organic compounds
Hydrogen bonding in cytosinium dihydrogen phosphite
aLaboratoire des Structures, Propriétés et Interactions Inter Atomiques, (LASPI2A), Centre Universitaire de Khenchela, 40000 Khenchela, Algeria, and bUniversité Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces UMR 5615, 69622 Villeurbanne Cedex, France
*Correspondence e-mail: benalicherif@hotmail.com
In the title compound, C4H8N3O4P+·H2PO3−, the cytosine molecule is monoprotonated and the phosphoric acid is in the monoionized state. Strong hydrogen bonds, dominated by N—H⋯O interactions, are responsible for cohesion between the organic and inorganic layers and maintain the stability of this structure.
Related literature
For general background, see: Jeffrey & Saenger (1991); Kabanos et al. (1992); Weber & Craven (1990); Sivanesan et al. (2000). For hydrogen bonds, see: Blessing (1986); Masse & Levy (1991). For related structures, see: Bendheif et al. (2003); Bouchouit et al. (2005); Benali-Cherif, Abouimrane et al. (2002); Benali-Cherif et al. (2007); Benali-Cherif, Benguedouar et al. (2002); Bendjeddou et al. (2003); Cherouana, Benali-Cherif & Bendjeddou (2003); Cherouana, Bouchouit et al. (2003); Messai et al. (2009).
Experimental
Crystal data
|
Data collection
|
Data collection: COLLECT (Nonius, 1997–2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809014020/gw2061sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809014020/gw2061Isup2.hkl
The title compound (I) was crystallized from a 1:1 aqueous solution of cytosine [4-aminopyrimidine-2(1H)-one] and phosphorous acid. Yellow crystals grew after a few days, at room temperature and were manually separated for single-crystal X-ray analysis.
The title compound crystallizes in the non centrosymmetric
P1. All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were located in Fourier maps; and treated as riding on their parent atoms, with C—H = 0.93 Å, N—H = 0.86 Å, O—H = 0.82 Å, P—H = 1.30 Å, Uiso = 1.2Ueq(C,N,P) and Uiso = 1.5Ueq(O).Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. ORTEP view of asymmetric unit. | |
Fig. 2. PLUTON view down a axis, showing alternate layers of cations and anions stabilized by N—H···O hydrogen bonds. |
C4H6N3O+·H2PO3− | Z = 1 |
Mr = 193.10 | F(000) = 100 |
Triclinic, P1 | Dx = 1.668 Mg m−3 |
Hall symbol: P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.5625 (3) Å | Cell parameters from 739 reflections |
b = 6.4739 (4) Å | θ = 0.7–27.9° |
c = 6.5933 (6) Å | µ = 0.34 mm−1 |
α = 92.934 (4)° | T = 293 K |
β = 91.236 (4)° | Cubic, yellow |
γ = 98.627 (5)° | 0.1 × 0.1 × 0.1 mm |
V = 192.21 (2) Å3 |
Nonius KappaCCD diffractometer | 1430 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Horizonally mounted graphite crystal monochromator | θmax = 28.0°, θmin = 3.2° |
Detector resolution: 9 pixels mm-1 | h = −6→5 |
CCD rotation images, thick slices scans | k = −8→8 |
1500 measured reflections | l = −8→8 |
1500 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0447P)2 + 0.0402P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
1500 reflections | Δρmax = 0.25 e Å−3 |
112 parameters | Δρmin = −0.33 e Å−3 |
4 restraints | Absolute structure: Flack (1983), with how many Friedel pairs? |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.06 (10) |
C4H6N3O+·H2PO3− | γ = 98.627 (5)° |
Mr = 193.10 | V = 192.21 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 4.5625 (3) Å | Mo Kα radiation |
b = 6.4739 (4) Å | µ = 0.34 mm−1 |
c = 6.5933 (6) Å | T = 293 K |
α = 92.934 (4)° | 0.1 × 0.1 × 0.1 mm |
β = 91.236 (4)° |
Nonius KappaCCD diffractometer | 1430 reflections with I > 2σ(I) |
1500 measured reflections | Rint = 0.000 |
1500 independent reflections |
R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.084 | Δρmax = 0.25 e Å−3 |
S = 1.13 | Δρmin = −0.33 e Å−3 |
1500 reflections | Absolute structure: Flack (1983), with how many Friedel pairs? |
112 parameters | Absolute structure parameter: 0.06 (10) |
4 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O7 | 0.3049 (5) | 0.5610 (3) | 1.0498 (3) | 0.0265 (5) | |
N1 | 0.3442 (5) | 0.6856 (3) | 0.7331 (4) | 0.0213 (5) | |
H1 | 0.2420 | 0.7833 | 0.7642 | 0.026* | |
N3 | 0.5864 (5) | 0.4107 (3) | 0.8218 (3) | 0.0183 (5) | |
H3 | 0.6371 | 0.3301 | 0.9118 | 0.022* | |
N8 | 0.8625 (5) | 0.2462 (4) | 0.5932 (4) | 0.0236 (5) | |
H7 | 0.9227 | 0.1652 | 0.6793 | 0.028* | |
H8 | 0.9180 | 0.2312 | 0.4701 | 0.028* | |
C2 | 0.4021 (5) | 0.5545 (4) | 0.8791 (4) | 0.0177 (5) | |
C4 | 0.6911 (5) | 0.3898 (4) | 0.6323 (4) | 0.0178 (5) | |
C5 | 0.6099 (6) | 0.5224 (4) | 0.4837 (4) | 0.0232 (6) | |
H5 | 0.6711 | 0.5094 | 0.3507 | 0.028* | |
C6 | 0.4412 (6) | 0.6684 (4) | 0.5406 (4) | 0.0228 (6) | |
H6 | 0.3901 | 0.7593 | 0.4457 | 0.027* | |
P1 | −0.06174 (7) | 0.00189 (6) | 0.08872 (6) | 0.01852 (18) | |
O1 | 0.1928 (4) | 0.0549 (3) | 0.2547 (3) | 0.0209 (4) | |
H1A | 0.3538 | 0.0628 | 0.2004 | 0.031* | |
O2 | 0.0527 (4) | −0.0044 (3) | −0.1225 (3) | 0.0222 (4) | |
O3 | −0.2857 (4) | 0.1487 (3) | 0.1256 (3) | 0.0214 (4) | |
H9 | −0.172 (6) | −0.1857 (19) | 0.137 (5) | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O7 | 0.0323 (11) | 0.0300 (11) | 0.0203 (11) | 0.0138 (8) | 0.0056 (9) | 0.0032 (8) |
N1 | 0.0274 (12) | 0.0176 (11) | 0.0212 (13) | 0.0108 (9) | −0.0016 (10) | 0.0023 (9) |
N3 | 0.0231 (11) | 0.0198 (11) | 0.0138 (11) | 0.0079 (9) | −0.0004 (9) | 0.0043 (8) |
N8 | 0.0343 (13) | 0.0234 (11) | 0.0163 (11) | 0.0134 (9) | 0.0058 (10) | 0.0031 (9) |
C2 | 0.0175 (13) | 0.0174 (13) | 0.0181 (15) | 0.0036 (10) | −0.0010 (10) | −0.0007 (10) |
C4 | 0.0218 (13) | 0.0166 (12) | 0.0150 (13) | 0.0034 (10) | −0.0016 (11) | −0.0005 (10) |
C5 | 0.0327 (14) | 0.0224 (13) | 0.0165 (13) | 0.0094 (11) | 0.0002 (12) | 0.0042 (10) |
C6 | 0.0308 (15) | 0.0188 (13) | 0.0193 (15) | 0.0056 (11) | −0.0032 (11) | 0.0033 (10) |
P1 | 0.0176 (3) | 0.0189 (3) | 0.0200 (4) | 0.0051 (2) | 0.0016 (2) | 0.0033 (2) |
O1 | 0.0142 (8) | 0.0330 (10) | 0.0170 (10) | 0.0066 (7) | 0.0028 (7) | 0.0039 (7) |
O2 | 0.0271 (10) | 0.0250 (10) | 0.0174 (10) | 0.0129 (8) | 0.0018 (8) | 0.0008 (8) |
O3 | 0.0175 (9) | 0.0255 (10) | 0.0235 (11) | 0.0098 (7) | 0.0024 (8) | 0.0032 (8) |
O7—C2 | 1.220 (3) | C4—C5 | 1.414 (4) |
N1—C6 | 1.358 (4) | C5—C6 | 1.349 (4) |
N1—C2 | 1.362 (4) | C5—H5 | 0.9300 |
N1—H1 | 0.8600 | C6—H6 | 0.9300 |
N3—C4 | 1.354 (3) | P1—O2 | 1.498 (2) |
N3—C2 | 1.389 (3) | P1—O3 | 1.5114 (18) |
N3—H3 | 0.8600 | P1—O1 | 1.5655 (18) |
N8—C4 | 1.321 (3) | P1—H9 | 1.301 (16) |
N8—H7 | 0.8601 | O1—H1A | 0.8200 |
N8—H8 | 0.8600 | ||
C6—N1—C2 | 122.8 (2) | N3—C4—C5 | 118.4 (2) |
C6—N1—H1 | 118.6 | C6—C5—C4 | 118.1 (3) |
C2—N1—H1 | 118.6 | C6—C5—H5 | 121.0 |
C4—N3—C2 | 123.8 (2) | C4—C5—H5 | 121.0 |
C4—N3—H3 | 118.1 | C5—C6—N1 | 121.5 (2) |
C2—N3—H3 | 118.1 | C5—C6—H6 | 119.2 |
C4—N8—H7 | 126.0 | N1—C6—H6 | 119.2 |
C4—N8—H8 | 117.2 | O2—P1—O3 | 114.99 (10) |
H7—N8—H8 | 116.8 | O2—P1—O1 | 112.60 (10) |
O7—C2—N1 | 123.7 (2) | O3—P1—O1 | 108.41 (11) |
O7—C2—N3 | 121.1 (2) | O2—P1—H9 | 110.0 (14) |
N1—C2—N3 | 115.2 (2) | O3—P1—H9 | 109.9 (13) |
N8—C4—N3 | 119.0 (2) | O1—P1—H9 | 99.9 (14) |
N8—C4—C5 | 122.7 (3) | P1—O1—H1A | 109.5 |
C6—N1—C2—O7 | −176.3 (2) | C2—N3—C4—C5 | 0.3 (4) |
C6—N1—C2—N3 | 4.5 (3) | N8—C4—C5—C6 | −178.0 (3) |
C4—N3—C2—O7 | 177.1 (2) | N3—C4—C5—C6 | 2.4 (4) |
C4—N3—C2—N1 | −3.7 (3) | C4—C5—C6—N1 | −1.7 (4) |
C2—N3—C4—N8 | −179.2 (2) | C2—N1—C6—C5 | −2.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.86 | 1.86 | 2.713 (3) | 170 |
O1—H1A···O3ii | 0.82 | 1.75 | 2.542 (3) | 163 |
N3—H3···O3iii | 0.86 | 1.94 | 2.797 (3) | 175 |
N8—H7···O2iii | 0.86 | 1.89 | 2.750 (3) | 178 |
N8—H8···O1ii | 0.86 | 2.29 | 3.034 (3) | 145 |
N8—H8···O3ii | 0.86 | 2.44 | 3.153 (3) | 141 |
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | C4H6N3O+·H2PO3− |
Mr | 193.10 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 4.5625 (3), 6.4739 (4), 6.5933 (6) |
α, β, γ (°) | 92.934 (4), 91.236 (4), 98.627 (5) |
V (Å3) | 192.21 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.34 |
Crystal size (mm) | 0.1 × 0.1 × 0.1 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1500, 1500, 1430 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.660 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.084, 1.13 |
No. of reflections | 1500 |
No. of parameters | 112 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.25, −0.33 |
Absolute structure | Flack (1983), with how many Friedel pairs? |
Absolute structure parameter | 0.06 (10) |
Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.8600 | 1.8600 | 2.713 (3) | 170.00 |
O1—H1A···O3ii | 0.8200 | 1.7500 | 2.542 (3) | 163.00 |
N3—H3···O3iii | 0.8600 | 1.9400 | 2.797 (3) | 175.00 |
N8—H7···O2iii | 0.8600 | 1.8900 | 2.750 (3) | 178.00 |
N8—H8···O1ii | 0.8600 | 2.2900 | 3.034 (3) | 145.00 |
N8—H8···O3ii | 0.8600 | 2.4400 | 3.153 (3) | 141.00 |
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y, z+1. |
Acknowledgements
The authors thank le Centre Universitaire de Khenchela and le Ministére de l'enseignement supérieur et de la Recherche Scientifique–Algeria, via the PNE programme, for financial support.
References
Benali-Cherif, N., Abouimrane, A., Sbai, K., Merazig, H., Cherouana, A. & Bendjeddou, L. (2002). Acta Cryst. E58, o160–o161. Web of Science CSD CrossRef IUCr Journals Google Scholar
Benali-Cherif, N., Allouche, F., Direm, A., Boukli-H-Benmenni, L. & Soudani, K. (2007). Acta Cryst. E63, o2643–o2645. Web of Science CSD CrossRef IUCr Journals Google Scholar
Benali-Cherif, N., Benguedouar, L., Cherouana, A., Bendjeddou, L. & Merazig, H. (2002). Acta Cryst. E58, o822–o824. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bendheif, L., Benali-Cherif, N., Benguedouar, L., Bouchouit, K. & Merazig, H. (2003). Acta Cryst. E59, o141–o142. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bendjeddou, L., Cherouana, A., Dahaoui, S., Benali-Cherif, N. & Lecomte, C. (2003). Acta Cryst. E59, o649–o651. Web of Science CSD CrossRef IUCr Journals Google Scholar
Blessing, R. H. (1986). Acta Cryst. B42, 613–621. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bouchouit, K., Benali-Cherif, N., Dahaoui, S., Bendeif, E.-E. & Lecomte, C. (2005). Acta Cryst. E61, o2755–o2757. Web of Science CSD CrossRef IUCr Journals Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cherouana, A., Benali-Cherif, N. & Bendjeddou, L. (2003). Acta Cryst. E59, o180–o182. CSD CrossRef IUCr Journals Google Scholar
Cherouana, A., Bouchouit, K., Bendjeddou, L. & Benali-Cherif, N. (2003). Acta Cryst. E59, o983–o985. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin, Heidelberg, New York: Springer Verlag. Google Scholar
Kabanos, T. A., Keramidas, A. D., Mentzafos, D., Russo, U., Terzis, A. & Tsangaris, J. M. (1992). J. Chem. Soc. Dalton Trans. pp. 2729–2733. CSD CrossRef Web of Science Google Scholar
Masse, R. & Levy, J. P. (1991). J. Solid State Chem. 93, 88–95. CrossRef CAS Web of Science Google Scholar
Messai, A., Direm, A., Benali-Cherif, N., Luneau, D. & Jeanneau, E. (2009). Acta Cryst. E65, o460. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nonius (1997–2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sivanesan, D., Babu, K., Gadre, S. R., Subramanian, V. & Ramasami, T. (2000). J. Phys. Chem. A, 104, 10887–10894. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Weber, H.-P. & Craven, B. M. (1990). Acta Cryst. B46, 532–538. CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Studies of metal ion–nucleic acid interactions are of great current interest, since metal ions play a crucial role in the structure and function of nucleic acid and genetic information transfer (Kabanos et al., 1992). Cytosine (6-aminopyrimidin-2-one) is one of the pyrimidines found in deoxyribonucleic acids. It has been the subject of several investigations with the aim of studying the electrostatic properties of its monohydrate form (Weber & Craven, 1990), the relative stabilities of its tautomeric forms and its hydration effects and hydrogen bonding (Sivanesan et al., 2000).
In several crystal structures of purines and pyrimidines with inorganic anions, the structural cohesion is assured by strong hydrogen bonds, as was observed in guaninium sulfate monohydrate (Cherouana, Benali-Cherif & Bendjeddou, 2003) and adeninium perchlorate (Bendjeddou et al., 2003). The potential importance of hydrogen bonding in the structure and function of biomolecules has been well established (Jeffrey & Saenger, 1991); in particular, N—H···O hydrogen bonds are most predominant in determining the formation of secondary structure elements in proteins, base-pairing in nucleic acids and their biomolecular interactions. This structure analysis of cytosinium hydrogenphosphite (I) was undertaken as part of a more general investigation into the nature of hydrogen bonding between organic bases or amino acids and inorganic acids in their crystalline forms (Messai et al., 2009; Benali-Cherif, Abouimrane et al., 2002; Benali-Cherif, Benguedouar et al., 2002; Benali-Cherif et al., 2007).
The asymmetric unit contains one protonated cytosine rings and one hydrogenphosphite anion (Fig. 1). The main feature of the alkyl or aryl ammonium hydrogenphosphite is that the anionic subnetwork is built up through short strong hydrogen bonds (Blessing, 1986) and the organic cations are bonded to the phosphite layers by weaker hydrogen bonds (Masse & Levy, 1991) forming a two-dimensional network of hydrogen bonds (Fig. 2).
The inorganic moiety is a network of H2P O3- tetrahedra, connected by short and strong hydrogen bonds. Inside these chains each H2P O3- group is connected to its two adjacent neighbours by strong hydrogen bonds (O5—H2···O3) to build a two-dimensional network along the c direction. Some similarities may be observed between the present atomic arrangement and the corresponding hydrogenphosphites investigated earlier (Bendheif et al., 2003). cytosine is monoprotonated at atom N3. Some base stacking is retained and hydrogen bonding between cytosine rings, as found cytosinium nitrate (Cherouana, Bouchouit et al., 2003), and cytosinium oxalate monohydrate (Bouchouit et al., 2005) are observed. The pyrimidine ring bond distances are, in general, not signicantly different from those found in cytosine or cytosine monohydrate. Each ring is linked to three nitrate anions by strong N—H···O hydrogen bonds via atoms N1, N3 and N8. The shortest hydrogen bond is observed between the protonated atom N3 of pyrimidine and atom O3 of hydrogenophosphite.