organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o977-o978

Ethyl 3′-(2,4-di­chloro­phen­yl)-5′-hydr­­oxy-5′-methyl-4′,5′-di­hydro­spiro­[fluorene-9,2′(3′H)-furan]-4′-carboxyl­ate

aDepartment of Physics, The New College (Autonomous), Chennai 600 014, India, bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and cOrganic Chemistry Division, Central Leather Research Institute, Chennai 600 020, India
*Correspondence e-mail: a_spandian@yahoo.com

(Received 12 March 2009; accepted 30 March 2009; online 8 April 2009)

The furan ring and the five-membered fluorene unit in the title compound, C26H22Cl2O4, adopt envelope conformations. Inter­molecular C—H⋯O inter­actions between symmetry-related mol­ecules involving two C—H groups and an O atom as a bifurcated acceptor generate centrosymmetric hydrogen-bonded dimers with cyclic R22(16) and R22(8) ring motifs. A short C—H⋯Cl intramolecular contact occurs in the molecule.

Related literature

For spiro compounds in pharmacologically active alkaloids, see: Cravotto et al. (2001[Cravotto, G., Giovenzana, G. B., Pilati, T., Sisti, M. & Palmisano, G. (2001). J. Org. Chem. 66, 8447-8453.]). For the anticonvulsant activity of fluorene derivatives, see: Vanvakides et al. (2004[Vanvakides, A., Antoniou, K. & Daifoti, Z. (2004). Ann. Pharm. Fr. 62, 49-55.]). Fluorene derivatives, including polyfluorenes and oligofluorenes, are promising candidates for blue light-emitting materials in organic light-emitting devices (Muller et al., 2003[Muller, C. D., Falcou, A., Reckefuss, N., Rojahn, M., Wiederhirn, V., Rudati, P., Frohne, H., Nuyken, O., Becker, H. & Meerholz, K. (2003). Nature (London), 421, 829-833.]), organic phototransistors (Saragi et al., 2004[Saragi, T. P. I., Pudzich, R., Fuhrmann, T. & Salbeck, J. (2004). Appl. Phys. Lett. 84, 2334-2336.]), non-linear optics (Kim et al., 1998[Kim, S. Y., Lee, M. & Boo, B. H. (1998). J. Chem. Phys. 109, 2593-2595.]) and photochromic materials (Chun et al., 2003[Chun, C., Kim, M.-J., Vak, D. & Kim, D. Y. (2003). J. Mater. Chem. 13, 2904-2909.]). For the biological activity of furan derivatives and annulated furan derivatives and their use as precursors for the synthesis of natural products, see: Greve & Friedrichsen (2000[Greve, S. & Friedrichsen, W. (2000). Prog. Heterocycl. Chem. 12, 134-160.]). For hydrogen-bond motifs and ring puckering parameters, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For a related spiro-linked system, see: Feng et al. (2004[Feng, L., Li, Z.-M., Tan, Y.-S., Chen, M.-Q., Weng, L.-H. & Tao, F.-G. (2004). Acta Cryst. C60, o473-o474.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22Cl2O4

  • Mr = 469.34

  • Monoclinic, C 2/c

  • a = 28.6811 (13) Å

  • b = 9.0600 (4) Å

  • c = 17.4074 (8) Å

  • β = 92.072 (3)°

  • V = 4520.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.916, Tmax = 0.938

  • 22504 measured reflections

  • 5338 independent reflections

  • 3663 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.151

  • S = 1.04

  • 5338 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O3i 0.98 2.37 3.331 (3) 167
C6—H6⋯O3i 0.93 2.55 3.393 (3) 151
C3—H3⋯Cl1 0.98 2.57 3.082 (2) 113
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Spiro compounds are often encountered in many pharmacologically active alkaloids (Cravotto et al., 2001) and fluorene derivatives have been found to have anticonvulsant activity (Vanvakides et al., 2004). In addition, fluorene derivatives, including polyfluorenes and oligofluorenes, have been studied extensively in recent years because they are very promising candidates for blue light-emitting materials in organic light-emitting devices (Muller et al., 2003), organic phototransistors (Saragi et al., 2004), nonlinear optics (Kim et al., 1998) and photochromic materials (Chun et al., 2003). Furan derivatives and annulated furan derivatives occur widely in nature and, along with their unnatural analogs, have been shown to have a wide range of biological activity as well as being important precursors for the synthesis of natural products (Greve & Friedrichsen, 2000). In view of these important properties, the crystal structure of the title compound, (I), has been determined.

in (I, Fig. 1) the C4-C5 and C4-C16 bond distances of the fluorene moiety are almost identical to the values reported in another spiro-linked system (Feng et al., 2004).

The benzene ring is planar with the largest displacement observed being -0.014 (1) Å for atom C22. The deviations of the atoms Cl1 and Cl2 from the least-squares plane of the phenyl rings are -0.114 (1) and 0.015 (1) Å, respectively.

The five membered fluorene moiety adopts an envelope conformation (flap atom C4) with a pseudo-twofold axis passing through the C4-C5 bond. The puckering parameters (Cremer & Pople, 1975) and the lowest displacement asymmetry parameters (Nardelli, 1983) for this ring are q2 = 0.107 (2) Å, ϕ = 355.0 (1)° and ΔS(C4) is 1.3 (1)°. The tetrahydrofuran ring also adopts an envelope conformation (flap atom C2) with a pseudo-twofold axis passing through the C2-C3 bond. The puckering parameters (Cremer & Pople, 1975) and the lowest displacement asymmetry parameters (Nardelli, 1983) for this ring are q2 = 0.388 (2) Å, ϕ = 252.1 (2)° and ΔS(C2) is 2.1 (2)°.

Carbonyl atom O3 acts as a intermolecuar bifurcated acceptor with both C2 and C6 (Table 1 and Fig. 2) from a symmetry-related molecule to form centrosymmetric hydrogen bonded dimers with cyclic R22(16) and R22(8) (Bernstein, et al., 1995) ring systems, respectively. The structure is further stabilized by C—H···π interactions involing rings C26- H26C···Cg1 (Cg1 is the centroid of the C11—C16 ring).

Related literature top

For general background see: Vanvakides et al. (2004); Muller et al. (2003); Saragi et al. (2004); Kim et al. (1998); Chun et al.(2003); Cravotto et al. (2001); Greve & Friedrichsen (2000). For hydrogen-bond motifs and ring puckering parameters, see: Bernstein et al. (1995); Cremer & Pople (1975); Nardelli (1983). For a related spiro-linked system, see: Feng et al. (2004). Cg1 is the centroid of the C11–C16 ring.

Experimental top

To a stirred mixture of 9-(2,4-Dichloro-benzylidene)-9H-fluorene (1.0 mmol), ethylacetoacetate (1.0 mmol) and NaHCO3 (3.0 mmol) in acetonitrile (10 ml), ceric ammonium nitrate (2.5 mmol) dissolved in acetonitrile (5 ml) was added dropwise at 0 ° under N2. The reaction mixture was stirred until completion of the reaction as monitored by TLC. Water was added to the mixture and the product was extracted with ethyl acetate (2 × 20 ml) and then dried over anhydrous Na2SO4. Removal of the solvent under reduced pressure gave a crude product, which was purified by column chromatography on silica gel, with ethyl acetate-hexane (4:6) as eluent to afford a pure product in 79% yield. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution in ethylacetate.

Refinement top

All H atoms were positioned geometrically, with O—H = 0.82 and C—H = 0.93–0.98 Å and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H and x = 1.2 for all H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme for. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of compound (I), showing the R22(16) and R22(8) rings. Hydrogen bonding is shown as dashed lines. H atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry codes: -x + 1/2, -y + 1/2, -z]
Ethyl 3'-(2,4-dichlorophenyl)-5'-hydroxy-5'-methyl-4',5'- dihydrospiro[fluorene-9,2'(3'H)-furan]-4'-carboxylate top
Crystal data top
C26H22Cl2O4F(000) = 1952
Mr = 469.34Dx = 1.379 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7176 reflections
a = 28.6811 (13) Åθ = 2.5–25°
b = 9.0600 (4) ŵ = 0.32 mm1
c = 17.4074 (8) ÅT = 293 K
β = 92.072 (3)°Prismatic, yellow
V = 4520.4 (4) Å30.25 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5338 independent reflections
Radiation source: fine-focus sealed tube3663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω and ϕ scansθmax = 27.8°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker 2004)
h = 3637
Tmin = 0.916, Tmax = 0.938k = 1111
22504 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0729P)2 + 2.471P]
where P = (Fo2 + 2Fc2)/3
5338 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C26H22Cl2O4V = 4520.4 (4) Å3
Mr = 469.34Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.6811 (13) ŵ = 0.32 mm1
b = 9.0600 (4) ÅT = 293 K
c = 17.4074 (8) Å0.25 × 0.20 × 0.20 mm
β = 92.072 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5338 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2004)
3663 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.938Rint = 0.056
22504 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.04Δρmax = 0.38 e Å3
5338 reflectionsΔρmin = 0.35 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.06337 (2)0.03027 (7)0.10063 (4)0.0663 (2)
Cl20.00329 (2)0.39144 (8)0.09056 (4)0.0652 (2)
O10.21156 (5)0.19309 (19)0.21266 (8)0.0476 (4)
O20.23543 (6)0.03879 (18)0.17193 (10)0.0550 (4)
H20.25060.05620.21170.082*
O30.25673 (6)0.04006 (18)0.01270 (10)0.0540 (4)
O40.18812 (5)0.06733 (17)0.00380 (9)0.0455 (4)
C10.23639 (7)0.1143 (2)0.15672 (13)0.0411 (5)
C20.20777 (6)0.1382 (2)0.08249 (11)0.0331 (4)
H2A0.21350.23890.06450.040*
C30.15806 (6)0.1308 (2)0.10976 (11)0.0301 (4)
H30.15080.02670.11860.036*
C40.16289 (7)0.2080 (2)0.19036 (12)0.0349 (4)
C50.14777 (8)0.3679 (2)0.19083 (12)0.0401 (5)
C60.16812 (10)0.4898 (2)0.15801 (13)0.0536 (6)
H60.19630.48210.13360.064*
C70.14497 (14)0.6249 (3)0.16271 (16)0.0709 (9)
H70.15790.70850.14090.085*
C80.10342 (13)0.6362 (3)0.19909 (17)0.0722 (9)
H80.08830.72690.20050.087*
C90.08401 (11)0.5172 (3)0.23298 (16)0.0628 (7)
H90.05610.52630.25810.075*
C100.10643 (8)0.3822 (2)0.22951 (12)0.0438 (5)
C110.09519 (8)0.2392 (3)0.26364 (13)0.0442 (5)
C120.05912 (10)0.1956 (4)0.30938 (16)0.0650 (7)
H120.03500.26010.32010.078*
C130.05993 (12)0.0536 (4)0.33873 (18)0.0767 (9)
H130.03590.02230.36930.092*
C140.09547 (12)0.0415 (3)0.32353 (16)0.0690 (8)
H140.09590.13490.34570.083*
C150.13054 (9)0.0010 (3)0.27593 (14)0.0505 (6)
H150.15400.06720.26390.061*
C160.13012 (7)0.1400 (2)0.24653 (11)0.0378 (5)
C170.12017 (6)0.1925 (2)0.05700 (11)0.0300 (4)
C180.12700 (7)0.3165 (2)0.01180 (12)0.0369 (5)
H180.15640.35970.01250.044*
C190.09199 (8)0.3780 (2)0.03393 (13)0.0431 (5)
H190.09780.46040.06400.052*
C200.04839 (7)0.3160 (2)0.03454 (12)0.0405 (5)
C210.03967 (7)0.1925 (2)0.00810 (12)0.0413 (5)
H210.01010.15060.00740.050*
C220.07576 (7)0.1313 (2)0.05219 (12)0.0355 (4)
C230.28555 (8)0.1735 (3)0.15764 (15)0.0597 (7)
H23A0.30020.15680.20730.089*
H23B0.28480.27740.14710.089*
H23C0.30290.12390.11920.089*
C240.22049 (7)0.0327 (2)0.01982 (12)0.0356 (4)
C250.19678 (9)0.1675 (3)0.05956 (14)0.0541 (6)
H25A0.22750.21150.05310.065*
H25B0.19520.11450.10800.065*
C260.16055 (11)0.2826 (3)0.05889 (18)0.0685 (8)
H26A0.16370.33810.01200.103*
H26B0.16410.34740.10190.103*
H26C0.13030.23730.06230.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0460 (4)0.0596 (4)0.0915 (5)0.0247 (3)0.0215 (3)0.0354 (3)
Cl20.0504 (4)0.0691 (4)0.0743 (5)0.0082 (3)0.0234 (3)0.0176 (3)
O10.0330 (8)0.0669 (10)0.0423 (9)0.0021 (7)0.0079 (7)0.0085 (7)
O20.0522 (10)0.0538 (10)0.0579 (10)0.0060 (8)0.0121 (8)0.0140 (8)
O30.0441 (10)0.0515 (10)0.0677 (11)0.0063 (7)0.0194 (8)0.0078 (8)
O40.0390 (8)0.0434 (8)0.0540 (9)0.0071 (7)0.0003 (7)0.0137 (7)
C10.0308 (11)0.0483 (12)0.0439 (12)0.0006 (9)0.0042 (9)0.0008 (9)
C20.0267 (10)0.0317 (10)0.0406 (11)0.0033 (7)0.0025 (8)0.0009 (8)
C30.0268 (10)0.0263 (9)0.0368 (10)0.0033 (7)0.0030 (8)0.0011 (7)
C40.0318 (10)0.0345 (10)0.0381 (11)0.0020 (8)0.0041 (8)0.0015 (8)
C50.0517 (13)0.0346 (11)0.0333 (10)0.0043 (9)0.0074 (9)0.0035 (8)
C60.0795 (18)0.0389 (12)0.0423 (13)0.0168 (12)0.0022 (12)0.0051 (10)
C70.130 (3)0.0322 (13)0.0493 (15)0.0157 (15)0.0189 (17)0.0005 (11)
C80.110 (3)0.0433 (15)0.0613 (17)0.0191 (15)0.0230 (18)0.0063 (13)
C90.0715 (18)0.0554 (16)0.0603 (16)0.0205 (13)0.0138 (14)0.0078 (13)
C100.0489 (13)0.0430 (12)0.0387 (11)0.0062 (10)0.0081 (10)0.0037 (9)
C110.0400 (12)0.0532 (13)0.0392 (12)0.0001 (10)0.0028 (10)0.0026 (10)
C120.0506 (15)0.085 (2)0.0606 (17)0.0010 (14)0.0145 (13)0.0025 (15)
C130.071 (2)0.092 (2)0.069 (2)0.0250 (18)0.0225 (16)0.0101 (17)
C140.089 (2)0.0612 (17)0.0574 (17)0.0222 (16)0.0069 (16)0.0162 (13)
C150.0611 (16)0.0435 (13)0.0467 (13)0.0029 (11)0.0020 (12)0.0064 (10)
C160.0388 (11)0.0412 (11)0.0330 (10)0.0042 (9)0.0033 (9)0.0019 (8)
C170.0281 (9)0.0277 (9)0.0340 (10)0.0013 (7)0.0029 (8)0.0039 (7)
C180.0336 (11)0.0337 (10)0.0430 (11)0.0071 (8)0.0048 (9)0.0018 (9)
C190.0471 (13)0.0347 (11)0.0469 (12)0.0054 (9)0.0079 (10)0.0077 (9)
C200.0370 (11)0.0400 (11)0.0434 (12)0.0052 (9)0.0107 (9)0.0004 (9)
C210.0309 (11)0.0431 (11)0.0493 (13)0.0056 (9)0.0070 (9)0.0004 (10)
C220.0317 (10)0.0322 (10)0.0424 (11)0.0061 (8)0.0030 (9)0.0027 (8)
C230.0327 (12)0.0820 (18)0.0634 (16)0.0086 (12)0.0113 (11)0.0038 (14)
C240.0340 (11)0.0305 (10)0.0419 (11)0.0004 (8)0.0020 (9)0.0041 (8)
C250.0615 (16)0.0469 (13)0.0534 (14)0.0042 (12)0.0065 (12)0.0132 (11)
C260.078 (2)0.0479 (15)0.0779 (19)0.0077 (13)0.0150 (16)0.0140 (13)
Geometric parameters (Å, º) top
Cl1—C221.733 (2)C11—C161.386 (3)
Cl2—C201.732 (2)C11—C121.386 (3)
O1—C11.420 (3)C12—C131.384 (4)
O1—C41.442 (2)C12—H120.9300
O2—C11.412 (3)C13—C141.368 (4)
O2—H20.8200C13—H130.9300
O3—C241.203 (3)C14—C151.376 (4)
O4—C241.320 (2)C14—H140.9300
O4—C251.456 (3)C15—C161.376 (3)
C1—C231.508 (3)C15—H150.9300
C1—C21.521 (3)C17—C221.389 (3)
C2—C241.506 (3)C17—C181.389 (3)
C2—C31.520 (3)C18—C191.377 (3)
C2—H2A0.9800C18—H180.9300
C3—C171.505 (3)C19—C201.371 (3)
C3—C41.569 (3)C19—H190.9300
C3—H30.9800C20—C211.371 (3)
C4—C161.512 (3)C21—C221.382 (3)
C4—C51.512 (3)C21—H210.9300
C5—C61.383 (3)C22—Cl11.733 (2)
C5—C101.391 (3)C23—H23A0.9600
C6—C71.396 (4)C23—H23B0.9600
C6—H60.9300C23—H23C0.9600
C7—C81.373 (4)C25—C261.472 (4)
C7—H70.9300C25—H25A0.9700
C8—C91.358 (4)C25—H25B0.9700
C8—H80.9300C26—H26A0.9600
C9—C101.384 (3)C26—H26B0.9600
C9—H90.9300C26—H26C0.9600
C10—C111.466 (3)
C1—O1—C4111.55 (15)C14—C13—H13119.4
C1—O2—H2109.5C12—C13—H13119.4
C24—O4—C25116.72 (17)C13—C14—C15121.0 (3)
O2—C1—O1110.58 (18)C13—C14—H14119.5
O2—C1—C23111.83 (19)C15—C14—H14119.5
O1—C1—C23107.81 (18)C14—C15—C16118.4 (3)
O2—C1—C2106.62 (17)C14—C15—H15120.8
O1—C1—C2104.00 (16)C16—C15—H15120.8
C23—C1—C2115.72 (19)C15—C16—C11121.2 (2)
C24—C2—C3116.91 (16)C15—C16—C4128.4 (2)
C24—C2—C1112.78 (17)C11—C16—C4110.23 (18)
C3—C2—C1102.23 (16)C22—C17—C18115.87 (18)
C24—C2—H2A108.2C22—C17—C3121.93 (17)
C3—C2—H2A108.2C18—C17—C3122.18 (17)
C1—C2—H2A108.2C19—C18—C17122.68 (19)
C17—C3—C2117.24 (16)C19—C18—H18118.7
C17—C3—C4114.73 (15)C17—C18—H18118.7
C2—C3—C4101.89 (15)C20—C19—C18119.0 (2)
C17—C3—H3107.5C20—C19—H19120.5
C2—C3—H3107.5C18—C19—H19120.5
C4—C3—H3107.5C19—C20—C21120.98 (19)
O1—C4—C16113.98 (16)C19—C20—Cl2120.33 (17)
O1—C4—C5111.29 (16)C21—C20—Cl2118.68 (16)
C16—C4—C5101.64 (17)C20—C21—C22118.69 (19)
O1—C4—C3104.61 (15)C20—C21—H21120.7
C16—C4—C3111.10 (16)C22—C21—H21120.7
C5—C4—C3114.56 (16)C21—C22—C17122.71 (18)
C6—C5—C10120.4 (2)C21—C22—Cl1116.49 (15)
C6—C5—C4129.6 (2)C17—C22—Cl1120.78 (15)
C10—C5—C4109.98 (18)C21—C22—Cl1116.49 (15)
C5—C6—C7117.9 (3)C17—C22—Cl1120.78 (15)
C5—C6—H6121.1C1—C23—H23A109.5
C7—C6—H6121.1C1—C23—H23B109.5
C8—C7—C6121.0 (3)H23A—C23—H23B109.5
C8—C7—H7119.5C1—C23—H23C109.5
C6—C7—H7119.5H23A—C23—H23C109.5
C9—C8—C7121.2 (3)H23B—C23—H23C109.5
C9—C8—H8119.4O3—C24—O4123.5 (2)
C7—C8—H8119.4O3—C24—C2122.80 (19)
C8—C9—C10119.0 (3)O4—C24—C2113.70 (17)
C8—C9—H9120.5O4—C25—C26107.2 (2)
C10—C9—H9120.5O4—C25—H25A110.3
C9—C10—C5120.6 (2)C26—C25—H25A110.3
C9—C10—C11130.8 (2)O4—C25—H25B110.3
C5—C10—C11108.50 (19)C26—C25—H25B110.3
C16—C11—C12119.9 (2)H25A—C25—H25B108.5
C16—C11—C10108.35 (19)C25—C26—H26A109.5
C12—C11—C10131.6 (2)C25—C26—H26B109.5
C13—C12—C11118.3 (3)H26A—C26—H26B109.5
C13—C12—H12120.8C25—C26—H26C109.5
C11—C12—H12120.8H26A—C26—H26C109.5
C14—C13—C12121.1 (3)H26B—C26—H26C109.5
C4—O1—C1—O289.2 (2)C10—C11—C12—C13174.5 (3)
C4—O1—C1—C23148.26 (19)C11—C12—C13—C140.4 (5)
C4—O1—C1—C224.9 (2)C12—C13—C14—C152.7 (5)
O2—C1—C2—C2448.0 (2)C13—C14—C15—C162.7 (4)
O1—C1—C2—C24164.86 (16)C14—C15—C16—C110.5 (3)
C23—C1—C2—C2477.1 (2)C14—C15—C16—C4176.5 (2)
O2—C1—C2—C378.44 (19)C12—C11—C16—C151.9 (3)
O1—C1—C2—C338.47 (19)C10—C11—C16—C15175.3 (2)
C23—C1—C2—C3156.49 (19)C12—C11—C16—C4174.9 (2)
C24—C2—C3—C1773.5 (2)C10—C11—C16—C48.0 (2)
C1—C2—C3—C17162.79 (16)O1—C4—C16—C1552.6 (3)
C24—C2—C3—C4160.35 (16)C5—C4—C16—C15172.4 (2)
C1—C2—C3—C436.69 (18)C3—C4—C16—C1565.3 (3)
C1—O1—C4—C16120.28 (19)O1—C4—C16—C11131.00 (19)
C1—O1—C4—C5125.50 (19)C5—C4—C16—C1111.2 (2)
C1—O1—C4—C31.3 (2)C3—C4—C16—C11111.1 (2)
C17—C3—C4—O1150.41 (16)C2—C3—C17—C22145.93 (19)
C2—C3—C4—O122.69 (18)C4—C3—C17—C2294.6 (2)
C17—C3—C4—C1686.2 (2)C2—C3—C17—C1835.9 (3)
C2—C3—C4—C16146.11 (16)C4—C3—C17—C1883.6 (2)
C17—C3—C4—C528.3 (2)C22—C17—C18—C191.4 (3)
C2—C3—C4—C599.43 (19)C3—C17—C18—C19176.88 (19)
O1—C4—C5—C649.6 (3)C17—C18—C19—C200.7 (3)
C16—C4—C5—C6171.4 (2)C18—C19—C20—C211.5 (3)
C3—C4—C5—C668.8 (3)C18—C19—C20—Cl2179.31 (17)
O1—C4—C5—C10132.24 (18)C19—C20—C21—C220.2 (3)
C16—C4—C5—C1010.5 (2)Cl2—C20—C21—C22179.34 (16)
C3—C4—C5—C10109.4 (2)C20—C21—C22—C172.1 (3)
C10—C5—C6—C72.3 (3)C20—C21—C22—Cl1176.59 (17)
C4—C5—C6—C7175.7 (2)C20—C21—C22—Cl1176.59 (17)
C5—C6—C7—C80.3 (4)C18—C17—C22—C212.8 (3)
C6—C7—C8—C91.4 (4)C3—C17—C22—C21175.45 (19)
C7—C8—C9—C100.9 (4)C18—C17—C22—Cl1175.82 (15)
C8—C9—C10—C51.1 (4)C3—C17—C22—Cl15.9 (3)
C8—C9—C10—C11176.4 (2)C18—C17—C22—Cl1175.82 (15)
C6—C5—C10—C92.7 (3)C3—C17—C22—Cl15.9 (3)
C4—C5—C10—C9175.6 (2)C25—O4—C24—O33.3 (3)
C6—C5—C10—C11175.3 (2)C25—O4—C24—C2176.29 (18)
C4—C5—C10—C116.4 (2)C3—C2—C24—O3170.8 (2)
C9—C10—C11—C16176.7 (2)C1—C2—C24—O371.1 (3)
C5—C10—C11—C161.0 (2)C3—C2—C24—O48.7 (3)
C9—C10—C11—C120.1 (4)C1—C2—C24—O4109.3 (2)
C5—C10—C11—C12177.7 (3)C24—O4—C25—C26171.0 (2)
C16—C11—C12—C131.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.982.373.331 (3)167
C6—H6···O3i0.932.553.393 (3)151
C3—H3···Cl10.982.573.082 (2)113
C26—H26C···Cg1ii0.962.953.556 (1)122
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC26H22Cl2O4
Mr469.34
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)28.6811 (13), 9.0600 (4), 17.4074 (8)
β (°) 92.072 (3)
V3)4520.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2004)
Tmin, Tmax0.916, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
22504, 5338, 3663
Rint0.056
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.151, 1.04
No. of reflections5338
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.35

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.982.373.331 (3)167.3
C6—H6···O3i0.932.553.393 (3)151.4
C3—H3···Cl10.982.573.082 (2)112.8
C26—H26C···Cg1ii0.962.953.556 (1)122.0
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help in collecting the X-ray intensity data. MNM and ASP thank Dr J. Jothi Kumar, Principal of Presidency College (Autonomous), Chennai, India, for providing the computer and internet facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChun, C., Kim, M.-J., Vak, D. & Kim, D. Y. (2003). J. Mater. Chem. 13, 2904–2909.  Web of Science CrossRef CAS Google Scholar
First citationCravotto, G., Giovenzana, G. B., Pilati, T., Sisti, M. & Palmisano, G. (2001). J. Org. Chem. 66, 8447–8453.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFeng, L., Li, Z.-M., Tan, Y.-S., Chen, M.-Q., Weng, L.-H. & Tao, F.-G. (2004). Acta Cryst. C60, o473–o474.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGreve, S. & Friedrichsen, W. (2000). Prog. Heterocycl. Chem. 12, 134–160.  CrossRef CAS Google Scholar
First citationKim, S. Y., Lee, M. & Boo, B. H. (1998). J. Chem. Phys. 109, 2593–2595.  Web of Science CrossRef CAS Google Scholar
First citationMuller, C. D., Falcou, A., Reckefuss, N., Rojahn, M., Wiederhirn, V., Rudati, P., Frohne, H., Nuyken, O., Becker, H. & Meerholz, K. (2003). Nature (London), 421, 829–833.  Web of Science CrossRef PubMed Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSaragi, T. P. I., Pudzich, R., Fuhrmann, T. & Salbeck, J. (2004). Appl. Phys. Lett. 84, 2334–2336.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVanvakides, A., Antoniou, K. & Daifoti, Z. (2004). Ann. Pharm. Fr. 62, 49–55.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o977-o978
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds