organic compounds
(E,E)-1-(2-Hydroxyimino-1-phenylethylidene)semicarbazide monohydrate
aHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey, and bAdnan Menderes University, Department of Chemistry, 09010 Aydın, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
In the title compound, C9H10N4O2·H2O, the oxime unit has an E configuration, and an intramolecular N—H⋯N hydrogen bond results in the formation of a planar five-membered ring, which is oriented with respect to the aromatic ring at a dihedral angle of 74.82 (17)°. In the intermolecular O—H⋯O and N—H⋯O hydrogen bonds link the molecules and R22(8) ring motifs are apparent.
Related literature
For general background, see: Balsamo et al. (1990); Marsman et al. (1999); Karle et al. (1996); Etter et al. (1990). For related structures, see: Sarıkavaklı et al. (2007, 2008); Özel Güven et al. (2007); Hökelek, Batı et al. (2001); Hökelek, Zülfikaroğlu et al. (2001); Büyükgüngör et al. (2003); Hökelek et al. (2004); Hökelek et al. (2004a,b). For reference structural data, see: Allen et al. (1987). For ring motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809013865/hb2932sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809013865/hb2932Isup2.hkl
Semicarbazide hydrochloride (1.12 g, 10 mmol) and sodium acetate (0.82 g, 10 mmol) were dissolved in double distilled water in the molar ratio 1:1. Then, the solution was mixed with a solution of 2-isonitrosoacetophenone (1.49 g, 10 mmol) in ethanol (10 ml) yielding a turbid mixture. The excess ethanol was added to get a clear solution and was stirred in a magnetic stirrer at room temparature for 4 h. The precipitate formed was filtered, washed with water and dried at room temperature in vacuum desiccator. It was recrystallized from ethanol/water (2:1) solution to yield colourless prisms of (I) (yield; 1.80 g, 85%, m.p. 409 K).
Atoms H9 (for CH), H21 (for OH), H22 (for NH), H3A, H3B (for NH2) and H31, H32 (for H2O) were located in difference Fourier maps and refined isotropically, with restrains of O3—H31 = 0.88 (7), O3—H32 = 0.90 (3), N2—H22 = 0.82 (3), N3—H3A = 0.88 (3) Å and H31—O3—H32 = 105 (4)° [Uiso(H) = 0.064 (19) Å2 (for CH), 0.09 (3) Å2 (for OH), 0.040 (17) Å2 (for NH), 0.08 (2) Å2 (for NH2) and 0.125 Å2 (for H2O)]. The remaining H atoms were positioned geometrically with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. | |
Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dotted lines. |
C9H10N4O2·H2O | Z = 2 |
Mr = 224.23 | F(000) = 236 |
Triclinic, P1 | Dx = 1.381 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.5593 (2) Å | Cell parameters from 25 reflections |
b = 8.2701 (3) Å | θ = 8.6–17.3° |
c = 12.6193 (5) Å | µ = 0.11 mm−1 |
α = 71.900 (3)° | T = 294 K |
β = 89.998 (5)° | Prism, colorless |
γ = 78.538 (5)° | 0.40 × 0.25 × 0.20 mm |
V = 539.29 (4) Å3 |
Enraf–Nonius TurboCAD-4 diffractometer | 867 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.048 |
Graphite monochromator | θmax = 24.3°, θmin = 3.4° |
Non–profiled ω scans | h = −6→0 |
Absorption correction: ψ scan (North et al., 1968) | k = −9→9 |
Tmin = 0.968, Tmax = 0.978 | l = −14→14 |
1953 measured reflections | 3 standard reflections every 120 min |
1752 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.185 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0859P)2] where P = (Fo2 + 2Fc2)/3 |
1752 reflections | (Δ/σ)max < 0.001 |
171 parameters | Δρmax = 0.19 e Å−3 |
5 restraints | Δρmin = −0.34 e Å−3 |
C9H10N4O2·H2O | γ = 78.538 (5)° |
Mr = 224.23 | V = 539.29 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.5593 (2) Å | Mo Kα radiation |
b = 8.2701 (3) Å | µ = 0.11 mm−1 |
c = 12.6193 (5) Å | T = 294 K |
α = 71.900 (3)° | 0.40 × 0.25 × 0.20 mm |
β = 89.998 (5)° |
Enraf–Nonius TurboCAD-4 diffractometer | 867 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.048 |
Tmin = 0.968, Tmax = 0.978 | 3 standard reflections every 120 min |
1953 measured reflections | intensity decay: 1% |
1752 independent reflections |
R[F2 > 2σ(F2)] = 0.060 | 5 restraints |
wR(F2) = 0.185 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.19 e Å−3 |
1752 reflections | Δρmin = −0.34 e Å−3 |
171 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5650 (8) | −0.2847 (5) | 0.9749 (4) | 0.0635 (13) | |
O2 | 1.6136 (8) | −0.2215 (5) | 0.5421 (4) | 0.0583 (13) | |
H21 | 1.658 (12) | −0.131 (10) | 0.490 (6) | 0.09 (3)* | |
O3 | 0.2334 (12) | −0.0741 (10) | 1.0657 (7) | 0.132 (3) | |
H31 | 0.344 (10) | −0.122 (11) | 1.028 (6) | 0.125* | |
H32 | 0.088 (7) | −0.084 (10) | 1.041 (7) | 0.125* | |
N1 | 1.0377 (8) | −0.2812 (6) | 0.7948 (4) | 0.0456 (13) | |
N2 | 0.8573 (9) | −0.2253 (6) | 0.8554 (4) | 0.0498 (14) | |
H22 | 0.823 (9) | −0.128 (4) | 0.863 (4) | 0.040 (17)* | |
N3 | 0.7601 (11) | −0.4938 (7) | 0.9070 (5) | 0.0594 (16) | |
H3A | 0.884 (8) | −0.531 (8) | 0.872 (5) | 0.08 (2)* | |
H3B | 0.665 (11) | −0.578 (9) | 0.942 (5) | 0.08 (2)* | |
N4 | 1.4358 (8) | −0.1346 (5) | 0.5950 (4) | 0.0435 (13) | |
C1 | 1.0910 (10) | 0.0218 (7) | 0.7132 (5) | 0.0389 (14) | |
C2 | 1.2415 (11) | 0.0996 (7) | 0.7590 (5) | 0.0538 (17) | |
H2 | 1.3800 | 0.0317 | 0.8044 | 0.065* | |
C3 | 1.1895 (12) | 0.2758 (8) | 0.7384 (6) | 0.0646 (19) | |
H3 | 1.2905 | 0.3257 | 0.7719 | 0.077* | |
C4 | 0.9938 (13) | 0.3786 (8) | 0.6700 (6) | 0.0602 (18) | |
H4 | 0.9626 | 0.4987 | 0.6543 | 0.072* | |
C5 | 0.8426 (12) | 0.3024 (8) | 0.6244 (5) | 0.065 (2) | |
H5 | 0.7064 | 0.3716 | 0.5778 | 0.078* | |
C6 | 0.8891 (12) | 0.1243 (8) | 0.6466 (5) | 0.0591 (18) | |
H6 | 0.7829 | 0.0742 | 0.6162 | 0.071* | |
C7 | 1.1479 (10) | −0.1688 (6) | 0.7314 (4) | 0.0387 (14) | |
C8 | 0.7189 (11) | −0.3364 (7) | 0.9167 (5) | 0.0455 (15) | |
C9 | 1.3383 (11) | −0.2382 (8) | 0.6696 (5) | 0.0444 (15) | |
H9 | 1.374 (10) | −0.359 (9) | 0.687 (5) | 0.064 (19)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.066 (3) | 0.051 (3) | 0.078 (3) | −0.018 (2) | 0.036 (3) | −0.024 (2) |
O2 | 0.062 (3) | 0.044 (3) | 0.064 (3) | −0.005 (2) | 0.026 (2) | −0.014 (2) |
O3 | 0.106 (5) | 0.148 (6) | 0.173 (7) | 0.002 (5) | 0.008 (5) | −0.111 (5) |
N1 | 0.049 (3) | 0.041 (3) | 0.048 (3) | −0.012 (2) | 0.017 (3) | −0.013 (2) |
N2 | 0.058 (3) | 0.036 (3) | 0.057 (3) | −0.015 (3) | 0.019 (3) | −0.014 (3) |
N3 | 0.065 (4) | 0.043 (3) | 0.076 (4) | −0.022 (3) | 0.030 (3) | −0.019 (3) |
N4 | 0.046 (3) | 0.037 (3) | 0.046 (3) | −0.006 (2) | 0.009 (2) | −0.012 (2) |
C1 | 0.038 (3) | 0.035 (3) | 0.041 (3) | −0.007 (3) | 0.011 (3) | −0.010 (3) |
C2 | 0.050 (4) | 0.042 (4) | 0.066 (4) | −0.005 (3) | −0.008 (3) | −0.014 (3) |
C3 | 0.062 (4) | 0.046 (4) | 0.089 (5) | −0.016 (4) | −0.003 (4) | −0.024 (4) |
C4 | 0.074 (5) | 0.035 (3) | 0.071 (5) | −0.013 (4) | 0.013 (4) | −0.016 (3) |
C5 | 0.068 (5) | 0.045 (4) | 0.067 (5) | 0.010 (4) | −0.011 (4) | −0.007 (4) |
C6 | 0.060 (4) | 0.045 (4) | 0.065 (4) | −0.008 (3) | −0.014 (4) | −0.010 (3) |
C7 | 0.043 (3) | 0.032 (3) | 0.037 (3) | −0.009 (3) | 0.002 (3) | −0.005 (3) |
C8 | 0.049 (4) | 0.035 (3) | 0.046 (4) | −0.009 (3) | 0.012 (3) | −0.005 (3) |
C9 | 0.051 (4) | 0.031 (3) | 0.051 (4) | −0.011 (3) | 0.007 (3) | −0.012 (3) |
O1—C8 | 1.226 (6) | C2—H2 | 0.9300 |
O2—N4 | 1.399 (5) | C3—H3 | 0.9300 |
O2—H21 | 0.91 (8) | C4—C3 | 1.352 (9) |
O3—H31 | 0.88 (7) | C4—C5 | 1.368 (9) |
O3—H32 | 0.90 (3) | C4—H4 | 0.9300 |
N1—C7 | 1.281 (6) | C5—C6 | 1.381 (8) |
N2—N1 | 1.357 (6) | C5—H5 | 0.9300 |
N2—C8 | 1.369 (7) | C6—H6 | 0.9300 |
N2—H22 | 0.82 (3) | C7—C1 | 1.489 (7) |
N3—H3A | 0.88 (3) | C8—N3 | 1.320 (7) |
N3—H3B | 0.96 (7) | C9—N4 | 1.264 (7) |
C1—C2 | 1.376 (8) | C9—C7 | 1.447 (7) |
C1—C6 | 1.365 (8) | C9—H9 | 0.94 (6) |
C2—C3 | 1.368 (8) | ||
N4—O2—H21 | 101 (4) | C3—C4—C5 | 118.6 (6) |
H31—O3—H32 | 105 (4) | C3—C4—H4 | 120.7 |
C7—N1—N2 | 118.1 (5) | C5—C4—H4 | 120.7 |
N1—N2—C8 | 120.5 (5) | C4—C5—C6 | 121.0 (6) |
N1—N2—H22 | 126 (4) | C4—C5—H5 | 119.5 |
C8—N2—H22 | 113 (4) | C6—C5—H5 | 119.5 |
C8—N3—H3A | 122 (4) | C1—C6—C5 | 120.0 (6) |
C8—N3—H3B | 123 (4) | C1—C6—H6 | 120.0 |
H3A—N3—H3B | 115 (6) | C5—C6—H6 | 120.0 |
C9—N4—O2 | 112.3 (4) | N1—C7—C1 | 126.4 (5) |
C2—C1—C7 | 121.7 (5) | N1—C7—C9 | 114.9 (5) |
C6—C1—C2 | 118.6 (5) | C9—C7—C1 | 118.7 (5) |
C6—C1—C7 | 119.7 (5) | O1—C8—N2 | 119.1 (5) |
C1—C2—H2 | 119.7 | O1—C8—N3 | 124.4 (6) |
C3—C2—C1 | 120.7 (6) | N3—C8—N2 | 116.5 (5) |
C3—C2—H2 | 119.7 | N4—C9—C7 | 119.3 (5) |
C2—C3—H3 | 119.5 | N4—C9—H9 | 125 (4) |
C4—C3—C2 | 121.1 (6) | C7—C9—H9 | 116 (3) |
C4—C3—H3 | 119.5 | ||
N2—N1—C7—C1 | −2.8 (8) | C5—C4—C3—C2 | 2.2 (10) |
N2—N1—C7—C9 | 179.9 (5) | C3—C4—C5—C6 | −0.6 (10) |
C8—N2—N1—C7 | 174.2 (5) | C4—C5—C6—C1 | −1.2 (10) |
N1—N2—C8—O1 | 176.6 (5) | N1—C7—C1—C2 | 106.3 (7) |
N1—N2—C8—N3 | −4.4 (8) | N1—C7—C1—C6 | −75.8 (8) |
C6—C1—C2—C3 | 0.1 (9) | C9—C7—C1—C2 | −76.5 (7) |
C7—C1—C2—C3 | 178.0 (6) | C9—C7—C1—C6 | 101.4 (6) |
C2—C1—C6—C5 | 1.4 (9) | N4—C9—C7—N1 | 171.4 (5) |
C7—C1—C6—C5 | −176.5 (6) | N4—C9—C7—C1 | −6.1 (8) |
C1—C2—C3—C4 | −2.0 (10) | C7—C9—N4—O2 | −179.2 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N1 | 0.88 (3) | 2.32 (6) | 2.647 (8) | 102 (5) |
O3—H31···O1 | 0.88 (7) | 1.92 (8) | 2.776 (9) | 164 (8) |
O3—H32···O3i | 0.90 (3) | 2.17 (7) | 2.909 (11) | 140 (7) |
N2—H22···O3ii | 0.82 (3) | 2.10 (4) | 2.901 (10) | 162 (5) |
N3—H3B···O1iii | 0.96 (7) | 1.96 (6) | 2.909 (8) | 169 (6) |
Symmetry codes: (i) −x, −y, −z+2; (ii) −x+1, −y, −z+2; (iii) −x+1, −y−1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C9H10N4O2·H2O |
Mr | 224.23 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 5.5593 (2), 8.2701 (3), 12.6193 (5) |
α, β, γ (°) | 71.900 (3), 89.998 (5), 78.538 (5) |
V (Å3) | 539.29 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.40 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius TurboCAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.968, 0.978 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1953, 1752, 867 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.579 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.185, 1.05 |
No. of reflections | 1752 |
No. of parameters | 171 |
No. of restraints | 5 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.19, −0.34 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N1 | 0.88 (3) | 2.32 (6) | 2.647 (8) | 102 (5) |
O3—H31···O1 | 0.88 (7) | 1.92 (8) | 2.776 (9) | 164 (8) |
O3—H32···O3i | 0.90 (3) | 2.17 (7) | 2.909 (11) | 140 (7) |
N2—H22···O3ii | 0.82 (3) | 2.10 (4) | 2.901 (10) | 162 (5) |
N3—H3B···O1iii | 0.96 (7) | 1.96 (6) | 2.909 (8) | 169 (6) |
Symmetry codes: (i) −x, −y, −z+2; (ii) −x+1, −y, −z+2; (iii) −x+1, −y−1, −z+2. |
Acknowledgements
The authors acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Balsamo, A., Macchia, B., Martinelli, A., Orlandini, E., Rossello, A., Macchia, F., Bocelli, G. & Domiano, P. (1990). Eur. J. Med. Chem. 25, 227–233. CrossRef CAS Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Büyükgüngör, O., Hökelek, T., Taş, M. & Batı, H. (2003). Acta Cryst. E59, o883–o885. Web of Science CSD CrossRef IUCr Journals Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Hökelek, T., Batı, H., Bekdemir, Y. & Kütük, H. (2001). Acta Cryst. E57, o663–o665. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Büyükgüngör, O., Taş, M. & Batı, H. (2004a). Acta Cryst. E60, o109–o111. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Büyükgüngör, O., Taş, M. & Batı, H. (2004b). Acta Cryst. E60, o406–o408. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Taş, M. & Batı, H. (2004). Cryst. Res. Technol. 39, 363–367. Web of Science CSD CrossRef Google Scholar
Hökelek, T., Zülfikaroğlu, A. & Batı, H. (2001). Acta Cryst. E57, o1247–o1249. Web of Science CSD CrossRef IUCr Journals Google Scholar
Karle, I. L., Ranganathan, D. & Haridas, V. (1996). J. Am. Chem. Soc. 118, 7128–7133. CSD CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Marsman, A. W., Leussing, E. D., Zwikker, J. W. & Jenneskens, L. W. (1999). Chem. Mater. 11, 1484–1491. Web of Science CSD CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Özel Güven, Ö., Erdoğan, T., Çaylak, N. & Hökelek, T. (2007). Acta Cryst. E63, o3463–o3464. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sarıkavaklı, N., Babahan, İ., Şahin, E. & Hökelek, T. (2008). Acta Cryst. E64, o623–o624. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sarıkavaklı, N., Şahin, E. & Hökelek, T. (2007). Acta Cryst. E63, o3601. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Oxime and dioxime derivatives have a broad pharmacological activity spectrum, encompassing antibacterial, antidepressant and antifungal activities (e.g. Balsamo et al., 1990). The oxime (–C=N—OH) moiety is potentially ambidentate, with possibilities of coordination to metal ions through nitrogen and/or oxygen atoms. Oxime groups possess stronger hydrogen-bonding capabilities than alcohols, phenols, and carboxylic acids (Marsman et al., 1999), in which intermolecular hydrogen bonding combines moderate strength and directionality (Karle et al., 1996) in linking molecules to form supramolecular structures; this has received considerable attention with respect to directional noncovalent intermolecular interactions (Etter et al., 1990).
The structures of some oxime and dioxime derivatives have been determined in our laboratory, including those of 2,3-dimethylquinoxaline-dimethyl-glyoxime (1/1), [(II) Hökelek, Batı et al., 2001], 1-(2,6-dimethylphenylamino) propane-1,2-dione dioxime, [(III) (Hökelek, Zülfikaroğlu et al., 2001), N-hydroxy-2-oxo-2,N'-diphenylacetamidine, [(IV) (Büyükgüngör et al., 2003], N-(3,4-dichlorophenyl)-N'-hydroxy-2-oxo-2-phenylacetamidine, [(V) Hökelek et al., 2004], N-hydroxy-N'-(1-naphthyl)-2-phenylacetamidin-2-one [(VI) Hökelek et al., 2004a], N-(3-chloro-4-methylphenyl)-N'-hydroxy-2 -oxo-2-phenylacetamidine [(VII) Hökelek et al., 2004b], 2-(1H-benzimidazol -1-yl)-1-phenylethanone oxime [(VIII) Özel Güven et al., 2007], (1Z,2E)-1-(3,5-dimethyl-1H-pyrazole-1-yl)ethane-1,2-dione dioxime [(IX) Sarıkavaklı et al., 2007] and 2-hydroxyimino-1-phenylethanone thiosemicar bazone monohydrate [(X) Sarıkavaklı et al., 2008].
As part of our ongoing studies in this area, the structure determination of the title compound, (I), an oxime derivative with one semicarbazide, one phenylacetaldehyde oxime moieties and one uncoordinated water molecule, was carried out in order to investigate the strength of the hydrogen bonding capability of the oxime and semicarbazide groups and to compare the geometry of the oxime moiety with the previously reported ones.
In the molecule of the title compound, (I), (Fig. 1) the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. Ring A (C1—C6) is, of course, planar. The intramolecular N—H···N hydrogen bond (Table 1) results in the formation of a planar five-membered ring B (N1—N3/C8/H3A). The dihedral angle between the planar rings is A/B = 74.82 (17)°.
In the crystal structure, intramolecular O—H···O and N—H···N and intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) link the molecules through R22(8) ring motifs (Bernstein et al., 1995) (Fig. 2).