organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1059-o1060

(E,E)-1-(2-Hy­droxy­imino-1-phenyl­ethyl­­idene)semicarbazide monohydrate

aHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey, and bAdnan Menderes University, Department of Chemistry, 09010 Aydın, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 23 March 2009; accepted 13 April 2009; online 18 April 2009)

In the title compound, C9H10N4O2·H2O, the oxime unit has an E configuration, and an intra­molecular N—H⋯N hydrogen bond results in the formation of a planar five-membered ring, which is oriented with respect to the aromatic ring at a dihedral angle of 74.82 (17)°. In the crystal structure, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules and R22(8) ring motifs are apparent.

Related literature

For general background, see: Balsamo et al. (1990[Balsamo, A., Macchia, B., Martinelli, A., Orlandini, E., Rossello, A., Macchia, F., Bocelli, G. & Domiano, P. (1990). Eur. J. Med. Chem. 25, 227-233.]); Marsman et al. (1999[Marsman, A. W., Leussing, E. D., Zwikker, J. W. & Jenneskens, L. W. (1999). Chem. Mater. 11, 1484-1491.]); Karle et al. (1996[Karle, I. L., Ranganathan, D. & Haridas, V. (1996). J. Am. Chem. Soc. 118, 7128-7133.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For related structures, see: Sarıkavaklı et al. (2007[Sarıkavaklı, N., Şahin, E. & Hökelek, T. (2007). Acta Cryst. E63, o3601.], 2008[Sarıkavaklı, N., Babahan, İ., Şahin, E. & Hökelek, T. (2008). Acta Cryst. E64, o623-o624.]); Özel Güven et al. (2007[Özel Güven, Ö., Erdoğan, T., Çaylak, N. & Hökelek, T. (2007). Acta Cryst. E63, o3463-o3464.]); Hökelek, Batı et al. (2001[Hökelek, T., Batı, H., Bekdemir, Y. & Kütük, H. (2001). Acta Cryst. E57, o663-o665.]); Hökelek, Zülfikaroğlu et al. (2001[Hökelek, T., Zülfikaroğlu, A. & Batı, H. (2001). Acta Cryst. E57, o1247-o1249.]); Büyükgüngör et al. (2003[Büyükgüngör, O., Hökelek, T., Taş, M. & Batı, H. (2003). Acta Cryst. E59, o883-o885.]); Hökelek et al. (2004[Hökelek, T., Taş, M. & Batı, H. (2004). Cryst. Res. Technol. 39, 363-367.]); Hökelek et al. (2004a[Hökelek, T., Büyükgüngör, O., Taş, M. & Batı, H. (2004a). Acta Cryst. E60, o109-o111.],b[Hökelek, T., Büyükgüngör, O., Taş, M. & Batı, H. (2004b). Acta Cryst. E60, o406-o408.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N4O2·H2O

  • Mr = 224.23

  • Triclinic, [P \overline 1]

  • a = 5.5593 (2) Å

  • b = 8.2701 (3) Å

  • c = 12.6193 (5) Å

  • α = 71.900 (3)°

  • β = 89.998 (5)°

  • γ = 78.538 (5)°

  • V = 539.29 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 294 K

  • 0.40 × 0.25 × 0.20 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.968, Tmax = 0.978

  • 1953 measured reflections

  • 1752 independent reflections

  • 867 reflections with I > 2σ(I)

  • Rint = 0.048

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.185

  • S = 1.05

  • 1752 reflections

  • 171 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N1 0.88 (3) 2.32 (6) 2.647 (8) 102 (5)
O3—H31⋯O1 0.88 (7) 1.92 (8) 2.776 (9) 164 (8)
O3—H32⋯O3i 0.90 (3) 2.17 (7) 2.909 (11) 140 (7)
N2—H22⋯O3ii 0.82 (3) 2.10 (4) 2.901 (10) 162 (5)
N3—H3B⋯O1iii 0.96 (7) 1.96 (6) 2.909 (8) 169 (6)
Symmetry codes: (i) -x, -y, -z+2; (ii) -x+1, -y, -z+2; (iii) -x+1, -y-1, -z+2.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Oxime and dioxime derivatives have a broad pharmacological activity spectrum, encompassing antibacterial, antidepressant and antifungal activities (e.g. Balsamo et al., 1990). The oxime (–C=N—OH) moiety is potentially ambidentate, with possibilities of coordination to metal ions through nitrogen and/or oxygen atoms. Oxime groups possess stronger hydrogen-bonding capabilities than alcohols, phenols, and carboxylic acids (Marsman et al., 1999), in which intermolecular hydrogen bonding combines moderate strength and directionality (Karle et al., 1996) in linking molecules to form supramolecular structures; this has received considerable attention with respect to directional noncovalent intermolecular interactions (Etter et al., 1990).

The structures of some oxime and dioxime derivatives have been determined in our laboratory, including those of 2,3-dimethylquinoxaline-dimethyl-glyoxime (1/1), [(II) Hökelek, Batı et al., 2001], 1-(2,6-dimethylphenylamino) propane-1,2-dione dioxime, [(III) (Hökelek, Zülfikaroğlu et al., 2001), N-hydroxy-2-oxo-2,N'-diphenylacetamidine, [(IV) (Büyükgüngör et al., 2003], N-(3,4-dichlorophenyl)-N'-hydroxy-2-oxo-2-phenylacetamidine, [(V) Hökelek et al., 2004], N-hydroxy-N'-(1-naphthyl)-2-phenylacetamidin-2-one [(VI) Hökelek et al., 2004a], N-(3-chloro-4-methylphenyl)-N'-hydroxy-2 -oxo-2-phenylacetamidine [(VII) Hökelek et al., 2004b], 2-(1H-benzimidazol -1-yl)-1-phenylethanone oxime [(VIII) Özel Güven et al., 2007], (1Z,2E)-1-(3,5-dimethyl-1H-pyrazole-1-yl)ethane-1,2-dione dioxime [(IX) Sarıkavaklı et al., 2007] and 2-hydroxyimino-1-phenylethanone thiosemicar bazone monohydrate [(X) Sarıkavaklı et al., 2008].

As part of our ongoing studies in this area, the structure determination of the title compound, (I), an oxime derivative with one semicarbazide, one phenylacetaldehyde oxime moieties and one uncoordinated water molecule, was carried out in order to investigate the strength of the hydrogen bonding capability of the oxime and semicarbazide groups and to compare the geometry of the oxime moiety with the previously reported ones.

In the molecule of the title compound, (I), (Fig. 1) the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. Ring A (C1—C6) is, of course, planar. The intramolecular N—H···N hydrogen bond (Table 1) results in the formation of a planar five-membered ring B (N1—N3/C8/H3A). The dihedral angle between the planar rings is A/B = 74.82 (17)°.

In the crystal structure, intramolecular O—H···O and N—H···N and intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) link the molecules through R22(8) ring motifs (Bernstein et al., 1995) (Fig. 2).

Related literature top

For general background, see: Balsamo et al. (1990); Marsman et al. (1999); Karle et al. (1996); Etter et al. (1990). For related structures, see: Sarıkavaklı et al. (2007, 2008); Özel Güven et al. (2007); Hökelek, Batı et al. (2001); Hökelek, Zülfikaroğlu et al. (2001); Büyükgüngör et al. (2003); Hökelek et al. (2004); Hökelek et al. (2004a,b). For reference structural data, see: Allen et al. (1987). For ring motifs, see: Bernstein et al. (1995).

Experimental top

Semicarbazide hydrochloride (1.12 g, 10 mmol) and sodium acetate (0.82 g, 10 mmol) were dissolved in double distilled water in the molar ratio 1:1. Then, the solution was mixed with a solution of 2-isonitrosoacetophenone (1.49 g, 10 mmol) in ethanol (10 ml) yielding a turbid mixture. The excess ethanol was added to get a clear solution and was stirred in a magnetic stirrer at room temparature for 4 h. The precipitate formed was filtered, washed with water and dried at room temperature in vacuum desiccator. It was recrystallized from ethanol/water (2:1) solution to yield colourless prisms of (I) (yield; 1.80 g, 85%, m.p. 409 K).

Refinement top

Atoms H9 (for CH), H21 (for OH), H22 (for NH), H3A, H3B (for NH2) and H31, H32 (for H2O) were located in difference Fourier maps and refined isotropically, with restrains of O3—H31 = 0.88 (7), O3—H32 = 0.90 (3), N2—H22 = 0.82 (3), N3—H3A = 0.88 (3) Å and H31—O3—H32 = 105 (4)° [Uiso(H) = 0.064 (19) Å2 (for CH), 0.09 (3) Å2 (for OH), 0.040 (17) Å2 (for NH), 0.08 (2) Å2 (for NH2) and 0.125 Å2 (for H2O)]. The remaining H atoms were positioned geometrically with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dotted lines.
(E,E)-1-(2-Hydroxyimino-1-phenylethylidene)semicarbazide monohydrate top
Crystal data top
C9H10N4O2·H2OZ = 2
Mr = 224.23F(000) = 236
Triclinic, P1Dx = 1.381 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5593 (2) ÅCell parameters from 25 reflections
b = 8.2701 (3) Åθ = 8.6–17.3°
c = 12.6193 (5) ŵ = 0.11 mm1
α = 71.900 (3)°T = 294 K
β = 89.998 (5)°Prism, colorless
γ = 78.538 (5)°0.40 × 0.25 × 0.20 mm
V = 539.29 (4) Å3
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
867 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 24.3°, θmin = 3.4°
Non–profiled ω scansh = 60
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.968, Tmax = 0.978l = 1414
1953 measured reflections3 standard reflections every 120 min
1752 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0859P)2]
where P = (Fo2 + 2Fc2)/3
1752 reflections(Δ/σ)max < 0.001
171 parametersΔρmax = 0.19 e Å3
5 restraintsΔρmin = 0.34 e Å3
Crystal data top
C9H10N4O2·H2Oγ = 78.538 (5)°
Mr = 224.23V = 539.29 (4) Å3
Triclinic, P1Z = 2
a = 5.5593 (2) ÅMo Kα radiation
b = 8.2701 (3) ŵ = 0.11 mm1
c = 12.6193 (5) ÅT = 294 K
α = 71.900 (3)°0.40 × 0.25 × 0.20 mm
β = 89.998 (5)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
867 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.048
Tmin = 0.968, Tmax = 0.9783 standard reflections every 120 min
1953 measured reflections intensity decay: 1%
1752 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0605 restraints
wR(F2) = 0.185H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.19 e Å3
1752 reflectionsΔρmin = 0.34 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5650 (8)0.2847 (5)0.9749 (4)0.0635 (13)
O21.6136 (8)0.2215 (5)0.5421 (4)0.0583 (13)
H211.658 (12)0.131 (10)0.490 (6)0.09 (3)*
O30.2334 (12)0.0741 (10)1.0657 (7)0.132 (3)
H310.344 (10)0.122 (11)1.028 (6)0.125*
H320.088 (7)0.084 (10)1.041 (7)0.125*
N11.0377 (8)0.2812 (6)0.7948 (4)0.0456 (13)
N20.8573 (9)0.2253 (6)0.8554 (4)0.0498 (14)
H220.823 (9)0.128 (4)0.863 (4)0.040 (17)*
N30.7601 (11)0.4938 (7)0.9070 (5)0.0594 (16)
H3A0.884 (8)0.531 (8)0.872 (5)0.08 (2)*
H3B0.665 (11)0.578 (9)0.942 (5)0.08 (2)*
N41.4358 (8)0.1346 (5)0.5950 (4)0.0435 (13)
C11.0910 (10)0.0218 (7)0.7132 (5)0.0389 (14)
C21.2415 (11)0.0996 (7)0.7590 (5)0.0538 (17)
H21.38000.03170.80440.065*
C31.1895 (12)0.2758 (8)0.7384 (6)0.0646 (19)
H31.29050.32570.77190.077*
C40.9938 (13)0.3786 (8)0.6700 (6)0.0602 (18)
H40.96260.49870.65430.072*
C50.8426 (12)0.3024 (8)0.6244 (5)0.065 (2)
H50.70640.37160.57780.078*
C60.8891 (12)0.1243 (8)0.6466 (5)0.0591 (18)
H60.78290.07420.61620.071*
C71.1479 (10)0.1688 (6)0.7314 (4)0.0387 (14)
C80.7189 (11)0.3364 (7)0.9167 (5)0.0455 (15)
C91.3383 (11)0.2382 (8)0.6696 (5)0.0444 (15)
H91.374 (10)0.359 (9)0.687 (5)0.064 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.066 (3)0.051 (3)0.078 (3)0.018 (2)0.036 (3)0.024 (2)
O20.062 (3)0.044 (3)0.064 (3)0.005 (2)0.026 (2)0.014 (2)
O30.106 (5)0.148 (6)0.173 (7)0.002 (5)0.008 (5)0.111 (5)
N10.049 (3)0.041 (3)0.048 (3)0.012 (2)0.017 (3)0.013 (2)
N20.058 (3)0.036 (3)0.057 (3)0.015 (3)0.019 (3)0.014 (3)
N30.065 (4)0.043 (3)0.076 (4)0.022 (3)0.030 (3)0.019 (3)
N40.046 (3)0.037 (3)0.046 (3)0.006 (2)0.009 (2)0.012 (2)
C10.038 (3)0.035 (3)0.041 (3)0.007 (3)0.011 (3)0.010 (3)
C20.050 (4)0.042 (4)0.066 (4)0.005 (3)0.008 (3)0.014 (3)
C30.062 (4)0.046 (4)0.089 (5)0.016 (4)0.003 (4)0.024 (4)
C40.074 (5)0.035 (3)0.071 (5)0.013 (4)0.013 (4)0.016 (3)
C50.068 (5)0.045 (4)0.067 (5)0.010 (4)0.011 (4)0.007 (4)
C60.060 (4)0.045 (4)0.065 (4)0.008 (3)0.014 (4)0.010 (3)
C70.043 (3)0.032 (3)0.037 (3)0.009 (3)0.002 (3)0.005 (3)
C80.049 (4)0.035 (3)0.046 (4)0.009 (3)0.012 (3)0.005 (3)
C90.051 (4)0.031 (3)0.051 (4)0.011 (3)0.007 (3)0.012 (3)
Geometric parameters (Å, º) top
O1—C81.226 (6)C2—H20.9300
O2—N41.399 (5)C3—H30.9300
O2—H210.91 (8)C4—C31.352 (9)
O3—H310.88 (7)C4—C51.368 (9)
O3—H320.90 (3)C4—H40.9300
N1—C71.281 (6)C5—C61.381 (8)
N2—N11.357 (6)C5—H50.9300
N2—C81.369 (7)C6—H60.9300
N2—H220.82 (3)C7—C11.489 (7)
N3—H3A0.88 (3)C8—N31.320 (7)
N3—H3B0.96 (7)C9—N41.264 (7)
C1—C21.376 (8)C9—C71.447 (7)
C1—C61.365 (8)C9—H90.94 (6)
C2—C31.368 (8)
N4—O2—H21101 (4)C3—C4—C5118.6 (6)
H31—O3—H32105 (4)C3—C4—H4120.7
C7—N1—N2118.1 (5)C5—C4—H4120.7
N1—N2—C8120.5 (5)C4—C5—C6121.0 (6)
N1—N2—H22126 (4)C4—C5—H5119.5
C8—N2—H22113 (4)C6—C5—H5119.5
C8—N3—H3A122 (4)C1—C6—C5120.0 (6)
C8—N3—H3B123 (4)C1—C6—H6120.0
H3A—N3—H3B115 (6)C5—C6—H6120.0
C9—N4—O2112.3 (4)N1—C7—C1126.4 (5)
C2—C1—C7121.7 (5)N1—C7—C9114.9 (5)
C6—C1—C2118.6 (5)C9—C7—C1118.7 (5)
C6—C1—C7119.7 (5)O1—C8—N2119.1 (5)
C1—C2—H2119.7O1—C8—N3124.4 (6)
C3—C2—C1120.7 (6)N3—C8—N2116.5 (5)
C3—C2—H2119.7N4—C9—C7119.3 (5)
C2—C3—H3119.5N4—C9—H9125 (4)
C4—C3—C2121.1 (6)C7—C9—H9116 (3)
C4—C3—H3119.5
N2—N1—C7—C12.8 (8)C5—C4—C3—C22.2 (10)
N2—N1—C7—C9179.9 (5)C3—C4—C5—C60.6 (10)
C8—N2—N1—C7174.2 (5)C4—C5—C6—C11.2 (10)
N1—N2—C8—O1176.6 (5)N1—C7—C1—C2106.3 (7)
N1—N2—C8—N34.4 (8)N1—C7—C1—C675.8 (8)
C6—C1—C2—C30.1 (9)C9—C7—C1—C276.5 (7)
C7—C1—C2—C3178.0 (6)C9—C7—C1—C6101.4 (6)
C2—C1—C6—C51.4 (9)N4—C9—C7—N1171.4 (5)
C7—C1—C6—C5176.5 (6)N4—C9—C7—C16.1 (8)
C1—C2—C3—C42.0 (10)C7—C9—N4—O2179.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N10.88 (3)2.32 (6)2.647 (8)102 (5)
O3—H31···O10.88 (7)1.92 (8)2.776 (9)164 (8)
O3—H32···O3i0.90 (3)2.17 (7)2.909 (11)140 (7)
N2—H22···O3ii0.82 (3)2.10 (4)2.901 (10)162 (5)
N3—H3B···O1iii0.96 (7)1.96 (6)2.909 (8)169 (6)
Symmetry codes: (i) x, y, z+2; (ii) x+1, y, z+2; (iii) x+1, y1, z+2.

Experimental details

Crystal data
Chemical formulaC9H10N4O2·H2O
Mr224.23
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)5.5593 (2), 8.2701 (3), 12.6193 (5)
α, β, γ (°)71.900 (3), 89.998 (5), 78.538 (5)
V3)539.29 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.25 × 0.20
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.968, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
1953, 1752, 867
Rint0.048
(sin θ/λ)max1)0.579
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.185, 1.05
No. of reflections1752
No. of parameters171
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.34

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N10.88 (3)2.32 (6)2.647 (8)102 (5)
O3—H31···O10.88 (7)1.92 (8)2.776 (9)164 (8)
O3—H32···O3i0.90 (3)2.17 (7)2.909 (11)140 (7)
N2—H22···O3ii0.82 (3)2.10 (4)2.901 (10)162 (5)
N3—H3B···O1iii0.96 (7)1.96 (6)2.909 (8)169 (6)
Symmetry codes: (i) x, y, z+2; (ii) x+1, y, z+2; (iii) x+1, y1, z+2.
 

Acknowledgements

The authors acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBalsamo, A., Macchia, B., Martinelli, A., Orlandini, E., Rossello, A., Macchia, F., Bocelli, G. & Domiano, P. (1990). Eur. J. Med. Chem. 25, 227–233.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBüyükgüngör, O., Hökelek, T., Taş, M. & Batı, H. (2003). Acta Cryst. E59, o883–o885.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHökelek, T., Batı, H., Bekdemir, Y. & Kütük, H. (2001). Acta Cryst. E57, o663–o665.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Büyükgüngör, O., Taş, M. & Batı, H. (2004a). Acta Cryst. E60, o109–o111.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Büyükgüngör, O., Taş, M. & Batı, H. (2004b). Acta Cryst. E60, o406–o408.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Taş, M. & Batı, H. (2004). Cryst. Res. Technol. 39, 363–367.  Web of Science CSD CrossRef Google Scholar
First citationHökelek, T., Zülfikaroğlu, A. & Batı, H. (2001). Acta Cryst. E57, o1247–o1249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarle, I. L., Ranganathan, D. & Haridas, V. (1996). J. Am. Chem. Soc. 118, 7128–7133.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarsman, A. W., Leussing, E. D., Zwikker, J. W. & Jenneskens, L. W. (1999). Chem. Mater. 11, 1484–1491.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Çaylak, N. & Hökelek, T. (2007). Acta Cryst. E63, o3463–o3464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarıkavaklı, N., Babahan, İ., Şahin, E. & Hökelek, T. (2008). Acta Cryst. E64, o623–o624.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarıkavaklı, N., Şahin, E. & Hökelek, T. (2007). Acta Cryst. E63, o3601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1059-o1060
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds