organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[5-Bromo-o-phenyl­enebis(nitrilo­methyl­­idyne)]diphenol

aDepartment of Pharmacy, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
*Correspondence e-mail: gaojing_mmu@163.com

(Received 6 March 2009; accepted 29 March 2009; online 8 April 2009)

A new tetra­dentate unsymmetrical Schiff base, C20H15BrN2O2, has been synthesized from 4-bromo-o-phenyl­enediamine and salicylaldehyde in refluxing ethanol. The dihedral angles between the two hydroxy­phenyl rings and the bromo-o-phenyl­enediiminatoin group are 68.6 (1) and 8.7 (1)°; the dihedral angle between the two hydroxy­phenyl rings is 70.3 (1)°. There are two relatively strong intra­molecular of O—H⋯N hydrogen bonds.

Related literature

For the biological activity of Schiff bases, see: Boskovic et al. (2003[Boskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Gudel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046-14058.]); Koizumi et al. (2005[Koizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208-1210.]); Oshiob et al. (2005[Oshiob, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568-4569.]). For related structures, see: Kannappan et al. (2005[Kannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383-388.]); Zhang et al. (2003[Zhang, Y., Khoo, L. E. & Ng, S. W. (2003). Acta Cryst. E59, o1496-o1497.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15BrN2O2

  • Mr = 395.25

  • Monoclinic, P 21 /c

  • a = 12.8744 (10) Å

  • b = 5.9968 (10) Å

  • c = 22.106 (2) Å

  • β = 91.221 (1)°

  • V = 1706.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.43 mm−1

  • T = 297 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.760, Tmax = 0.830

  • 8088 measured reflections

  • 3009 independent reflections

  • 2140 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.141

  • S = 1.00

  • 3009 reflections

  • 228 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N2 0.82 1.87 2.578 (4) 145
O1—H1⋯N3 0.82 1.90 2.614 (5) 145

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the past decades, Schiff bases have been intensively studied due to their strong coordination capability as well

as their diverse biological activities, such as antibacterial, antitumor, etc. (Koizumi et al., 2005; Boskovic et al., 2003; Oshiob et al., 2005). The halide groups in schiff base ligands can effectively optimize the properties of the coordination complexes.

X-ray diffraction analysis indicates that (I) is a unsymmetrical Schiff (Fig. 1). The imide bond lengths of 1.276 (5) and 1.280 (5) Å for C(7)—N(3) and C(14)—N(2) are slightly longer than that found in 4-Bromo-2-(2-pyridylmethyliminomethyl)phenol (1.269 (4) Å) (Zhang et al., 2003) .There are two relatively strong intramolecular hydrogen bonds (Table 1), which are similar to its derivative 4-Bromo-2-(2-pyridylmethyliminomethyl)phenol (Zhang et al.,2003).

Related literature top

For the biological activity of Schiff bases, see: Boskovic et al. (2003); Koizumi et al. (2005); Oshiob et al. (2005). For related structures, see: Kannappan et al. (2005); Zhang et al. (2003).

Experimental top

(I) was prepared according to the method reported in the literature (Kannappan et al., 2005). 4-bromo-o-phenylenediamine (2.16 g, 0.02 mol) was added to a stirred ethanol solution of salicylaldehyde (3.04 g, 0.02 mol (10 ml). The reaction mixture was stirred for about 3 h and then the mixture was allowed to stand at room temperature for about two days. Yellow cystals suitable for X-ray diffraction analysis were then collected with a yield of 25%.

Refinement top

H atoms bound to C and O atoms were visible in difference maps and were placed using the HFIX commands in SHELXL97. All H atoms were allowed for as riding atoms (C–H 0.97 Å, O–H 0.86 Å) with the constraint Uiso(H) = 1.5Ueq(methyl carrier), 1.5Ueq(O) and 1.2Ueq(carrier) for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the atmoic numbering scheme and 30% probability displacement ellipsoids.
2,2'-[5-Bromo-o-phenylenebis(nitrilomethylidyne)]diphenol top
Crystal data top
C20H15BrN2O2F(000) = 800
Mr = 395.25Dx = 1.539 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3171 reflections
a = 12.8744 (10) Åθ = 1.6–25.5°
b = 5.9968 (10) ŵ = 2.43 mm1
c = 22.106 (2) ÅT = 297 K
β = 91.221 (1)°Block, yellow
V = 1706.3 (3) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3009 independent reflections
Radiation source: fine-focus sealed tube2140 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1415
Tmin = 0.760, Tmax = 0.830k = 67
8088 measured reflectionsl = 2426
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.085P)2 + 0.9153P]
where P = (Fo2 + 2Fc2)/3
3009 reflections(Δ/σ)max = 0.002
228 parametersΔρmax = 0.78 e Å3
2 restraintsΔρmin = 0.62 e Å3
Crystal data top
C20H15BrN2O2V = 1706.3 (3) Å3
Mr = 395.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8744 (10) ŵ = 2.43 mm1
b = 5.9968 (10) ÅT = 297 K
c = 22.106 (2) Å0.12 × 0.10 × 0.08 mm
β = 91.221 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3009 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2140 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 0.830Rint = 0.027
8088 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.00Δρmax = 0.78 e Å3
3009 reflectionsΔρmin = 0.62 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.27473 (4)0.20430 (9)1.05914 (2)0.0635 (2)
C10.1838 (3)0.8216 (6)0.94539 (16)0.0417 (9)
C20.1078 (2)0.7023 (5)0.97413 (14)0.0317 (8)
H20.03860.74610.97180.038*
C30.1377 (3)0.5168 (5)1.00639 (16)0.0481 (10)
H30.08780.43161.02550.058*
C40.2398 (3)0.4554 (7)1.01079 (17)0.0447 (9)
C50.3167 (3)0.5727 (7)0.98216 (18)0.0486 (10)
H50.38600.52980.98530.058*
C60.2863 (3)0.7566 (7)0.94862 (18)0.0446 (10)
C70.4151 (3)0.7950 (7)0.87700 (19)0.0464 (10)
H70.40020.64860.86600.056*
C80.4988 (3)0.9113 (7)0.84710 (18)0.0449 (9)
C90.5316 (3)1.1220 (8)0.8668 (2)0.0517 (10)
C100.6197 (4)1.2177 (9)0.8394 (2)0.0662 (13)
H100.64381.35580.85280.079*
C110.6688 (4)1.1140 (10)0.7950 (2)0.0676 (13)
H110.72601.18140.77760.081*
C120.6359 (4)0.9088 (10)0.7746 (2)0.0663 (13)
H120.67060.83870.74340.080*
C130.5525 (3)0.8076 (8)0.79998 (19)0.0547 (11)
H130.53090.66850.78600.066*
C140.0595 (3)1.0603 (7)0.90197 (16)0.0425 (9)
H140.00750.97050.91740.051*
C150.0308 (3)1.2554 (7)0.86720 (17)0.0436 (9)
C160.1076 (3)1.3984 (7)0.84457 (16)0.0485 (10)
C170.0765 (4)1.5884 (8)0.81293 (19)0.0637 (13)
H170.12631.68400.79750.076*
C180.0274 (5)1.6360 (8)0.8042 (2)0.0671 (14)
H180.04681.76560.78390.081*
C190.1025 (4)1.4960 (8)0.8251 (2)0.0629 (12)
H190.17241.52780.81800.076*
C200.0733 (3)1.3075 (7)0.85666 (19)0.0525 (10)
H200.12431.21310.87130.063*
N20.1546 (2)1.0078 (6)0.91204 (14)0.0425 (8)
N30.3615 (2)0.8877 (6)0.91782 (16)0.0501 (8)
O10.4841 (3)1.2338 (6)0.91170 (19)0.0761 (11)
H10.44031.15330.92690.114*
O20.2093 (2)1.3554 (6)0.85188 (15)0.0654 (9)
H2A0.21751.25380.87640.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0748 (4)0.0534 (3)0.0618 (3)0.0087 (2)0.0108 (2)0.0073 (2)
C10.040 (2)0.041 (2)0.044 (2)0.0021 (17)0.0003 (16)0.0050 (18)
C20.0219 (16)0.037 (2)0.0360 (18)0.0026 (15)0.0033 (14)0.0062 (16)
C30.045 (2)0.051 (3)0.049 (2)0.0092 (19)0.0011 (18)0.002 (2)
C40.049 (2)0.040 (2)0.045 (2)0.0010 (18)0.0053 (18)0.0017 (18)
C50.045 (2)0.045 (3)0.056 (2)0.0010 (19)0.0008 (19)0.007 (2)
C60.043 (2)0.043 (2)0.048 (2)0.0090 (18)0.0065 (18)0.0074 (18)
C70.039 (2)0.040 (2)0.060 (3)0.0005 (18)0.0018 (19)0.003 (2)
C80.038 (2)0.044 (2)0.052 (2)0.0042 (18)0.0049 (17)0.0056 (19)
C90.037 (2)0.049 (3)0.069 (3)0.0003 (19)0.002 (2)0.005 (2)
C100.049 (3)0.060 (3)0.089 (4)0.011 (2)0.000 (3)0.012 (3)
C110.047 (3)0.085 (4)0.071 (3)0.005 (3)0.008 (2)0.015 (3)
C120.055 (3)0.092 (4)0.053 (3)0.005 (3)0.011 (2)0.007 (3)
C130.050 (2)0.066 (3)0.049 (2)0.002 (2)0.001 (2)0.001 (2)
C140.046 (2)0.040 (2)0.042 (2)0.0061 (18)0.0042 (17)0.0001 (17)
C150.056 (2)0.039 (2)0.036 (2)0.0036 (18)0.0029 (18)0.0023 (16)
C160.065 (3)0.046 (2)0.035 (2)0.011 (2)0.0036 (19)0.0024 (19)
C170.103 (4)0.048 (3)0.041 (2)0.018 (3)0.010 (2)0.004 (2)
C180.109 (4)0.045 (3)0.046 (3)0.010 (3)0.013 (3)0.005 (2)
C190.074 (3)0.056 (3)0.058 (3)0.012 (3)0.006 (2)0.003 (2)
C200.057 (3)0.050 (3)0.051 (2)0.000 (2)0.000 (2)0.001 (2)
N20.0408 (18)0.0416 (19)0.0453 (18)0.0045 (14)0.0014 (14)0.0006 (15)
N30.0393 (18)0.046 (2)0.065 (2)0.0065 (16)0.0084 (16)0.0063 (18)
O10.063 (2)0.052 (2)0.114 (3)0.0116 (16)0.028 (2)0.021 (2)
O20.060 (2)0.072 (2)0.065 (2)0.0218 (17)0.0083 (16)0.0092 (17)
Geometric parameters (Å, º) top
Br1—C41.895 (4)C11—C121.375 (8)
C1—C61.377 (6)C11—H110.9300
C1—C21.378 (5)C12—C131.364 (6)
C1—N21.385 (5)C12—H120.9300
C2—C31.372 (4)C13—H130.9300
C2—H20.9300C14—N21.279 (5)
C3—C41.367 (5)C14—C151.443 (5)
C3—H30.9300C14—H140.9300
C4—C51.379 (6)C15—C201.391 (6)
C5—C61.381 (6)C15—C161.409 (6)
C5—H50.9300C16—O21.341 (5)
C6—N31.430 (5)C16—C171.391 (6)
C7—N31.275 (5)C17—C181.377 (7)
C7—C81.454 (6)C17—H170.9300
C7—H70.9300C18—C191.367 (7)
C8—C91.399 (6)C18—H180.9300
C8—C131.408 (6)C19—C201.377 (6)
C9—O11.354 (5)C19—H190.9300
C9—C101.419 (6)C20—H200.9300
C10—C111.333 (7)O1—H10.8200
C10—H100.9300O2—H2A0.8200
C6—C1—C2121.2 (3)C12—C11—H11119.6
C6—C1—N2120.3 (3)C13—C12—C11120.2 (5)
C2—C1—N2118.5 (3)C13—C12—H12119.9
C3—C2—C1117.8 (3)C11—C12—H12119.9
C3—C2—H2121.1C12—C13—C8120.7 (5)
C1—C2—H2121.1C12—C13—H13119.6
C4—C3—C2121.0 (3)C8—C13—H13119.6
C4—C3—H3119.5N2—C14—C15121.7 (4)
C2—C3—H3119.5N2—C14—H14119.2
C3—C4—C5121.9 (4)C15—C14—H14119.2
C3—C4—Br1118.1 (3)C20—C15—C16119.0 (4)
C5—C4—Br1120.0 (3)C20—C15—C14120.4 (4)
C4—C5—C6117.1 (4)C16—C15—C14120.6 (4)
C4—C5—H5121.4O2—C16—C17119.2 (4)
C6—C5—H5121.4O2—C16—C15122.1 (4)
C1—C6—C5121.0 (3)C17—C16—C15118.7 (4)
C1—C6—N3118.5 (4)C18—C17—C16120.6 (4)
C5—C6—N3120.5 (4)C18—C17—H17119.7
N3—C7—C8122.0 (4)C16—C17—H17119.7
N3—C7—H7119.0C19—C18—C17121.1 (5)
C8—C7—H7119.0C19—C18—H18119.4
C9—C8—C13118.7 (4)C17—C18—H18119.4
C9—C8—C7120.9 (4)C18—C19—C20119.2 (5)
C13—C8—C7120.3 (4)C18—C19—H19120.4
O1—C9—C8122.5 (4)C20—C19—H19120.4
O1—C9—C10119.3 (4)C19—C20—C15121.4 (4)
C8—C9—C10118.1 (4)C19—C20—H20119.3
C11—C10—C9121.5 (5)C15—C20—H20119.3
C11—C10—H10119.3C14—N2—C1122.6 (3)
C9—C10—H10119.3C7—N3—C6118.6 (4)
C10—C11—C12120.8 (5)C9—O1—H1109.5
C10—C11—H11119.6C16—O2—H2A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.821.872.578 (4)145
O1—H1···N30.821.902.614 (5)145

Experimental details

Crystal data
Chemical formulaC20H15BrN2O2
Mr395.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)12.8744 (10), 5.9968 (10), 22.106 (2)
β (°) 91.221 (1)
V3)1706.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.43
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.760, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
8088, 3009, 2140
Rint0.027
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.141, 1.00
No. of reflections3009
No. of parameters228
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.62

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.821.872.578 (4)144.7
O1—H1···N30.821.902.614 (5)145.3
 

Acknowledgements

The authors acknowledge financial support from Mudanjiang Medical University.

References

First citationBoskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Gudel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046–14058.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383–388.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208–1210.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOshiob, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568–4569.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Khoo, L. E. & Ng, S. W. (2003). Acta Cryst. E59, o1496–o1497.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds