H4A···O50.84 (4)2.10 (4)2.909 (4)163 (3)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y1, z; (iii) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H12ClNO3
Mr229.66
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)11.1373 (14), 15.1159 (19), 14.2802 (18)
β (°) 111.928 (1)
V3)2230.1 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.908, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
11396, 6377, 5985
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.105, 1.07
No. of reflections6377
No. of parameters570
No. of restraints38
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.18
Absolute structureFlack (1983), 2293 Friedel pairs
Absolute structure parameter0.02 (5)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O11i0.86 (3)2.03 (4)2.886 (4)176 (3)
N2—H2A···O2ii0.895 (18)1.993 (19)2.887 (4)178 (3)
N1—H1A···O8iii0.85 (4)2.06 (4)2.906 (4)176 (4)
N4—H4A···O50.84 (4)2.10 (4)2.909 (4)163 (3)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y1, z; (iii) x, y+1/2, z+1.
 

Acknowledgements

The authors gratefully acknowledge support from the Excellent Youth Teacher Fund Research Project of Shanghai (No. Z-2008–25), the Special Project of Shanghai Nanotechnology (No. 0852 nm02400) and the Special Project of the Science and Technology Commission of Shanghai Municipality (No. 071605213).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLai, Q.-L., Zhao, Q.-J., Liu, Z. & Shen, J.-S. (2007). Acta Cryst. E63, o2782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNguyen, T. M., Sittisombut, C., Boutefnouchet, S., Lallemand, M.-C., Michel, S., Kock, M., Tillequin, F., Mazinghien, R., Lansiaux, A., David-Cordonnier, M.-H., Pfeiffer, B., Kraus-Berthier, L., Léonce, S. & Pierré, A. (2006). J. Med. Chem. 49, 3383–3394.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1078
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds