metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(3-formyl-2-oxidobenzoato-κ2O1,O2)(1,10-phenanthroline-κ2N,N′)copper(II) di­methyl­formamide solvate

aInstitute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, Henan, People's Republic of China
*Correspondence e-mail: yuzw@henu.edu.cn

(Received 17 March 2009; accepted 30 March 2009; online 8 April 2009)

In the structure of the title complex, [Cu(C8H4O4)(C12H8N2)(H2O)]·C3H7NO, the CuII ion is penta­coordinated in a distorted square-pyramidal geometry by two O atoms of a 3-formyl-2-oxidobenzoate dianion and two N atoms of a 1,10-phenanthroline ligand occupying the basal plane and a water O atom located at the apical site. The structure displays O—H⋯O hydrogen bonding and inter­molecular ππ stacking inter­actions between 1,10-phenantroline ligands [inter­planar distance of 3.448 (5) Å].

Related literature

For the structure of the methanol solvate of aqua­(3-formyl-2-oxidobenzoato-κ2O1,O2)(1,10-phenanthroline-κ2N,N′)copper(II), see: Zhang et al. (2008[Zhang, W., Cui, Q., Chang, L. & Yu, Z. (2008). Acta Cryst. E64, m294.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H4O4)(C12H8N2)(H2O)]·C3H7NO

  • Mr = 498.97

  • Triclinic, [P \overline 1]

  • a = 9.6936 (6) Å

  • b = 10.9020 (12) Å

  • c = 11.2800 (7) Å

  • α = 103.834 (1)°

  • β = 109.764 (1)°

  • γ = 98.604 (1)°

  • V = 1054.09 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 296 K

  • 0.39 × 0.35 × 0.28 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.677, Tmax = 0.751

  • 5440 measured reflections

  • 3687 independent reflections

  • 3452 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.112

  • S = 1.08

  • 3687 reflections

  • 301 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O4i 0.85 1.91 2.741 (3) 167
O1W—H1WA⋯O5 0.85 1.96 2.794 (3) 167
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently we have reported the crystal structure of the methanol solvate of the title coordination compound. Here we report the crystal structure of its dimethylformamide solvate.

In the complex, the Cu2+ ion is pentacoordinated, with two O atoms of 3-carboxylsalicylaldehyde anion and two N atoms from 1,10-phenanthroline ligand in the basal plane and the O atom of water molecule completing the square-pyramidal geometry from the apical site (Fig. 1). The atoms N1, N2, O3 and O2 are nearly coplanar, and the Cu atom is displaced by 0.137 Å from this plane towards the apical O atom, giving the N1–Cu1–O2 angle of 172.36 (8)° and N2–Cu1–O3 angle of 166.78 (9) °. The structure of the complex molecule is very similar to that observed in the methanol solvate (Zhang et al., 2008).

There are two kinds of intermolecular hydrogen bonds in the crystal. One is between the H1WA atom of the water molecule and the O5 atom of the DMF molecule and the other is between the H1WB atom of the water molecule and the uncoordinated O4 atom (O4i: (i) = -x + 1, -y, -z + 1) of the carboxylate group. Intermolecular hydrogen bonds and ππ stacking interactions phenanthroline ligands (the interplanar distance of 3.448 Å) generate one-dimensional structure shown in Fig. 2.

Related literature top

For the structure of the methanol solvate of aqua(3-formyl-2-oxidobenzoato-κ2O1,O2) (1,10-phenanthroline-κ2N,N')copper(II), see: Zhang et al. (2008).

Experimental top

3-Carboxylsalicylaldehyde (0.166 g, 1.0 mmol) was dissolved in 10 ml of aqueous solution containing 0.080 g (2.0 mmol) NaOH. To this solution, 15 ml of DMF solution containing 1,10-phenanthroline (0.1982 g, 1 mmol) and CuCl2.2H2O (0.1705 g, 1 mmol) was added. The mixture was stirred at room temperature for 2 h, then filtered to give a green solution. The filtrate was airproofed and kept at room temperature. Two weeks later, green block-shaped crystal of X-ray quality were obtained.

Refinement top

The positions of the water H atoms obtained from a difference Fourier map were constraestained to ideal water geometry and fixed in the final stages of refinement (O-H 0.85 Å). All other H atoms were included in calculated positions, with C—H distances ranging from 0.93 to 0.96 Å. They were refined in the riding-model approximation, with Uiso(H) = 1.2 Ueq (C) or 1.5 Ueq(C, O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoides are shown at the 25% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound. Hydrogen bonds are indicated by dashed lines.
Aqua(3-formyl-2-oxidobenzoato-κ2O1,O2)(1,10- phenanthroline-κ2N,N')copper(II) dimethylformamide solvate top
Crystal data top
[Cu(C8H4O4)(C12H8N2)(H2O)]·C3H7NOZ = 2
Mr = 498.97F(000) = 514
Triclinic, P1Dx = 1.572 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6936 (6) ÅCell parameters from 4490 reflections
b = 10.9020 (12) Åθ = 2.3–28.3°
c = 11.2800 (7) ŵ = 1.08 mm1
α = 103.834 (1)°T = 296 K
β = 109.764 (1)°Block, green
γ = 98.604 (1)°0.39 × 0.35 × 0.28 mm
V = 1054.09 (15) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3687 independent reflections
Radiation source: fine-focus sealed tube3452 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.677, Tmax = 0.751k = 1212
5440 measured reflectionsl = 135
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.6371P]
where P = (Fo2 + 2Fc2)/3
3687 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.48 e Å3
0 constraints
Crystal data top
[Cu(C8H4O4)(C12H8N2)(H2O)]·C3H7NOγ = 98.604 (1)°
Mr = 498.97V = 1054.09 (15) Å3
Triclinic, P1Z = 2
a = 9.6936 (6) ÅMo Kα radiation
b = 10.9020 (12) ŵ = 1.08 mm1
c = 11.2800 (7) ÅT = 296 K
α = 103.834 (1)°0.39 × 0.35 × 0.28 mm
β = 109.764 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3687 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3452 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 0.751Rint = 0.011
5440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.08Δρmax = 0.81 e Å3
3687 reflectionsΔρmin = 0.48 e Å3
301 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.16328 (3)0.00556 (3)0.42283 (3)0.03264 (14)
O1W0.3462 (2)0.1436 (2)0.3911 (2)0.0530 (5)
H1WA0.39930.20980.45810.064*
H1WB0.40650.10740.36400.064*
N10.1623 (2)0.1462 (2)0.2786 (2)0.0327 (4)
N20.0089 (2)0.0216 (2)0.2678 (2)0.0308 (4)
O10.0712 (3)0.4672 (2)0.7470 (2)0.0664 (7)
O20.1357 (2)0.13957 (18)0.54916 (17)0.0398 (4)
O30.3000 (2)0.0508 (2)0.55253 (18)0.0448 (5)
O40.4950 (2)0.0174 (2)0.73640 (19)0.0488 (5)
C10.2529 (3)0.2267 (3)0.2873 (3)0.0398 (6)
H10.32790.21600.36930.048*
C20.2386 (4)0.3274 (3)0.1765 (3)0.0464 (7)
H20.30350.38240.18590.056*
C30.1309 (3)0.3448 (3)0.0559 (3)0.0443 (6)
H30.12100.41180.01760.053*
C40.0332 (3)0.2596 (2)0.0429 (2)0.0359 (6)
C50.0824 (3)0.2675 (3)0.0794 (3)0.0459 (7)
H50.09830.33310.15610.055*
C60.1692 (3)0.1811 (3)0.0857 (3)0.0449 (7)
H60.24270.18750.16690.054*
C70.1500 (3)0.0799 (3)0.0307 (2)0.0364 (6)
C80.2360 (3)0.0125 (3)0.0314 (3)0.0445 (6)
H80.31190.01070.04650.053*
C90.2064 (3)0.1058 (3)0.1490 (3)0.0460 (7)
H90.26260.16770.15100.055*
C100.0924 (3)0.1080 (3)0.2656 (3)0.0376 (6)
H100.07420.17190.34420.045*
C110.0379 (3)0.0707 (2)0.1520 (2)0.0302 (5)
C120.0550 (3)0.1618 (2)0.1578 (2)0.0307 (5)
C130.0912 (4)0.3653 (3)0.6920 (3)0.0460 (7)
H130.02300.32050.60560.055*
C140.2124 (3)0.3076 (2)0.7494 (3)0.0353 (6)
C150.3105 (3)0.3681 (3)0.8826 (3)0.0432 (6)
H150.29610.44330.93140.052*
C160.4270 (4)0.3178 (3)0.9413 (3)0.0503 (7)
H160.49250.35911.02920.060*
C170.4463 (3)0.2053 (3)0.8687 (3)0.0413 (6)
H170.52520.17130.91000.050*
C180.3532 (3)0.1408 (2)0.7370 (2)0.0314 (5)
C190.2317 (3)0.1921 (2)0.6732 (2)0.0308 (5)
C200.3865 (3)0.0178 (3)0.6722 (2)0.0340 (5)
C210.2290 (5)0.4426 (5)0.4552 (4)0.0845 (12)
H21A0.26960.37330.42160.127*
H21B0.20830.49360.39560.127*
H21C0.13700.40630.46260.127*
C220.3128 (7)0.6469 (4)0.6359 (6)0.1041 (18)
H22A0.40440.69950.70880.156*
H22B0.23230.63500.66660.156*
H22C0.28690.68970.56920.156*
N30.3350 (3)0.5228 (3)0.5809 (2)0.0490 (6)
C230.4569 (4)0.4849 (4)0.6420 (4)0.0633 (9)
H230.52580.54000.72450.076*
O50.4840 (3)0.3805 (2)0.5953 (3)0.0700 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0417 (2)0.0314 (2)0.02085 (19)0.01603 (14)0.00811 (14)0.00282 (13)
O1W0.0483 (11)0.0443 (11)0.0639 (14)0.0135 (9)0.0265 (10)0.0044 (10)
N10.0378 (11)0.0313 (11)0.0256 (10)0.0106 (9)0.0101 (9)0.0051 (8)
N20.0345 (10)0.0324 (10)0.0259 (10)0.0096 (8)0.0121 (8)0.0084 (8)
O10.0850 (17)0.0556 (14)0.0610 (14)0.0422 (13)0.0300 (13)0.0051 (11)
O20.0464 (10)0.0414 (10)0.0252 (9)0.0210 (8)0.0080 (8)0.0017 (7)
O30.0598 (12)0.0410 (10)0.0261 (9)0.0268 (9)0.0061 (8)0.0038 (8)
O40.0499 (11)0.0577 (12)0.0329 (10)0.0296 (10)0.0074 (9)0.0066 (9)
C10.0441 (14)0.0377 (14)0.0369 (14)0.0175 (12)0.0148 (12)0.0074 (11)
C20.0518 (17)0.0425 (15)0.0467 (16)0.0213 (13)0.0221 (14)0.0070 (13)
C30.0533 (16)0.0370 (14)0.0407 (15)0.0119 (12)0.0244 (13)0.0006 (12)
C40.0425 (14)0.0337 (13)0.0271 (12)0.0047 (11)0.0156 (11)0.0017 (10)
C50.0525 (16)0.0460 (16)0.0281 (13)0.0048 (13)0.0151 (12)0.0024 (12)
C60.0450 (15)0.0537 (17)0.0234 (12)0.0048 (13)0.0049 (11)0.0067 (12)
C70.0355 (13)0.0408 (14)0.0286 (12)0.0043 (11)0.0102 (10)0.0100 (11)
C80.0400 (14)0.0555 (17)0.0362 (14)0.0144 (13)0.0077 (11)0.0200 (13)
C90.0469 (16)0.0496 (17)0.0485 (17)0.0248 (13)0.0182 (13)0.0203 (14)
C100.0422 (14)0.0361 (13)0.0363 (14)0.0142 (11)0.0171 (11)0.0092 (11)
C110.0326 (12)0.0316 (12)0.0255 (11)0.0061 (10)0.0121 (10)0.0077 (10)
C120.0333 (12)0.0320 (12)0.0262 (12)0.0062 (10)0.0133 (10)0.0069 (10)
C130.0571 (17)0.0447 (16)0.0430 (16)0.0221 (13)0.0259 (14)0.0105 (13)
C140.0421 (14)0.0314 (13)0.0337 (13)0.0072 (11)0.0204 (11)0.0053 (10)
C150.0521 (16)0.0328 (13)0.0371 (14)0.0061 (12)0.0198 (12)0.0034 (11)
C160.0530 (17)0.0463 (16)0.0326 (14)0.0055 (13)0.0094 (13)0.0063 (12)
C170.0402 (14)0.0431 (15)0.0329 (14)0.0097 (12)0.0101 (11)0.0047 (12)
C180.0348 (12)0.0314 (12)0.0265 (12)0.0057 (10)0.0131 (10)0.0057 (10)
C190.0353 (12)0.0303 (12)0.0271 (12)0.0061 (10)0.0156 (10)0.0055 (10)
C200.0388 (13)0.0391 (14)0.0254 (12)0.0138 (11)0.0129 (11)0.0092 (11)
C210.072 (3)0.098 (3)0.073 (3)0.031 (2)0.010 (2)0.031 (2)
C220.140 (5)0.056 (2)0.152 (5)0.046 (3)0.091 (4)0.033 (3)
N30.0601 (16)0.0423 (13)0.0492 (15)0.0193 (11)0.0253 (13)0.0121 (11)
C230.062 (2)0.065 (2)0.056 (2)0.0156 (18)0.0195 (17)0.0136 (17)
O50.0769 (17)0.0578 (15)0.0774 (17)0.0293 (13)0.0319 (14)0.0145 (13)
Geometric parameters (Å, º) top
Cu1—O21.9012 (18)C8—C91.374 (4)
Cu1—O31.9071 (18)C8—H80.9300
Cu1—N12.020 (2)C9—C101.394 (4)
Cu1—N22.033 (2)C9—H90.9300
Cu1—O1W2.329 (2)C10—H100.9300
O1W—H1WA0.8500C11—C121.435 (4)
O1W—H1WB0.8500C13—C141.448 (4)
N1—C11.328 (3)C13—H130.9300
N1—C121.359 (3)C14—C151.403 (4)
N2—C101.330 (3)C14—C191.421 (3)
N2—C111.356 (3)C15—C161.366 (5)
O1—C131.215 (4)C15—H150.9300
O2—C191.315 (3)C16—C171.379 (4)
O3—C201.284 (3)C16—H160.9300
O4—C201.231 (3)C17—C181.386 (4)
C1—C21.403 (4)C17—H170.9300
C1—H10.9300C18—C191.426 (4)
C2—C31.354 (4)C18—C201.502 (3)
C2—H20.9300C21—N31.408 (5)
C3—C41.420 (4)C21—H21A0.9600
C3—H30.9300C21—H21B0.9600
C4—C121.395 (3)C21—H21C0.9600
C4—C51.427 (4)C22—N31.428 (5)
C5—C61.352 (4)C22—H22A0.9600
C5—H50.9300C22—H22B0.9600
C6—C71.434 (4)C22—H22C0.9600
C6—H60.9300N3—C231.332 (5)
C7—C111.400 (3)C23—O51.240 (4)
C7—C81.401 (4)C23—H230.9300
O2—Cu1—O394.58 (8)C9—C10—H10119.0
O2—Cu1—N1172.36 (8)N2—C11—C7123.8 (2)
O3—Cu1—N189.63 (8)N2—C11—C12116.4 (2)
O2—Cu1—N293.28 (8)C7—C11—C12119.8 (2)
O3—Cu1—N2166.80 (9)N1—C12—C4123.4 (2)
N1—Cu1—N281.45 (8)N1—C12—C11116.5 (2)
O2—Cu1—O1W95.02 (8)C4—C12—C11120.1 (2)
O3—Cu1—O1W96.84 (9)O1—C13—C14125.5 (3)
N1—Cu1—O1W90.80 (8)O1—C13—H13117.2
N2—Cu1—O1W93.03 (8)C14—C13—H13117.2
Cu1—O1W—H1WA114.5C15—C14—C19120.6 (3)
Cu1—O1W—H1WB115.6C15—C14—C13118.5 (2)
H1WA—O1W—H1WB107.7C19—C14—C13121.0 (2)
C1—N1—C12118.3 (2)C16—C15—C14120.7 (3)
C1—N1—Cu1128.79 (18)C16—C15—H15119.6
C12—N1—Cu1112.92 (16)C14—C15—H15119.6
C10—N2—C11117.8 (2)C15—C16—C17119.3 (3)
C10—N2—Cu1129.47 (18)C15—C16—H16120.3
C11—N2—Cu1112.70 (16)C17—C16—H16120.3
C19—O2—Cu1123.98 (16)C16—C17—C18122.8 (3)
C20—O3—Cu1126.98 (17)C16—C17—H17118.6
N1—C1—C2121.9 (3)C18—C17—H17118.6
N1—C1—H1119.1C17—C18—C19118.9 (2)
C2—C1—H1119.1C17—C18—C20116.5 (2)
C3—C2—C1120.3 (3)C19—C18—C20124.5 (2)
C3—C2—H2119.8O2—C19—C14117.8 (2)
C1—C2—H2119.8O2—C19—C18124.5 (2)
C2—C3—C4119.2 (2)C14—C19—C18117.7 (2)
C2—C3—H3120.4O4—C20—O3120.9 (2)
C4—C3—H3120.4O4—C20—C18119.2 (2)
C12—C4—C3116.9 (2)O3—C20—C18119.9 (2)
C12—C4—C5119.1 (2)N3—C21—H21A109.5
C3—C4—C5124.0 (2)N3—C21—H21B109.5
C6—C5—C4121.1 (2)H21A—C21—H21B109.5
C6—C5—H5119.5N3—C21—H21C109.5
C4—C5—H5119.5H21A—C21—H21C109.5
C5—C6—C7121.1 (2)H21B—C21—H21C109.5
C5—C6—H6119.4N3—C22—H22A109.5
C7—C6—H6119.4N3—C22—H22B109.5
C11—C7—C8117.1 (2)H22A—C22—H22B109.5
C11—C7—C6118.8 (2)N3—C22—H22C109.5
C8—C7—C6124.1 (2)H22A—C22—H22C109.5
C9—C8—C7119.0 (2)H22B—C22—H22C109.5
C9—C8—H8120.5C23—N3—C21119.7 (3)
C7—C8—H8120.5C23—N3—C22121.6 (4)
C8—C9—C10120.3 (3)C21—N3—C22118.5 (4)
C8—C9—H9119.9O5—C23—N3123.8 (3)
C10—C9—H9119.9O5—C23—H23118.1
N2—C10—C9122.1 (2)N3—C23—H23118.1
N2—C10—H10119.0
O3—Cu1—N1—C111.6 (2)C8—C7—C11—N20.1 (4)
N2—Cu1—N1—C1178.2 (2)C6—C7—C11—N2179.4 (2)
O1W—Cu1—N1—C185.2 (2)C8—C7—C11—C12179.5 (2)
O3—Cu1—N1—C12170.25 (17)C6—C7—C11—C120.0 (3)
N2—Cu1—N1—C120.02 (16)C1—N1—C12—C41.3 (4)
O1W—Cu1—N1—C1292.91 (17)Cu1—N1—C12—C4179.64 (18)
O2—Cu1—N2—C106.0 (2)C1—N1—C12—C11178.4 (2)
O3—Cu1—N2—C10132.5 (3)Cu1—N1—C12—C110.0 (3)
N1—Cu1—N2—C10179.5 (2)C3—C4—C12—N10.6 (4)
O1W—Cu1—N2—C1089.2 (2)C5—C4—C12—N1179.8 (2)
O2—Cu1—N2—C11174.44 (16)C3—C4—C12—C11179.0 (2)
O3—Cu1—N2—C1148.0 (4)C5—C4—C12—C110.1 (4)
N1—Cu1—N2—C110.01 (15)N2—C11—C12—N10.0 (3)
O1W—Cu1—N2—C1190.35 (16)C7—C11—C12—N1179.4 (2)
O3—Cu1—O2—C1921.4 (2)N2—C11—C12—C4179.7 (2)
N2—Cu1—O2—C19169.2 (2)C7—C11—C12—C40.3 (3)
O1W—Cu1—O2—C1975.9 (2)O1—C13—C14—C154.5 (5)
O2—Cu1—O3—C2026.0 (2)O1—C13—C14—C19175.7 (3)
N1—Cu1—O3—C20160.4 (2)C19—C14—C15—C160.5 (4)
N2—Cu1—O3—C20152.3 (3)C13—C14—C15—C16179.7 (3)
O1W—Cu1—O3—C2069.7 (2)C14—C15—C16—C170.9 (5)
C12—N1—C1—C21.1 (4)C15—C16—C17—C180.8 (5)
Cu1—N1—C1—C2179.2 (2)C16—C17—C18—C190.3 (4)
N1—C1—C2—C30.3 (4)C16—C17—C18—C20178.7 (3)
C1—C2—C3—C40.3 (4)Cu1—O2—C19—C14168.07 (16)
C2—C3—C4—C120.2 (4)Cu1—O2—C19—C1812.3 (3)
C2—C3—C4—C5178.9 (3)C15—C14—C19—O2179.7 (2)
C12—C4—C5—C60.8 (4)C13—C14—C19—O20.1 (4)
C3—C4—C5—C6178.3 (3)C15—C14—C19—C180.1 (4)
C4—C5—C6—C71.1 (4)C13—C14—C19—C18179.7 (2)
C5—C6—C7—C110.7 (4)C17—C18—C19—O2179.8 (2)
C5—C6—C7—C8179.9 (3)C20—C18—C19—O21.5 (4)
C11—C7—C8—C90.0 (4)C17—C18—C19—C140.2 (3)
C6—C7—C8—C9179.4 (3)C20—C18—C19—C14178.1 (2)
C7—C8—C9—C100.0 (4)Cu1—O3—C20—O4162.1 (2)
C11—N2—C10—C90.2 (4)Cu1—O3—C20—C1819.6 (3)
Cu1—N2—C10—C9179.35 (19)C17—C18—C20—O42.0 (4)
C8—C9—C10—N20.1 (4)C19—C18—C20—O4179.7 (2)
C10—N2—C11—C70.2 (3)C17—C18—C20—O3176.3 (2)
Cu1—N2—C11—C7179.38 (18)C19—C18—C20—O32.0 (4)
C10—N2—C11—C12179.6 (2)C21—N3—C23—O50.7 (6)
Cu1—N2—C11—C120.0 (3)C22—N3—C23—O5176.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O4i0.851.912.741 (3)167
O1W—H1WA···O50.851.962.794 (3)167
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C8H4O4)(C12H8N2)(H2O)]·C3H7NO
Mr498.97
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.6936 (6), 10.9020 (12), 11.2800 (7)
α, β, γ (°)103.834 (1), 109.764 (1), 98.604 (1)
V3)1054.09 (15)
Z2
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.39 × 0.35 × 0.28
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.677, 0.751
No. of measured, independent and
observed [I > 2σ(I)] reflections
5440, 3687, 3452
Rint0.011
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.112, 1.08
No. of reflections3687
No. of parameters301
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.48

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O4i0.851.912.741 (3)167
O1W—H1WA···O50.851.962.794 (3)167
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors are grateful for financial support from the Henan Administration of Science and Technology (grant No. 0111030700).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Cui, Q., Chang, L. & Yu, Z. (2008). Acta Cryst. E64, m294.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds