organic compounds
Genistein-3′-sulfonic acid dihydrate
aKey Laboratory of Jiangxi University for Functional Materials Chemistry, Department of Chemistry and Life Science, Gannan Normal University, Ganzhou, Jiangxi 341000, People's Republic of China
*Correspondence e-mail: yongrongxie@yahoo.com.cn
In the title compound [systematic name: 5-(5,7-dihydroxy-4-oxo-4H-chromenyl)-2-hydroxybenzenesulfonic acid dihydrate], C15H10O8S·2H2O, the benzopyranone ring is not coplanar with the phenyl ring, the dihedral angle between them being 41.35 (3)°. No H atom was placed on the sulphonic acid group because it was not possible to distinguish between the two S=O bonds and the S—O bond. In the crystal, the molecules are linked by classical O—H⋯O and C—H⋯O intra- and intermolecular hydrogen bonds and aromatic π–π stacking interactions [centroid–centroid distance of 3.4523 (14) Å between the 1, 4-pyranone rings and the benzene rings, and 3.6337 (14) Å between the benzene rings] into a supramolecular structure.
Related literature
Genistein is an isoflavone that can be extracted from plants such as soybean, trifolium, puerarin, see: Curnow et al. (1955); Kaufman et al. (1997). For its anti-tumour, anti-arteriosclerosis and anti-bone loss properties, see: Fritz et al. (1998); Zhu et al. (2006). It can also reduce plasma and kill various cancer cells without damaging normal cells, see: Fanti et al. (1998); Lamartiniere (2000). It has poor solubility in water and fat (Suo et al., 2005). One effective way to increase the solubility of these compounds is to involve a sulfonate group, see: Kopacz (1981); Pusz et al. (2001); Xie et al. (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536809014767/fl2244sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809014767/fl2244Isup2.hkl
In a 100 ml flask are placed 40 ml 98% sulfuric acid and 10 g (37 mmol) genistein with stirrer. The resulting mixture is stirred at room temperature for 6 h. The reaction mixture is carefully diluted by addition of 40 ml ice water. The resulting yellow solid is filtered, and recrystallized from 50 ml of 90% acetonitrile to give 9.1–11 g (70–85%) of the title compound yellow crystals.
The analysis indicated that all three O atoms of the sulfonate group are disordered and therefore the
did not converge satisfactorily. Two sulfonate groups, with an occupancies of 0.53740 (O6A, O7A, O8A) and 0.46260(O6B, O7B, O8B), respectively, could be detected and refined. No H atom was added to the sulfonate group because it was not possible to distinguish between the 2 S=O bonds and the S—O bond. The disorder in the SO3 group was treated with the tools available in SHELXL97 (Sheldrick, 2008).H atoms bonded to C atoms were placed in calculated positions, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C), and were included in the
in the riding-model approximation. The H atoms of water molecules were located in difference Fourier maps and then idealized and treated as riding, with O—H = 0.82–0.85 Å and Uiso(H) = 1.2Ueq(O).Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The asymmetric unit of (I), with displacement ellipsoids drawn at the 30% probability level. | |
Fig. 2. The hydrogen-bonding motif in (I). Dashed lines indicate the hydrogen bonds. | |
Fig. 3. View of the π-π stacking for compound (I) along the b axis. |
C15H10O8S·2H2O | V = 810.61 (6) Å3 |
Mr = 386.31 | Z = 2 |
Triclinic, P1 | F(000) = 398 |
Hall symbol: -P 1 | Dx = 1.579 Mg m−3 |
a = 7.9100 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.1977 (3) Å | θ = 2.8–27.6° |
c = 14.3431 (7) Å | µ = 0.26 mm−1 |
α = 73.626 (3)° | T = 296 K |
β = 80.346 (3)° | Block, yellow |
γ = 65.498 (3)° | 0.20 × 0.20 × 0.05 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 3736 independent reflections |
Radiation source: fine-focus sealed tube | 2466 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ϕ and ω scans | θmax = 27.6°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→10 |
Tmin = 0.952, Tmax = 0.988 | k = −10→10 |
7136 measured reflections | l = −16→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 0.95 | w = 1/[σ2(Fo2) + (0.0499P)2] where P = (Fo2 + 2Fc2)/3 |
3736 reflections | (Δ/σ)max < 0.001 |
262 parameters | Δρmax = 0.52 e Å−3 |
0 restraints | Δρmin = −0.47 e Å−3 |
C15H10O8S·2H2O | γ = 65.498 (3)° |
Mr = 386.31 | V = 810.61 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.9100 (4) Å | Mo Kα radiation |
b = 8.1977 (3) Å | µ = 0.26 mm−1 |
c = 14.3431 (7) Å | T = 296 K |
α = 73.626 (3)° | 0.20 × 0.20 × 0.05 mm |
β = 80.346 (3)° |
Bruker SMART APEXII CCD area-detector diffractometer | 3736 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2466 reflections with I > 2σ(I) |
Tmin = 0.952, Tmax = 0.988 | Rint = 0.037 |
7136 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 0.95 | Δρmax = 0.52 e Å−3 |
3736 reflections | Δρmin = −0.47 e Å−3 |
262 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.91573 (8) | 0.62831 (8) | 0.13396 (4) | 0.02871 (17) | |
O1 | 0.3853 (2) | 0.9816 (2) | 0.33901 (11) | 0.0349 (4) | |
O2 | 0.2966 (2) | 1.1865 (2) | 0.46121 (12) | 0.0463 (5) | |
H2A | 0.3371 | 1.1535 | 0.4101 | 0.056* | |
O3 | 0.0060 (2) | 0.9940 (2) | 0.76568 (11) | 0.0441 (5) | |
H3A | 0.0326 | 1.0699 | 0.7804 | 0.053* | |
O4 | 0.1972 (2) | 0.62379 (19) | 0.54241 (11) | 0.0325 (4) | |
O5 | 0.7199 (2) | 0.4397 (2) | 0.05141 (12) | 0.0483 (5) | |
H5A | 0.8324 | 0.4128 | 0.0492 | 0.058* | |
C1 | 0.3351 (3) | 0.8670 (3) | 0.40347 (15) | 0.0263 (5) | |
C2 | 0.2545 (3) | 0.9026 (3) | 0.49667 (15) | 0.0246 (5) | |
C3 | 0.2355 (3) | 1.0616 (3) | 0.52404 (16) | 0.0296 (5) | |
C4 | 0.1563 (3) | 1.0929 (3) | 0.61293 (17) | 0.0339 (6) | |
H4A | 0.1465 | 1.1976 | 0.6303 | 0.041* | |
C5 | 0.0900 (3) | 0.9663 (3) | 0.67758 (16) | 0.0305 (5) | |
C6 | 0.1018 (3) | 0.8113 (3) | 0.65325 (16) | 0.0299 (5) | |
H6A | 0.0550 | 0.7290 | 0.6959 | 0.036* | |
C7 | 0.1848 (3) | 0.7812 (3) | 0.56408 (16) | 0.0263 (5) | |
C8 | 0.2829 (3) | 0.5863 (3) | 0.45676 (16) | 0.0313 (5) | |
H8A | 0.2944 | 0.4762 | 0.4448 | 0.038* | |
C9 | 0.3528 (3) | 0.6939 (3) | 0.38735 (15) | 0.0261 (5) | |
C10 | 0.4469 (3) | 0.6336 (3) | 0.29699 (15) | 0.0265 (5) | |
C11 | 0.3792 (3) | 0.5469 (3) | 0.25092 (17) | 0.0352 (6) | |
H11A | 0.2693 | 0.5304 | 0.2753 | 0.042* | |
C12 | 0.4730 (3) | 0.4846 (3) | 0.16923 (18) | 0.0392 (6) | |
H12A | 0.4249 | 0.4277 | 0.1391 | 0.047* | |
C13 | 0.6385 (3) | 0.5062 (3) | 0.13165 (16) | 0.0317 (5) | |
C14 | 0.7058 (3) | 0.5965 (3) | 0.17563 (15) | 0.0250 (5) | |
C15 | 0.6094 (3) | 0.6585 (3) | 0.25784 (15) | 0.0259 (5) | |
H15A | 0.6554 | 0.7181 | 0.2872 | 0.031* | |
O1W | 0.6658 (3) | 0.1139 (2) | 0.02597 (15) | 0.0646 (6) | |
H3 | 0.7677 | 0.0288 | 0.0470 | 0.078* | |
H4 | 0.6800 | 0.2140 | 0.0191 | 0.078* | |
O2W | 0.3261 (3) | 0.0875 (3) | 0.13170 (15) | 0.0775 (7) | |
H1 | 0.4261 | 0.0988 | 0.1045 | 0.093* | |
H2 | 0.2363 | 0.1863 | 0.1398 | 0.093* | |
O6A | 0.9142 (16) | 0.6736 (12) | 0.0261 (8) | 0.0346 (14) | 0.54 |
O7A | 1.067 (2) | 0.456 (2) | 0.1681 (9) | 0.043 (2) | 0.54 |
O8A | 0.8999 (11) | 0.7821 (10) | 0.1651 (4) | 0.0369 (13) | 0.54 |
O6B | 0.899 (2) | 0.7323 (15) | 0.0381 (10) | 0.067 (3) | 0.46 |
O7B | 1.059 (2) | 0.450 (3) | 0.1480 (12) | 0.069 (5) | 0.46 |
O8B | 0.9427 (13) | 0.7255 (13) | 0.2012 (5) | 0.061 (3) | 0.46 |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0283 (3) | 0.0327 (3) | 0.0301 (3) | −0.0149 (3) | 0.0043 (2) | −0.0138 (3) |
O1 | 0.0453 (10) | 0.0311 (9) | 0.0315 (9) | −0.0208 (8) | 0.0095 (7) | −0.0101 (7) |
O2 | 0.0694 (13) | 0.0418 (10) | 0.0434 (11) | −0.0385 (10) | 0.0200 (9) | −0.0212 (8) |
O3 | 0.0580 (12) | 0.0550 (11) | 0.0329 (10) | −0.0313 (10) | 0.0116 (8) | −0.0246 (8) |
O4 | 0.0455 (10) | 0.0261 (8) | 0.0295 (9) | −0.0185 (8) | 0.0071 (7) | −0.0101 (7) |
O5 | 0.0406 (10) | 0.0809 (13) | 0.0468 (11) | −0.0340 (10) | 0.0169 (8) | −0.0454 (10) |
C1 | 0.0241 (11) | 0.0258 (11) | 0.0273 (12) | −0.0086 (10) | −0.0008 (9) | −0.0061 (10) |
C2 | 0.0267 (11) | 0.0224 (11) | 0.0249 (12) | −0.0098 (9) | 0.0003 (9) | −0.0068 (9) |
C3 | 0.0311 (12) | 0.0291 (12) | 0.0326 (13) | −0.0152 (10) | 0.0024 (10) | −0.0105 (10) |
C4 | 0.0380 (13) | 0.0367 (13) | 0.0367 (14) | −0.0181 (11) | 0.0011 (10) | −0.0197 (11) |
C5 | 0.0292 (12) | 0.0394 (13) | 0.0235 (12) | −0.0107 (11) | 0.0007 (9) | −0.0133 (10) |
C6 | 0.0332 (13) | 0.0296 (12) | 0.0269 (12) | −0.0140 (10) | 0.0017 (9) | −0.0056 (10) |
C7 | 0.0267 (12) | 0.0236 (11) | 0.0287 (12) | −0.0085 (10) | −0.0020 (9) | −0.0080 (10) |
C8 | 0.0374 (13) | 0.0267 (12) | 0.0318 (13) | −0.0123 (11) | 0.0066 (10) | −0.0154 (10) |
C9 | 0.0250 (11) | 0.0253 (11) | 0.0280 (12) | −0.0090 (10) | 0.0009 (9) | −0.0091 (10) |
C10 | 0.0275 (11) | 0.0263 (11) | 0.0253 (12) | −0.0090 (10) | 0.0012 (9) | −0.0093 (9) |
C11 | 0.0296 (13) | 0.0463 (14) | 0.0379 (14) | −0.0203 (12) | 0.0054 (10) | −0.0180 (12) |
C12 | 0.0363 (14) | 0.0562 (16) | 0.0432 (15) | −0.0268 (13) | 0.0056 (11) | −0.0299 (13) |
C13 | 0.0318 (13) | 0.0403 (13) | 0.0272 (12) | −0.0145 (11) | 0.0030 (9) | −0.0163 (11) |
C14 | 0.0239 (11) | 0.0253 (11) | 0.0257 (12) | −0.0096 (9) | −0.0003 (9) | −0.0064 (9) |
C15 | 0.0257 (11) | 0.0262 (11) | 0.0272 (12) | −0.0084 (10) | −0.0033 (9) | −0.0101 (9) |
O1W | 0.0601 (13) | 0.0449 (11) | 0.0873 (16) | −0.0203 (10) | −0.0079 (11) | −0.0116 (11) |
O2W | 0.0639 (15) | 0.0834 (15) | 0.0737 (16) | −0.0237 (13) | 0.0042 (11) | −0.0139 (12) |
O6A | 0.036 (2) | 0.045 (3) | 0.023 (2) | −0.015 (3) | 0.0032 (16) | −0.011 (2) |
O7A | 0.029 (3) | 0.051 (6) | 0.043 (3) | −0.018 (3) | −0.009 (2) | 0.005 (3) |
O8A | 0.048 (3) | 0.048 (3) | 0.035 (3) | −0.031 (2) | 0.003 (2) | −0.024 (2) |
O6B | 0.056 (5) | 0.095 (9) | 0.041 (6) | −0.041 (6) | 0.002 (4) | 0.014 (5) |
O7B | 0.025 (5) | 0.032 (5) | 0.129 (13) | 0.000 (4) | 0.019 (6) | −0.018 (7) |
O8B | 0.051 (5) | 0.123 (8) | 0.053 (5) | −0.058 (5) | 0.022 (3) | −0.065 (5) |
S1—O6B | 1.394 (14) | C4—C5 | 1.399 (3) |
S1—O8A | 1.404 (7) | C4—H4A | 0.9300 |
S1—O7B | 1.412 (16) | C5—C6 | 1.374 (3) |
S1—O7A | 1.438 (14) | C6—C7 | 1.375 (3) |
S1—O6A | 1.487 (11) | C6—H6A | 0.9300 |
S1—O8B | 1.501 (8) | C8—C9 | 1.342 (3) |
S1—C14 | 1.766 (2) | C8—H8A | 0.9300 |
O1—C1 | 1.262 (2) | C9—C10 | 1.487 (3) |
O2—C3 | 1.356 (3) | C10—C15 | 1.385 (3) |
O2—H2A | 0.8207 | C10—C11 | 1.389 (3) |
O3—C5 | 1.358 (2) | C11—C12 | 1.384 (3) |
O3—H3A | 0.8205 | C11—H11A | 0.9300 |
O4—C8 | 1.350 (2) | C12—C13 | 1.392 (3) |
O4—C7 | 1.372 (2) | C12—H12A | 0.9300 |
O5—C13 | 1.360 (2) | C13—C14 | 1.390 (3) |
O5—H5A | 0.8206 | C14—C15 | 1.395 (3) |
C1—C2 | 1.435 (3) | C15—H15A | 0.9300 |
C1—C9 | 1.447 (3) | O1W—H3 | 0.8508 |
C2—C7 | 1.401 (3) | O1W—H4 | 0.8502 |
C2—C3 | 1.408 (3) | O2W—H1 | 0.8500 |
C3—C4 | 1.366 (3) | O2W—H2 | 0.8500 |
O8A—S1—O7A | 117.5 (7) | C6—C5—C4 | 121.3 (2) |
O8A—S1—O6A | 110.1 (4) | C5—C6—C7 | 118.1 (2) |
O7A—S1—O6A | 110.5 (6) | C5—C6—H6A | 121.0 |
O8A—S1—C14 | 105.6 (3) | C7—C6—H6A | 121.0 |
O7A—S1—C14 | 107.8 (7) | O4—C7—C6 | 116.80 (19) |
O6A—S1—C14 | 104.3 (5) | O4—C7—C2 | 120.09 (19) |
O6B—S1—O7B | 115.3 (8) | C6—C7—C2 | 123.1 (2) |
O6B—S1—O8B | 112.3 (5) | C9—C8—O4 | 125.7 (2) |
O7B—S1—O8B | 107.7 (8) | C9—C8—H8A | 117.2 |
O6B—S1—C14 | 108.5 (6) | O4—C8—H8A | 117.2 |
O8A—S1—C14 | 105.6 (3) | C8—C9—C1 | 118.4 (2) |
O7B—S1—C14 | 106.3 (9) | C8—C9—C10 | 119.97 (19) |
O7A—S1—C14 | 107.8 (7) | C1—C9—C10 | 121.67 (18) |
O6A—S1—C14 | 104.3 (5) | C15—C10—C11 | 118.0 (2) |
O8B—S1—C14 | 106.2 (4) | C15—C10—C9 | 120.2 (2) |
C3—O2—H2A | 109.4 | C11—C10—C9 | 121.7 (2) |
C5—O3—H3A | 109.5 | C12—C11—C10 | 120.9 (2) |
C8—O4—C7 | 118.66 (16) | C12—C11—H11A | 119.5 |
C13—O5—H5A | 109.4 | C10—C11—H11A | 119.5 |
O1—C1—C2 | 121.64 (19) | C11—C12—C13 | 120.7 (2) |
O1—C1—C9 | 122.13 (19) | C11—C12—H12A | 119.6 |
C2—C1—C9 | 116.23 (18) | C13—C12—H12A | 119.6 |
C7—C2—C3 | 116.69 (19) | O5—C13—C14 | 124.9 (2) |
C7—C2—C1 | 120.75 (19) | O5—C13—C12 | 116.1 (2) |
C3—C2—C1 | 122.53 (19) | C14—C13—C12 | 119.0 (2) |
O2—C3—C4 | 119.2 (2) | C13—C14—C15 | 119.4 (2) |
O2—C3—C2 | 119.6 (2) | C13—C14—S1 | 122.28 (16) |
C4—C3—C2 | 121.2 (2) | C15—C14—S1 | 118.27 (17) |
C3—C4—C5 | 119.6 (2) | C10—C15—C14 | 121.9 (2) |
C3—C4—H4A | 120.2 | C10—C15—H15A | 119.1 |
C5—C4—H4A | 120.2 | C14—C15—H15A | 119.1 |
O3—C5—C6 | 117.1 (2) | H3—O1W—H4 | 105.1 |
O3—C5—C4 | 121.6 (2) | H1—O2W—H2 | 116.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H1···O1W | 0.85 | 2.07 | 2.915 (3) | 173 |
O2W—H2···O7Ai | 0.85 | 2.17 | 2.999 (15) | 165 |
O2W—H2···O6Aii | 0.85 | 2.58 | 2.903 (13) | 104 |
O2—H2A···O1 | 0.82 | 1.85 | 2.580 (2) | 148 |
O1W—H3···O8Aiii | 0.85 | 2.23 | 2.968 (7) | 146 |
O3—H3A···O8Aiv | 0.82 | 1.89 | 2.705 (8) | 171 |
O1W—H4···O5 | 0.85 | 2.18 | 3.000 (2) | 162 |
O5—H5A···O6A | 0.82 | 2.40 | 2.835 (12) | 114 |
O5—H5A···O6Av | 0.82 | 2.05 | 2.784 (14) | 148 |
C6—H6A···O7Avi | 0.93 | 2.44 | 3.356 (15) | 169 |
C8—H8A···O2iii | 0.93 | 2.31 | 3.217 (3) | 164 |
C15—H15A···O1 | 0.93 | 2.52 | 2.944 (3) | 108 |
C15—H15A···O8A | 0.93 | 2.50 | 2.868 (9) | 104 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z; (iii) x, y−1, z; (iv) −x+1, −y+2, −z+1; (v) −x+2, −y+1, −z; (vi) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C15H10O8S·2H2O |
Mr | 386.31 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 7.9100 (4), 8.1977 (3), 14.3431 (7) |
α, β, γ (°) | 73.626 (3), 80.346 (3), 65.498 (3) |
V (Å3) | 810.61 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.20 × 0.20 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.952, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7136, 3736, 2466 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.652 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.114, 0.95 |
No. of reflections | 3736 |
No. of parameters | 262 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.52, −0.47 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H1···O1W | 0.85 | 2.07 | 2.915 (3) | 173 |
O2W—H2···O7Ai | 0.85 | 2.17 | 2.999 (15) | 165 |
O2W—H2···O6Aii | 0.85 | 2.58 | 2.903 (13) | 104 |
O2—H2A···O1 | 0.82 | 1.85 | 2.580 (2) | 148 |
O1W—H3···O8Aiii | 0.85 | 2.23 | 2.968 (7) | 146 |
O3—H3A···O8Aiv | 0.82 | 1.89 | 2.705 (8) | 171 |
O1W—H4···O5 | 0.85 | 2.18 | 3.000 (2) | 162 |
O5—H5A···O6A | 0.82 | 2.40 | 2.835 (12) | 114 |
O5—H5A···O6Av | 0.82 | 2.05 | 2.784 (14) | 148 |
C6—H6A···O7Avi | 0.93 | 2.44 | 3.356 (15) | 169 |
C8—H8A···O2iii | 0.93 | 2.31 | 3.217 (3) | 164 |
C15—H15A···O1 | 0.93 | 2.52 | 2.944 (3) | 108 |
C15—H15A···O8A | 0.93 | 2.50 | 2.868 (9) | 104 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z; (iii) x, y−1, z; (iv) −x+1, −y+2, −z+1; (v) −x+2, −y+1, −z; (vi) −x+1, −y+1, −z+1. |
Cg | Cg | α | DCC | τ |
Cg1 | Cg2i | 1.38 | 3.4524 (14) | 15.63 |
Cg2 | Cg2i | 0.03 | 3.6336 (14) | 24.54 |
Symmetry code: (i) -x, 2-y, 1-z. α is dihedral angle between the planes, DCC is the length of the CC vector (centroid–centroid), τ is the angle(s) subtended by the plane normal(s) to CC. Cg1 is the centroid of ring O4, C1, C2, C7–C9 and Cg2 is the centroid of ring C2–C7. |
Acknowledgements
The author thank the Natural Science Foundation of China (No. 20861001), the Natural Science Foundation of Jiangxi Province (No. 0620007), the Jiangxi Provincial Education Foundation (20060237) and the Gannan Normal University Foundation (No. 200409).
References
Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Curnow, D. H. & Rossiter, R. C. (1955). Aust. J. Exp. Biol. Med. Sci. 33, 243–248. CrossRef PubMed CAS Google Scholar
Fanti, P., Monier-Faugere, M. C., Geng, Z., Schmidt, J., Morris, P. E., Cohen, D. & Malluche, H. H. (1998). Osteoporos Int. 8, 274–281. Web of Science CrossRef CAS PubMed Google Scholar
Fritz, W., Coward, L., Wang, J. & Lamartiniere, C. (1998). Carcinogenesis, 19, 2151–2158. Web of Science CrossRef CAS PubMed Google Scholar
Kaufman, P. B., Duke, J. A., Brielmann, H., Boik, J. & Hoyt, J. E. (1997). J. Altern. Complement Med. 3, 7–12. CrossRef CAS PubMed Google Scholar
Kopacz, M. (1981). Pol. J. Chem. 55, 227–229. CAS Google Scholar
Lamartiniere, C. A. (2000). Am. J. Clin. Nutr. 71, 1705S–1707S. Web of Science PubMed CAS Google Scholar
Pusz, J., Nitka, B. & Wolowiec, S. (2001). Pol. J. Chem. 75, 795–801. CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suo, Z. R., Zhang, Z. T. & Zheng, J. B. (2005). Chin. J. Appl. Chem. 22, 1083–1086. CAS Google Scholar
Xie, Y. R., Xiong, R. G., Xue, X., Chen, X. T., Xue, Z. L. & You, X. Z. (2002). Inorg. Chem. 41, 3323–3326. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhu, G. C., Ding, Z., Chen, Z. S., Dong, C., Guo, H. & Chen, B. C. (2006). Transpl. Proc. 38, 3307–3308. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Genistein is an isoflavone that can be extracted from plants such as soybean, trifolium, puerarin (Curnow et al. 1955; Kaufman et al., 1997). It has physiological functions of anti-tumour, anti-arteriosclerosis, anti-bone loss (Fritz et al., 1998; Zhu et al., 2006). It can also reduce plasma lipids and kill various cancer cells without damaging normal cells (Fanti et al., 1998; Lamartiniere, 2000). Nevertheless, its medical applications are restricted because of its poor solubility in water and fat (Suo et al.,2005). One effective way to increase the solubility of these compounds is to involve a sulfonate group (Kopacz, 1981; Pusz et al., 2001; Xie et al. 2002).
We present here the structure of (I, Fig. 1), a new derivative of Genistein. In (I) the molecules are linked by classic O—H···O and C—H···O intra- and intermolecular hydrogen bonds (Table 1). Adjacent benzopyranone rings are aligned in a parallel and alternatively inverse fashion, with a centroid-centroid distance of 3.4523 (14)Å between 1, 4-pyranone rings and benzene rings, and 3.6337 (14)Å between the benzene rings (Table 2), indicating significant stacking interactions that form columns running along the a axis. The hydrogen bonding and π-π stacking interactions extend the structure into a 3-D supramolecular structure (Fig. 2 and Fig. 3).