organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1043

N-Phenyl­anthranilic anhydride

aSchool of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: qindabincwnu@yahoo.com.cn

(Received 16 March 2009; accepted 6 April 2009; online 18 April 2009)

The complete mol­ecule of the title compound, C26H20N2O3, is generated by crystallographic twofold symmetry, with the central O atom lying on the rotation axis. The conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond. The dihedral angle between the inner and outer aromatic ring planes is 61.12 (5)°.

Related literature

For the synthesis, see: Martín et al. (2006[Martín, A., Mesa, M., Docampo, M. L., Gómez, V. & Pellón, R. F. (2006). Synth. Commun. 36, 271-277.]); Wiklund et al. (2004[Wiklund, P., Evans, M. R. & Bergman, J. (2004). J. Org. Chem. 69, 6371-6376.]). For related structures, see: Duesler et al. (1981[Duesler, E. N., Kress, R. B., Lin, C. T., Shiau, W. I., Paul, I. C. & Curtin, D. Y. (1981). J. Am. Chem. Soc. 103, 875-879.]); Huelgas et al. (2006[Huelgas, G., Quintero, L., Anaya de Parrodi, C. & Bernès, S. (2006). Acta Cryst. E62, o3191-o3192.]).

[Scheme 1]

Experimental

Crystal data
  • C26H20N2O3

  • Mr = 408.44

  • Monoclinic, C 2/c

  • a = 9.090 (3) Å

  • b = 21.056 (6) Å

  • c = 10.623 (3) Å

  • β = 100.594 (3)°

  • V = 1998.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 93 K

  • 0.33 × 0.30 × 0.18 mm

Data collection
  • Rigaku Spider diffractometer

  • Absorption correction: none

  • 8102 measured reflections

  • 2275 independent reflections

  • 2000 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.111

  • S = 1.00

  • 2275 reflections

  • 145 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.903 (16) 1.966 (15) 2.6629 (14) 132.7 (13)

Data collection: RAPID-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-Phenylanthranilic acid derivatives display a antipyretic acitivity, its RhI complex is known as a remarkably active hydrogenation catalyst. N-phenyl anthranilic acid anhydride, which is considered as an important reaction intermediate, We here report the crystal structure of the title compound, (I).

Bond lengths and angles in (I) (Fig. 1) are within their normal ranges. In each independent molecule, the arrangement of N—H···O hydrogen bond and the planar (O=C—O) group is almost coplanar with respect to its carrier benzene ring, with dihedral angle of 6.63 (1)°, but the two benzene rings in the diphenylamine units are twisted with a dihedral angle of 61.12 (4)°. The structure is stabilized by an intramolecular hydrogen bond from an H atom of a amido N atom to a carbonyl O atom on the six-membered ring.

Related literature top

For the synthesis, see: Martín et al. (2006); Wiklund et al. (2004). For related structures, see: Duesler et al. (1981); Huelgas et al.(2006).

Experimental top

The title compound was prepared according to the reported procedure of Martín et al. (2006) and Wiklund et al. (2004). Colourless chunks of (I) were obtained by recrystallization from ethyl acetate.

Refinement top

The N-bound N atom was located in a difference map and its position and Uiso value were freely refined. The C-bound H atoms were placed in calculated positions with C—H = 0.95 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku/MSC, 2004); cell refinement: RAPID-AUTO (Rigaku/MSC, 2004); data reduction: RAPID-AUTO (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids for the non-hydrogen atoms. Symmetry code: (i) –x, y, 1/2–y.
N-Phenylanthranilic anhydride top
Crystal data top
C26H20N2O3F(000) = 856
Mr = 408.44Dx = 1.358 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3250 reflections
a = 9.090 (3) Åθ = 3.4–27.5°
b = 21.056 (6) ŵ = 0.09 mm1
c = 10.623 (3) ÅT = 93 K
β = 100.594 (3)°Chunk, colourless
V = 1998.5 (10) Å30.33 × 0.30 × 0.18 mm
Z = 4
Data collection top
Rigaku Spider
diffractometer
2000 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.023
Graphite monochromatorθmax = 27.5°, θmin = 3.4°
ω scansh = 1111
8102 measured reflectionsk = 2727
2275 independent reflectionsl = 1013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.28P]
where P = (Fo2 + 2Fc2)/3
2275 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C26H20N2O3V = 1998.5 (10) Å3
Mr = 408.44Z = 4
Monoclinic, C2/cMo Kα radiation
a = 9.090 (3) ŵ = 0.09 mm1
b = 21.056 (6) ÅT = 93 K
c = 10.623 (3) Å0.33 × 0.30 × 0.18 mm
β = 100.594 (3)°
Data collection top
Rigaku Spider
diffractometer
2000 reflections with I > 2σ(I)
8102 measured reflectionsRint = 0.023
2275 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.25 e Å3
2275 reflectionsΔρmin = 0.20 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.11910 (9)0.38137 (4)0.34545 (8)0.0229 (2)
O20.00000.29421 (5)0.25000.0225 (3)
N10.41159 (11)0.37188 (5)0.43582 (9)0.0204 (2)
C10.56426 (13)0.43835 (6)0.59357 (11)0.0236 (3)
H10.48450.43990.64010.028*
C20.69505 (14)0.47174 (6)0.63703 (12)0.0275 (3)
H20.70450.49640.71300.033*
C30.81191 (14)0.46930 (6)0.57006 (13)0.0274 (3)
H30.90200.49180.60060.033*
C40.79712 (13)0.43398 (5)0.45834 (12)0.0246 (3)
H40.87710.43240.41210.030*
C50.66575 (13)0.40089 (5)0.41392 (11)0.0215 (3)
H50.65550.37710.33690.026*
C60.54946 (12)0.40262 (5)0.48214 (11)0.0185 (3)
C70.39399 (12)0.30870 (5)0.40566 (10)0.0176 (2)
C80.51448 (12)0.26579 (6)0.43627 (11)0.0207 (3)
H80.60990.28110.47640.025*
C90.49596 (13)0.20234 (6)0.40898 (11)0.0233 (3)
H90.57870.17440.43130.028*
C100.35825 (13)0.17796 (6)0.34912 (11)0.0234 (3)
H100.34690.13390.33050.028*
C110.23933 (13)0.21874 (5)0.31759 (11)0.0206 (3)
H110.14530.20250.27630.025*
C120.25345 (12)0.28396 (5)0.34495 (10)0.0179 (3)
C130.12427 (12)0.32625 (5)0.31547 (10)0.0183 (2)
H1N0.3269 (17)0.3947 (7)0.4330 (15)0.039 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0191 (4)0.0209 (4)0.0273 (5)0.0013 (3)0.0006 (3)0.0033 (3)
O20.0175 (6)0.0198 (6)0.0272 (6)0.0000.0037 (5)0.000
N10.0157 (5)0.0197 (5)0.0248 (5)0.0012 (4)0.0014 (4)0.0022 (4)
C10.0231 (6)0.0258 (6)0.0215 (6)0.0022 (5)0.0033 (5)0.0004 (5)
C20.0299 (7)0.0248 (6)0.0244 (6)0.0003 (5)0.0037 (5)0.0046 (5)
C30.0219 (6)0.0198 (6)0.0367 (7)0.0020 (4)0.0045 (5)0.0005 (5)
C40.0199 (6)0.0200 (6)0.0340 (7)0.0010 (4)0.0051 (5)0.0036 (5)
C50.0225 (6)0.0199 (6)0.0215 (6)0.0012 (4)0.0027 (5)0.0015 (4)
C60.0171 (6)0.0170 (5)0.0197 (5)0.0008 (4)0.0009 (4)0.0014 (4)
C70.0181 (6)0.0189 (5)0.0158 (5)0.0003 (4)0.0033 (4)0.0015 (4)
C80.0170 (6)0.0234 (6)0.0212 (6)0.0002 (4)0.0019 (4)0.0035 (4)
C90.0218 (6)0.0230 (6)0.0256 (6)0.0058 (4)0.0059 (5)0.0055 (5)
C100.0260 (6)0.0179 (5)0.0268 (6)0.0004 (5)0.0064 (5)0.0007 (5)
C110.0206 (6)0.0210 (6)0.0203 (6)0.0019 (4)0.0039 (4)0.0002 (4)
C120.0181 (6)0.0202 (6)0.0157 (5)0.0005 (4)0.0037 (4)0.0014 (4)
C130.0173 (6)0.0197 (5)0.0175 (5)0.0021 (4)0.0023 (4)0.0002 (4)
Geometric parameters (Å, º) top
O1—C131.2067 (14)C4—H40.9500
O2—C13i1.3877 (12)C5—C61.3876 (17)
O2—C131.3877 (12)C5—H50.9500
N1—C71.3708 (15)C7—C81.4109 (15)
N1—C61.4159 (14)C7—C121.4199 (15)
N1—H1N0.903 (16)C8—C91.3708 (17)
C1—C21.3853 (18)C8—H80.9500
C1—C61.3880 (16)C9—C101.3936 (17)
C1—H10.9500C9—H90.9500
C2—C31.3838 (19)C10—C111.3728 (16)
C2—H20.9500C10—H100.9500
C3—C41.3860 (18)C11—C121.4047 (15)
C3—H30.9500C11—H110.9500
C4—C51.3881 (16)C12—C131.4610 (15)
C13i—O2—C13121.84 (12)N1—C7—C8121.02 (10)
C7—N1—C6125.64 (9)N1—C7—C12121.25 (10)
C7—N1—H1N116.5 (10)C8—C7—C12117.72 (10)
C6—N1—H1N117.6 (10)C9—C8—C7121.02 (10)
C2—C1—C6120.13 (11)C9—C8—H8119.5
C2—C1—H1119.9C7—C8—H8119.5
C6—C1—H1119.9C8—C9—C10121.37 (11)
C3—C2—C1120.18 (11)C8—C9—H9119.3
C3—C2—H2119.9C10—C9—H9119.3
C1—C2—H2119.9C11—C10—C9118.80 (11)
C2—C3—C4119.82 (11)C11—C10—H10120.6
C2—C3—H3120.1C9—C10—H10120.6
C4—C3—H3120.1C10—C11—C12121.54 (11)
C3—C4—C5120.16 (12)C10—C11—H11119.2
C3—C4—H4119.9C12—C11—H11119.2
C5—C4—H4119.9C11—C12—C7119.53 (10)
C6—C5—C4119.98 (11)C11—C12—C13120.82 (10)
C6—C5—H5120.0C7—C12—C13119.62 (10)
C4—C5—H5120.0O1—C13—O2122.15 (10)
C5—C6—C1119.73 (10)O1—C13—C12126.76 (10)
C5—C6—N1121.13 (10)O2—C13—C12111.05 (10)
C1—C6—N1119.01 (10)
C6—C1—C2—C30.43 (18)C8—C9—C10—C110.18 (18)
C1—C2—C3—C40.82 (18)C9—C10—C11—C120.38 (17)
C2—C3—C4—C50.28 (18)C10—C11—C12—C70.54 (17)
C3—C4—C5—C60.66 (17)C10—C11—C12—C13177.48 (11)
C4—C5—C6—C11.05 (16)N1—C7—C12—C11178.92 (10)
C4—C5—C6—N1176.88 (10)C8—C7—C12—C110.14 (16)
C2—C1—C6—C50.51 (17)N1—C7—C12—C130.87 (16)
C2—C1—C6—N1176.42 (10)C8—C7—C12—C13177.90 (10)
C7—N1—C6—C556.75 (16)C13i—O2—C13—O118.14 (8)
C7—N1—C6—C1127.39 (12)C13i—O2—C13—C12164.03 (10)
C6—N1—C7—C89.20 (17)C11—C12—C13—O1172.29 (11)
C6—N1—C7—C12172.07 (10)C7—C12—C13—O15.73 (18)
N1—C7—C8—C9178.37 (10)C11—C12—C13—O25.43 (14)
C12—C7—C8—C90.41 (17)C7—C12—C13—O2176.56 (9)
C7—C8—C9—C100.58 (18)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.903 (16)1.966 (15)2.6629 (14)132.7 (13)

Experimental details

Crystal data
Chemical formulaC26H20N2O3
Mr408.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)93
a, b, c (Å)9.090 (3), 21.056 (6), 10.623 (3)
β (°) 100.594 (3)
V3)1998.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.33 × 0.30 × 0.18
Data collection
DiffractometerRigaku Spider
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8102, 2275, 2000
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.00
No. of reflections2275
No. of parameters145
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: RAPID-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.903 (16)1.966 (15)2.6629 (14)132.7 (13)
 

Acknowledgements

The authors thank the Scientific Researching Fund Projects of China West Normal University (grant No. 06B003) and the Youth Fund Projects of Sichuan Educational Department (grant No. 2006B039).

References

First citationDuesler, E. N., Kress, R. B., Lin, C. T., Shiau, W. I., Paul, I. C. & Curtin, D. Y. (1981). J. Am. Chem. Soc. 103, 875–879.  CSD CrossRef CAS Web of Science Google Scholar
First citationHuelgas, G., Quintero, L., Anaya de Parrodi, C. & Bernès, S. (2006). Acta Cryst. E62, o3191–o3192.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMartín, A., Mesa, M., Docampo, M. L., Gómez, V. & Pellón, R. F. (2006). Synth. Commun. 36, 271–277.  Google Scholar
First citationRigaku/MSC (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiklund, P., Evans, M. R. & Bergman, J. (2004). J. Org. Chem. 69, 6371–6376.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1043
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds