metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m585-m586

Aceto­nitrilebis(2,9-di­methylphenanthroline)copper(II) bis­(tetra­fluoridoborate) aceto­nitrile disolvate

aDepartment of Chemistry, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06050, USA
*Correspondence e-mail: wattonstp@ccsu.edu

(Received 10 March 2009; accepted 1 April 2009; online 30 April 2009)

In the title compound, [Cu(CH3CN)(C14H12N2)2](BF4)2·2CH3CN, the CuII atom shows a distorted CuN5 square-pyramidal geometry with the acetonitrile N atom in an equatorial site, which differs substanti­ally from the distorted trigonal-bipyramidal arrangement usually observed for five-coordinate complexes of CuII with two phenanthroline-type ligands and one other ligand. The B atom of one of the BF4 anions is disordered over two sites in a 0.825 (2):0.175 (2) ratio. In the crystal, C—H⋯F hydrogen bonds help to establish the packing.

Related literature

For related structures, see: Bush et al. (2001[Bush, P. M., Whitehead, J. P., Pink, C. C., Gramm, E. C., Eglin, J. C., Watton, S. P. & Pence, L. E. (2001). Inorg. Chem. 40, 1871-1877.]); Vega et al. (1985[Vega, I. E. D., Gale, P. A., Lighta, M. E. & Loeb, S. J. (1985). Chem. Commun. 39, 4913-4915.]); Aligo et al. (2005[Aligo, J. A., Smith, L., Eglin, J. E. & Pence, L. E. (2005). Inorg. Chem. 44, 4001-4007.]). For background, see: Kepert (1973[Kepert, D. L. (1973). Inorg. Chem. 12, 1938-1942.]); Rossi & Hoffman (1975[Rossi, A. R. & Hoffman, R. (1975). Inorg. Chem. 14, 365-374.]); James & Williams (1961[James, B. R. & Williams, R. J. P. (1961). J. Chem. Soc. pp. 2007-2019.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H3N)(C14H12N2)2](BF4)2·2C2H3N

  • Mr = 776.83

  • Triclinic, [P \overline 1]

  • a = 11.2865 (19) Å

  • b = 12.070 (2) Å

  • c = 13.802 (2) Å

  • α = 72.843 (15)°

  • β = 83.746 (15)°

  • γ = 73.933 (15)°

  • V = 1725.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Sapphire diffractometer

  • Absorption correction: multi-scan (SCALE3 ABSPACK in CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD, CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]). Tmin = 0.997, Tmax = 1.000 (expected range = 0.864–0.867)

  • 10543 measured reflections

  • 8129 independent reflections

  • 4935 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.098

  • S = 0.89

  • 8129 reflections

  • 489 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N5 2.0123 (18)
Cu1—N2 2.0297 (17)
Cu1—N3 2.0305 (18)
Cu1—N4 2.0348 (17)
Cu1—N1 2.1760 (18)
N3—C25 1.351 (3)
N3—C28 1.359 (3)
N4—C16 1.333 (2)
N4—C27 1.365 (3)
N5—Cu1—N2 84.42 (7)
N5—Cu1—N3 89.07 (7)
N2—Cu1—N3 165.23 (7)
N5—Cu1—N4 150.90 (7)
N2—Cu1—N4 98.14 (7)
N3—Cu1—N4 81.25 (7)
N5—Cu1—N1 100.93 (7)
N2—Cu1—N1 80.17 (7)
N3—Cu1—N1 114.15 (7)
N4—Cu1—N1 108.09 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12C⋯F8i 0.96 2.36 3.120 (3) 135
C18—H18⋯F5ii 0.93 2.36 3.279 (3) 171
C20—H20⋯F8ii 0.93 2.53 3.423 (3) 161
C30—H30A⋯F8 0.96 2.47 3.375 (4) 158
C30—H30B⋯F6iii 0.96 2.38 3.314 (3) 165
C32—H32B⋯F7iv 0.96 2.37 3.191 (3) 143
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y, z+1; (iii) -x, -y, -z+1; (iv) -x, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD, CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD, CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The copper-containing cation (Fig. 1) of the title compound, (I), consists of a 5-coordinate Cu center, with the geometry about copper being best described (Kepert, 1973) as distorted square pyramidal, rather than as a distorted TBP structure, which is most commonly observed for five-coordinate copper bis-phenanthroline complexes (Bush, et al., 2001). Most of the distortion from idealized square pyramidal can be explained in terms of the restricted bite angles of the rigid phenanthroline rings. It is assumed that steric strain associated with the presence of the 2,9-dimethyl groups on the ligand overrides electronic considerations (Rossi and Hoffman, 1975), resulting in formation of the disfavored square pyramidal geometry for the d9 complex. The steric strain inherent in the structure is also reflected in the copper being located considerably outside of the normal coordination plane of the phenanthroline [0.470 (1) and 0.636 (1)Å from the least squares planes of the two rings], and in a clear bowing of the phenanthroline ligand itself.

The observation of an electronically high-energy structure is fully consistent with electrochemical data (James and Williams, 1961) which show the 2,9-disubstituted phenanthroline complex to be significantly easier to reduce than the analogous complexes lacking the 2,9- substituents. Reduction of the [Cu(neocuproine)2(solv)]2+ complexes affords the air-stable [Cu(neocuproine)2]+ species, which adopt pseudo-tetrahedral geometries that alleviate the steric strain between the substituents.

In the structure of (I), close contact of the disordered BF4- and the coordinated CH3CN suggest that a C—H hydrogen bonding interaction exists (see, for example: Vega, et al., 1985). Similar interactions between BF4- ions and Cu-bound acetonitrile ligands have been observed previously (Aligo, et al., 2005). The packing of (I) is shown in Fig. 2 and the H bonds are listed in Table 2.

Related literature top

For related structures, see: Bush et al. (2001); Vega et al. (1985); Aligo et al. (2005). For background, see: Kepert (1973); Rossi & Hoffman (1975); James & Williams (1961);

Experimental top

Copper (II) tetrafluoroborate hydrate (0.100 g, 0.42 mmol) was dissolved in 5 ml of acetonitrile and 2,9-dimethylphenanthroline (0.190 g, 0.92 mmol) was added as a solution in 5 ml of acetonitrile. Vapor diffusion of ether into the solution afforded green blocks of (I). Yield 0.182 g (56%).

Refinement top

All H atoms were included at calculated positions and were allowed to ride with their C atoms during refinement. The structure exhibits disorder of one of the two BF4- counterions. The disorder was modeled using two identical constrained fragments which shared a common F atom. Occupancy refinement indicated a relative population of 0.175 (2) to 0.825 (2) for the two positions.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction ,2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXLTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the cation in (I) with H atoms omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing for (I): H atoms are omitted for clarity and displacement ellipsoids are drawn at the 50% probability level.
Acetonitrilebis(2,9-dimethylphenanthroline)copper(II) bis(tetrafluoroborate) acetonitrile disolvate top
Crystal data top
[Cu(C2H3N)(C14H12N2)2](BF4)2·2C2H3NZ = 2
Mr = 776.83F(000) = 794
Triclinic, P1Dx = 1.495 Mg m3
Hall symbol: -P 1Melting point > 523 K
a = 11.2865 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.070 (2) ÅCell parameters from 4074 reflections
c = 13.802 (2) Åθ = 3.9–32.1°
α = 72.843 (15)°µ = 0.71 mm1
β = 83.746 (15)°T = 293 K
γ = 73.933 (15)°Block, green
V = 1725.7 (5) Å30.3 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Sapphire
diffractometer
8129 independent reflections
Radiation source: fine-focus sealed tube4935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 32.2°, θmin = 3.9°
Absorption correction: multi-scan
(SCALE3 ABSPACK in CrysAlis RED; Oxford Diffraction, 2006).
h = 1613
Tmin = 0.997, Tmax = 1.000k = 1717
10543 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0558P)2]
where P = (Fo2 + 2Fc2)/3
8129 reflections(Δ/σ)max = 0.009
489 parametersΔρmax = 0.54 e Å3
30 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Cu(C2H3N)(C14H12N2)2](BF4)2·2C2H3Nγ = 73.933 (15)°
Mr = 776.83V = 1725.7 (5) Å3
Triclinic, P1Z = 2
a = 11.2865 (19) ÅMo Kα radiation
b = 12.070 (2) ŵ = 0.71 mm1
c = 13.802 (2) ÅT = 293 K
α = 72.843 (15)°0.3 × 0.2 × 0.2 mm
β = 83.746 (15)°
Data collection top
Oxford Diffraction Sapphire
diffractometer
8129 independent reflections
Absorption correction: multi-scan
(SCALE3 ABSPACK in CrysAlis RED; Oxford Diffraction, 2006).
4935 reflections with I > 2σ(I)
Tmin = 0.997, Tmax = 1.000Rint = 0.025
10543 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04030 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 0.89Δρmax = 0.54 e Å3
8129 reflectionsΔρmin = 0.35 e Å3
489 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.22719 (2)0.09638 (2)0.73647 (2)0.02082 (9)
N10.27230 (16)0.23116 (14)0.60440 (13)0.0205 (4)
N20.05462 (16)0.19388 (14)0.69210 (13)0.0193 (4)
C10.0467 (2)0.0955 (2)0.84546 (18)0.0323 (6)
H1A0.07450.02760.84420.048*
H1B0.09930.13590.89090.048*
H1C0.03650.06870.86830.048*
C20.0512 (2)0.17993 (18)0.74111 (18)0.0257 (5)
C30.1658 (2)0.24420 (19)0.69496 (19)0.0289 (5)
H30.23920.23750.73110.035*
C40.1685 (2)0.31611 (18)0.59724 (18)0.0284 (5)
H40.24370.35630.56650.034*
C50.0576 (2)0.32924 (17)0.54323 (17)0.0230 (5)
C60.0512 (2)0.40115 (17)0.44062 (17)0.0275 (5)
H60.12330.43880.40460.033*
C70.0580 (2)0.41503 (18)0.39547 (18)0.0273 (5)
H70.06000.46030.32820.033*
C80.1698 (2)0.36192 (17)0.44850 (16)0.0227 (5)
C90.2844 (2)0.38422 (17)0.40945 (17)0.0273 (5)
H90.29100.43190.34350.033*
C100.3853 (2)0.33573 (18)0.46848 (17)0.0268 (5)
H100.45980.35390.44390.032*
C110.3777 (2)0.25780 (17)0.56708 (17)0.0227 (5)
C120.4879 (2)0.2062 (2)0.63242 (19)0.0320 (6)
H12A0.46550.15900.69740.048*
H12B0.51700.27010.64120.048*
H12C0.55180.15640.60070.048*
C130.05311 (19)0.26752 (16)0.59555 (16)0.0203 (5)
C140.16866 (19)0.28576 (16)0.54751 (16)0.0197 (5)
N30.37614 (16)0.03179 (14)0.80310 (14)0.0224 (4)
N40.23061 (15)0.15164 (14)0.86165 (13)0.0193 (4)
C150.1143 (2)0.36074 (17)0.80198 (17)0.0273 (5)
H15A0.15680.35560.73870.041*
H15B0.12000.43200.81660.041*
H15C0.02920.36370.79750.041*
C160.17194 (19)0.25310 (17)0.88480 (16)0.0209 (5)
C170.1641 (2)0.25959 (19)0.98550 (17)0.0263 (5)
H170.12110.33071.00020.032*
C180.2184 (2)0.1634 (2)1.06205 (18)0.0280 (5)
H180.20990.16751.12880.034*
C190.2881 (2)0.05700 (18)1.03802 (17)0.0237 (5)
C200.3561 (2)0.04595 (19)1.11054 (18)0.0287 (5)
H200.35050.04791.17870.034*
C210.4291 (2)0.14124 (19)1.08054 (18)0.0309 (6)
H210.47230.20791.12870.037*
C220.4403 (2)0.14037 (18)0.97633 (18)0.0266 (5)
C230.5219 (2)0.23138 (19)0.9381 (2)0.0327 (6)
H230.56800.30030.98230.039*
C240.5322 (2)0.21712 (18)0.8365 (2)0.0329 (6)
H240.58890.27510.81160.039*
C250.4591 (2)0.11654 (18)0.76774 (18)0.0284 (5)
C260.4755 (2)0.1021 (2)0.65667 (19)0.0356 (6)
H26A0.42790.02420.62070.053*
H26B0.44820.16280.64030.053*
H26C0.56110.10990.63730.053*
C270.29190 (19)0.05730 (17)0.93622 (16)0.0200 (5)
C280.37000 (19)0.04304 (16)0.90432 (17)0.0211 (5)
N50.19544 (17)0.02025 (15)0.67040 (14)0.0272 (4)
C290.1858 (2)0.08244 (18)0.62641 (18)0.0280 (5)
C300.1774 (2)0.1635 (2)0.5691 (2)0.0381 (6)
H30A0.21110.13840.50180.057*
H30B0.09250.16210.56560.057*
H30C0.22300.24350.60220.057*
N60.1570 (2)0.8133 (2)0.92492 (19)0.0532 (6)
C310.1324 (2)0.7532 (2)0.8848 (2)0.0393 (6)
C320.1015 (3)0.6748 (2)0.8345 (2)0.0493 (7)
H32A0.17170.64430.79510.074*
H32B0.03360.71930.79070.074*
H32C0.07880.60910.88450.074*
N70.1493 (2)0.4854 (2)0.0983 (2)0.0571 (7)
C330.2350 (3)0.5198 (2)0.0862 (2)0.0405 (6)
C340.3440 (3)0.5640 (3)0.0680 (3)0.0680 (10)
H34A0.37010.57450.00190.102*
H34B0.40850.50730.11030.102*
H34C0.32580.63950.08350.102*
B10.5835 (3)0.5036 (2)0.2591 (2)0.0350 (7)
F10.66138 (15)0.48303 (17)0.33530 (13)0.0687 (5)
F20.46588 (13)0.56703 (13)0.28167 (12)0.0502 (4)
F30.57688 (17)0.39330 (14)0.25247 (15)0.0712 (5)
F40.62598 (14)0.56564 (15)0.16773 (13)0.0653 (5)
B20.1702 (4)0.0967 (3)0.3432 (3)0.0336 (9)0.825 (2)
F50.20526 (15)0.19999 (12)0.28948 (11)0.0480 (4)0.825 (2)
F60.1266 (2)0.10525 (16)0.43944 (14)0.0446 (5)0.825 (2)
F70.07552 (17)0.08275 (18)0.29426 (15)0.0543 (6)0.825 (2)
F80.2690 (2)0.00073 (18)0.34420 (18)0.0602 (6)0.825 (2)
B2B0.2011 (15)0.0932 (13)0.3623 (11)0.0336 (9)0.175 (2)
F5B0.20526 (15)0.19999 (12)0.28948 (11)0.0480 (4)0.175 (2)
F6B0.2824 (8)0.0556 (7)0.4379 (6)0.0446 (5)0.175 (2)
F7B0.0796 (9)0.1141 (10)0.4016 (9)0.0543 (6)0.175 (2)
F8B0.2038 (10)0.0053 (9)0.3170 (9)0.0602 (6)0.175 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02490 (16)0.01560 (12)0.02076 (17)0.00460 (10)0.00029 (11)0.00420 (9)
N10.0239 (10)0.0171 (8)0.0204 (10)0.0049 (7)0.0026 (8)0.0064 (7)
N20.0234 (10)0.0165 (8)0.0197 (10)0.0072 (7)0.0024 (8)0.0068 (7)
C10.0300 (13)0.0371 (13)0.0304 (15)0.0168 (11)0.0073 (12)0.0053 (10)
C20.0280 (13)0.0222 (10)0.0316 (14)0.0113 (9)0.0017 (11)0.0109 (9)
C30.0214 (12)0.0273 (11)0.0413 (16)0.0100 (9)0.0011 (11)0.0117 (10)
C40.0257 (13)0.0201 (10)0.0420 (16)0.0031 (9)0.0104 (11)0.0115 (10)
C50.0245 (12)0.0193 (10)0.0284 (14)0.0062 (9)0.0035 (10)0.0097 (8)
C60.0356 (14)0.0180 (10)0.0285 (14)0.0017 (9)0.0153 (11)0.0055 (9)
C70.0388 (15)0.0200 (10)0.0215 (13)0.0054 (10)0.0049 (11)0.0037 (8)
C80.0319 (13)0.0158 (9)0.0193 (12)0.0032 (9)0.0008 (10)0.0067 (8)
C90.0395 (14)0.0189 (10)0.0197 (13)0.0063 (10)0.0072 (11)0.0039 (8)
C100.0290 (13)0.0224 (10)0.0267 (14)0.0088 (9)0.0092 (11)0.0051 (9)
C110.0238 (12)0.0176 (10)0.0244 (13)0.0026 (9)0.0056 (10)0.0070 (8)
C120.0243 (13)0.0325 (12)0.0345 (15)0.0076 (10)0.0019 (11)0.0030 (10)
C130.0252 (12)0.0140 (9)0.0229 (13)0.0050 (8)0.0007 (10)0.0077 (8)
C140.0249 (12)0.0128 (9)0.0219 (13)0.0038 (8)0.0002 (10)0.0068 (8)
N30.0248 (10)0.0158 (8)0.0253 (12)0.0048 (7)0.0023 (9)0.0052 (7)
N40.0187 (9)0.0168 (8)0.0216 (11)0.0059 (7)0.0009 (8)0.0035 (7)
C150.0319 (13)0.0185 (10)0.0298 (14)0.0018 (9)0.0015 (11)0.0084 (9)
C160.0197 (11)0.0217 (10)0.0223 (13)0.0074 (8)0.0030 (10)0.0070 (8)
C170.0279 (13)0.0281 (11)0.0268 (14)0.0101 (10)0.0042 (11)0.0127 (9)
C180.0308 (13)0.0395 (13)0.0195 (14)0.0191 (11)0.0062 (11)0.0099 (10)
C190.0239 (12)0.0296 (11)0.0195 (13)0.0161 (9)0.0013 (10)0.0017 (9)
C200.0298 (13)0.0368 (13)0.0192 (14)0.0186 (10)0.0047 (11)0.0036 (9)
C210.0290 (13)0.0283 (12)0.0311 (16)0.0162 (10)0.0108 (11)0.0099 (9)
C220.0215 (12)0.0192 (10)0.0366 (15)0.0101 (9)0.0061 (11)0.0022 (9)
C230.0290 (13)0.0185 (10)0.0454 (18)0.0078 (9)0.0078 (12)0.0028 (10)
C240.0242 (13)0.0177 (10)0.0544 (19)0.0018 (9)0.0023 (12)0.0092 (10)
C250.0262 (13)0.0215 (10)0.0361 (16)0.0056 (9)0.0032 (11)0.0079 (9)
C260.0347 (14)0.0294 (12)0.0431 (17)0.0020 (11)0.0056 (13)0.0186 (11)
C270.0211 (11)0.0188 (9)0.0205 (13)0.0105 (8)0.0007 (10)0.0011 (8)
C280.0219 (11)0.0164 (9)0.0241 (14)0.0105 (8)0.0005 (10)0.0010 (8)
N50.0371 (11)0.0189 (9)0.0232 (11)0.0034 (8)0.0008 (9)0.0063 (7)
C290.0303 (13)0.0233 (11)0.0271 (15)0.0045 (9)0.0017 (11)0.0041 (9)
C300.0491 (16)0.0300 (12)0.0393 (17)0.0109 (11)0.0029 (13)0.0146 (11)
N60.0573 (16)0.0383 (13)0.0632 (18)0.0169 (12)0.0008 (13)0.0097 (12)
C310.0380 (15)0.0279 (12)0.0457 (18)0.0086 (11)0.0070 (13)0.0037 (11)
C320.0546 (19)0.0414 (15)0.055 (2)0.0162 (14)0.0111 (16)0.0195 (13)
N70.0549 (16)0.0420 (13)0.078 (2)0.0183 (13)0.0175 (14)0.0231 (13)
C330.0471 (17)0.0280 (12)0.0450 (18)0.0105 (12)0.0058 (14)0.0099 (11)
C340.053 (2)0.0423 (16)0.101 (3)0.0180 (15)0.0185 (19)0.0030 (17)
B10.0279 (16)0.0293 (14)0.043 (2)0.0088 (12)0.0002 (14)0.0022 (12)
F10.0476 (10)0.0914 (14)0.0596 (12)0.0102 (10)0.0204 (9)0.0101 (10)
F20.0346 (9)0.0468 (9)0.0636 (12)0.0047 (7)0.0037 (8)0.0139 (8)
F30.0778 (13)0.0413 (9)0.0996 (16)0.0214 (9)0.0141 (11)0.0272 (9)
F40.0410 (10)0.0648 (11)0.0601 (12)0.0121 (8)0.0031 (9)0.0246 (9)
B20.042 (3)0.0327 (15)0.026 (2)0.0028 (16)0.0009 (17)0.0152 (14)
F50.0704 (11)0.0442 (9)0.0360 (10)0.0262 (8)0.0093 (8)0.0143 (7)
F60.0712 (14)0.0388 (9)0.0236 (11)0.0134 (9)0.0036 (10)0.0110 (8)
F70.0470 (12)0.0763 (14)0.0504 (14)0.0257 (10)0.0004 (10)0.0249 (10)
F80.0393 (13)0.0447 (10)0.0828 (17)0.0122 (11)0.0014 (12)0.0196 (10)
B2B0.042 (3)0.0327 (15)0.026 (2)0.0028 (16)0.0009 (17)0.0152 (14)
F5B0.0704 (11)0.0442 (9)0.0360 (10)0.0262 (8)0.0093 (8)0.0143 (7)
F6B0.0712 (14)0.0388 (9)0.0236 (11)0.0134 (9)0.0036 (10)0.0110 (8)
F7B0.0470 (12)0.0763 (14)0.0504 (14)0.0257 (10)0.0004 (10)0.0249 (10)
F8B0.0393 (13)0.0447 (10)0.0828 (17)0.0122 (11)0.0014 (12)0.0196 (10)
Geometric parameters (Å, º) top
Cu1—N52.0123 (18)C18—C191.419 (3)
Cu1—N22.0297 (17)C18—H180.9300
Cu1—N32.0305 (18)C19—C271.400 (3)
Cu1—N42.0348 (17)C19—C201.429 (3)
Cu1—N12.1760 (18)C20—C211.362 (3)
N1—C111.328 (3)C20—H200.9300
N1—C141.374 (3)C21—C221.427 (3)
N2—C21.334 (3)C21—H210.9300
N2—C131.365 (3)C22—C281.402 (3)
C1—C21.496 (3)C22—C231.417 (3)
C1—H1A0.9600C23—C241.357 (3)
C1—H1B0.9600C23—H230.9300
C1—H1C0.9600C24—C251.411 (3)
C2—C31.419 (3)C24—H240.9300
C3—C41.370 (3)C25—C261.488 (3)
C3—H30.9300C26—H26A0.9600
C4—C51.408 (3)C26—H26B0.9600
C4—H40.9300C26—H26C0.9600
C5—C131.415 (3)C27—C281.441 (3)
C5—C61.432 (3)N5—C291.128 (3)
C6—C71.350 (3)C29—C301.455 (3)
C6—H60.9300C30—H30A0.9600
C7—C81.420 (3)C30—H30B0.9600
C7—H70.9300C30—H30C0.9600
C8—C141.405 (3)N6—C311.137 (3)
C8—C91.411 (3)C31—C321.458 (4)
C9—C101.362 (3)C32—H32A0.9600
C9—H90.9300C32—H32B0.9600
C10—C111.417 (3)C32—H32C0.9600
C10—H100.9300N7—C331.132 (3)
C11—C121.494 (3)C33—C341.441 (4)
C12—H12A0.9600C34—H34A0.9600
C12—H12B0.9600C34—H34B0.9600
C12—H12C0.9600C34—H34C0.9600
C13—C141.440 (3)B1—F11.367 (3)
N3—C251.351 (3)B1—F41.375 (3)
N3—C281.359 (3)B1—F31.383 (3)
N4—C161.333 (2)B1—F21.390 (3)
N4—C271.365 (3)B2—F81.376 (4)
C15—C161.495 (3)B2—F61.388 (4)
C15—H15A0.9600B2—F51.387 (4)
C15—H15B0.9600B2—F71.397 (4)
C15—H15C0.9600B2B—F6B1.355 (14)
C16—C171.407 (3)B2B—F8B1.372 (14)
C17—C181.365 (3)B2B—F7B1.402 (15)
C17—H170.9300
N5—Cu1—N284.42 (7)C17—C16—C15120.15 (18)
N5—Cu1—N389.07 (7)C18—C17—C16121.2 (2)
N2—Cu1—N3165.23 (7)C18—C17—H17119.4
N5—Cu1—N4150.90 (7)C16—C17—H17119.4
N2—Cu1—N498.14 (7)C17—C18—C19118.8 (2)
N3—Cu1—N481.25 (7)C17—C18—H18120.6
N5—Cu1—N1100.93 (7)C19—C18—H18120.6
N2—Cu1—N180.17 (7)C27—C19—C18116.6 (2)
N3—Cu1—N1114.15 (7)C27—C19—C20119.6 (2)
N4—Cu1—N1108.09 (6)C18—C19—C20123.7 (2)
C11—N1—C14118.58 (18)C21—C20—C19120.5 (2)
C11—N1—Cu1132.80 (14)C21—C20—H20119.8
C14—N1—Cu1108.16 (13)C19—C20—H20119.8
C2—N2—C13119.90 (19)C20—C21—C22121.0 (2)
C2—N2—Cu1126.65 (15)C20—C21—H21119.5
C13—N2—Cu1112.75 (14)C22—C21—H21119.5
C2—C1—H1A109.5C28—C22—C23116.0 (2)
C2—C1—H1B109.5C28—C22—C21119.6 (2)
H1A—C1—H1B109.5C23—C22—C21124.3 (2)
C2—C1—H1C109.5C24—C23—C22119.5 (2)
H1A—C1—H1C109.5C24—C23—H23120.3
H1B—C1—H1C109.5C22—C23—H23120.3
N2—C2—C3120.5 (2)C23—C24—C25121.7 (2)
N2—C2—C1118.8 (2)C23—C24—H24119.1
C3—C2—C1120.7 (2)C25—C24—H24119.1
C4—C3—C2120.1 (2)N3—C25—C24119.7 (2)
C4—C3—H3120.0N3—C25—C26120.1 (2)
C2—C3—H3120.0C24—C25—C26120.2 (2)
C3—C4—C5120.1 (2)C25—C26—H26A109.5
C3—C4—H4119.9C25—C26—H26B109.5
C5—C4—H4119.9H26A—C26—H26B109.5
C4—C5—C13116.8 (2)C25—C26—H26C109.5
C4—C5—C6124.1 (2)H26A—C26—H26C109.5
C13—C5—C6119.1 (2)H26B—C26—H26C109.5
C7—C6—C5120.9 (2)N4—C27—C19123.75 (18)
C7—C6—H6119.6N4—C27—C28116.32 (19)
C5—C6—H6119.6C19—C27—C28119.81 (19)
C6—C7—C8121.4 (2)N3—C28—C22124.35 (19)
C6—C7—H7119.3N3—C28—C27116.23 (18)
C8—C7—H7119.3C22—C28—C27119.3 (2)
C14—C8—C9116.5 (2)C29—N5—Cu1173.4 (2)
C14—C8—C7119.5 (2)N5—C29—C30178.3 (3)
C9—C8—C7124.0 (2)C29—C30—H30A109.5
C10—C9—C8119.9 (2)C29—C30—H30B109.5
C10—C9—H9120.1H30A—C30—H30B109.5
C8—C9—H9120.1C29—C30—H30C109.5
C9—C10—C11120.5 (2)H30A—C30—H30C109.5
C9—C10—H10119.8H30B—C30—H30C109.5
C11—C10—H10119.8N6—C31—C32179.2 (3)
N1—C11—C10121.0 (2)C31—C32—H32A109.5
N1—C11—C12118.5 (2)C31—C32—H32B109.5
C10—C11—C12120.4 (2)H32A—C32—H32B109.5
C11—C12—H12A109.5C31—C32—H32C109.5
C11—C12—H12B109.5H32A—C32—H32C109.5
H12A—C12—H12B109.5H32B—C32—H32C109.5
C11—C12—H12C109.5N7—C33—C34178.5 (3)
H12A—C12—H12C109.5C33—C34—H34A109.5
H12B—C12—H12C109.5C33—C34—H34B109.5
N2—C13—C5122.4 (2)H34A—C34—H34B109.5
N2—C13—C14118.18 (19)C33—C34—H34C109.5
C5—C13—C14119.38 (19)H34A—C34—H34C109.5
N1—C14—C8123.4 (2)H34B—C34—H34C109.5
N1—C14—C13117.07 (18)F1—B1—F4111.3 (2)
C8—C14—C13119.45 (19)F1—B1—F3107.7 (2)
C25—N3—C28118.60 (19)F4—B1—F3109.3 (2)
C25—N3—Cu1130.46 (16)F1—B1—F2110.3 (2)
C28—N3—Cu1109.46 (13)F4—B1—F2109.8 (2)
C16—N4—C27118.45 (18)F3—B1—F2108.5 (2)
C16—N4—Cu1131.53 (15)F8—B2—F6113.5 (3)
C27—N4—Cu1109.30 (12)F8—B2—F5108.5 (3)
C16—C15—H15A109.5F6—B2—F5109.6 (3)
C16—C15—H15B109.5F8—B2—F7106.8 (3)
H15A—C15—H15B109.5F6—B2—F7108.0 (3)
C16—C15—H15C109.5F5—B2—F7110.3 (3)
H15A—C15—H15C109.5F6B—B2B—F8B112.7 (12)
H15B—C15—H15C109.5F6B—B2B—F7B110.6 (12)
N4—C16—C17120.81 (19)F8B—B2B—F7B101.0 (12)
N4—C16—C15119.04 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12C···F8i0.962.363.120 (3)135
C18—H18···F5ii0.932.363.279 (3)171
C20—H20···F8ii0.932.533.423 (3)161
C30—H30A···F80.962.473.375 (4)158
C30—H30B···F6iii0.962.383.314 (3)165
C32—H32B···F7iv0.962.373.191 (3)143
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y, z+1; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C2H3N)(C14H12N2)2](BF4)2·2C2H3N
Mr776.83
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.2865 (19), 12.070 (2), 13.802 (2)
α, β, γ (°)72.843 (15), 83.746 (15), 73.933 (15)
V3)1725.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Sapphire
diffractometer
Absorption correctionMulti-scan
(SCALE3 ABSPACK in CrysAlis RED; Oxford Diffraction, 2006).
Tmin, Tmax0.997, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10543, 8129, 4935
Rint0.025
(sin θ/λ)max1)0.750
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 0.89
No. of reflections8129
No. of parameters489
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.35

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction ,2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXLTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N52.0123 (18)N3—C251.351 (3)
Cu1—N22.0297 (17)N3—C281.359 (3)
Cu1—N32.0305 (18)N4—C161.333 (2)
Cu1—N42.0348 (17)N4—C271.365 (3)
Cu1—N12.1760 (18)
N5—Cu1—N284.42 (7)N3—Cu1—N481.25 (7)
N5—Cu1—N389.07 (7)N5—Cu1—N1100.93 (7)
N2—Cu1—N3165.23 (7)N2—Cu1—N180.17 (7)
N5—Cu1—N4150.90 (7)N3—Cu1—N1114.15 (7)
N2—Cu1—N498.14 (7)N4—Cu1—N1108.09 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12C···F8i0.962.363.120 (3)135
C18—H18···F5ii0.932.363.279 (3)171
C20—H20···F8ii0.932.533.423 (3)161
C30—H30A···F80.962.473.375 (4)158
C30—H30B···F6iii0.962.383.314 (3)165
C32—H32B···F7iv0.962.373.191 (3)143
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y, z+1; (iv) x, y+1, z+1.
 

Acknowledgements

I thank Dr Guy Crundwell for his assistance with the disorder modeling, and with preparation of this manuscript, and I thank Dr Laura Pence for helpful discussions concerning the geometry of the complex.

References

First citationAligo, J. A., Smith, L., Eglin, J. E. & Pence, L. E. (2005). Inorg. Chem. 44, 4001–4007.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBush, P. M., Whitehead, J. P., Pink, C. C., Gramm, E. C., Eglin, J. C., Watton, S. P. & Pence, L. E. (2001). Inorg. Chem. 40, 1871–1877.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJames, B. R. & Williams, R. J. P. (1961). J. Chem. Soc. pp. 2007–2019.  CrossRef Web of Science Google Scholar
First citationKepert, D. L. (1973). Inorg. Chem. 12, 1938–1942.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD, CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRossi, A. R. & Hoffman, R. (1975). Inorg. Chem. 14, 365–374.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVega, I. E. D., Gale, P. A., Lighta, M. E. & Loeb, S. J. (1985). Chem. Commun. 39, 4913–4915.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m585-m586
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds