organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1129

Di­ethyl 4-(4,5-di­hydro­furan-2-yl)-3,5-di­methyl-1-phenyl-1,4-di­hydro­pyrazine-2,6-di­carboxyl­ate

aCollege of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, People's Republic of China
*Correspondence e-mail: hongyan@bjut.edu.cn

(Received 25 March 2009; accepted 13 April 2009; online 25 April 2009)

In the title compound, C22H26N2O5, the central 1,4-dihydro­pyrazine ring adopts a boat conformation, while the benzene ring and the two disordered components of the furan ring are inclined at angles of 77.9 (5) and 61.9 (7)°. Three of the C atoms of the furan ring are disordered over two positions with occupancies of 0.655 (18) and 0.345 (18). In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains propagating in [010].

Related literature

For the biological properties of 1,4-dihydro­pyrazines, see: Goto et al. (1968[Goto, T., Inoue, S. & Sugiura, S. (1968). Tetrahedron Lett. 36, 3873-3876.]); Teranishi & Goto (1990[Teranishi, K. & Goto, T. (1990). Bull. Chem. Soc. Jpn, 63, 3132-3140.]). For their biomedical applications, see: Brook et al. (1992[Brook, D. J. R., Curtis Haltiwanger, R. & Koch, T. H. (1992). J. Am. Chem. Soc. 114, 6017-6023.]); Sit et al. (2002[Sit, S. Y., Huang, Y., Antal-Zimanyi, I., Ward, S. & Poindexter, G. S. (2002). Bioorg. Med. Chem. Lett. 12, 337-340.]). For the synthesis of 1,4-dihydro­pyrazines, see: Wolfbeis (1977[Wolfbeis, O. S. (1977). Synthesis, pp. 136-138.]); Chorvat & Rorig (1988[Chorvat, R. J. & Rorig, K. J. (1988). J. Org. Chem. 53, 5779-5781.]); Rodrigues et al. (2004[Rodrigues, A., Ferreira, P. M. T. & Monteiro, L. S. (2004). Tetrahedron, 60, 8489-8496.]).

[Scheme 1]

Experimental

Crystal data
  • C22H26N2O5

  • Mr = 398.45

  • Triclinic, [P \overline 1]

  • a = 10.069 (2) Å

  • b = 10.242 (2) Å

  • c = 12.519 (3) Å

  • α = 72.37 (3)°

  • β = 77.59 (3)°

  • γ = 63.76 (3)°

  • V = 1098.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.50 × 0.40 × 0.25 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.958, Tmax = 0.979

  • 7345 measured reflections

  • 3768 independent reflections

  • 1555 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.182

  • S = 0.84

  • 3768 reflections

  • 291 parameters

  • 52 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12C⋯O5i 0.96 2.67 3.618 (5) 169
Symmetry code: (i) x, y-1, z.

Data collection: RAPID-AUTO (Rigaku, 2000[Rigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2000[Rigaku/MSC (2000). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The application of 1,4-dihydropyrazines in the field of biological agents and medicines has been widely investigated (Brook, et al., 1992, Sit, et al., 2002.), because 1,4-dihydropyrazine unit was found to be a component of the flavin coenzymes and several marine luciferins (Goto et al., 1968; Teranishi & Goto, 1990). Although the synthesis of 1,4-dihydropyrazines has been studied for many years (Wolfbeis 1977; Chorvat & Rorig 1988; Rodrigues et al. 2004), their photochemical properties have not been paid much attention in the literature to date.

The photochemical stability of 2,6-diethoxycarbonyl-3,5-dimethyl-1-phenyl-1,4-dihydro- pyrazine (II) was investigated in a variety of conventional solvents such as benzene, THF, acetone, ethyl acetate, ethyl nitrile, n-hexane, ether, methanol and dichloromethane. In THF, the title compound (I), was obtained in a yield of ca 5% after irradiation for 8 h with a high-pressure Hg lamp. A similar transformation also occurred by irradiation with sunlight, ultraviolet, or other lower powered light sources. The present X-ray crystal structure analysis was undertaken, to study the stereochemistry and crystal packing of (I).

In (I) (Fig. 1), the 1,4-dihydropyrazine ring (N1/C3/C2/N2/C6/C7) adopts a boat conformation: atoms C2, C3, C6 and C7 are coplanar, with atoms N1 and N2 deviating from this plane by 0.517 (4) and 0.362 (5) Å, respectively. The dihedral angle between the phenyl ring and C2/C3/C6/C7 plane is 70.46 (18)°. with those between the phenyl ring and the two disorder components of the furan ring are 77.9 (5)° and 61.9 (7)° respectively. In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into chains propagated along b axis.

Related literature top

For the biological properties of 1,4-dihydropyrazines, see: Goto et al. (1968); Teranishi & Goto (1990). For their biomedical applications, see: Brook et al. (1992); Sit et al. (2002). For the synthesis of 1,4-dihydropyrazines, see: Wolfbeis (1977); Chorvat & Rorig (1988); Rodrigues et al. (2004).

Experimental top

Diethyl 3,5-dimethyl-1-phenyl-1,4-dihydropyrazine-2,6-dicarboxylate, (330 mg, 1 mmol) was dissolved in dry furan (30 ml) and poured into the photolysis unit. The solution was irradiated with a 500 W Hg lamp. The reaction was monitored by TLC. After 8 h, the solvent was removed in vacuo and the crude sample was purified on a silica-gel column using an n-hexane/ethyl acetate (20:1 v/v) as eluant. Colourless blocks of (I) were obtained by slow evaporation of a n-hexane / ethyl acetate solution (3:1 v/v) in a yield of 5.2% (21 mg; m.p. 421–423 K).

Refinement top

All H-atoms were positioned geometrically (C—H = 0.93–0.96Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Some cardon atoms in the furan ring refined with very anisotropic displacemet factors, indicating positional disorder. In the chosen disorder model, atoms C19, C20 and C21 were disordered over two positions with refined occupancies of 0.655 (18) and 0.345 (18). However, high atomic displacement parameters for these and their neighbouring atoms indicates that additional unresolved disorder may also be present.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2000); cell refinement: RAPID-AUTO (Rigaku, 2000); data reduction: CrystalStructure (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing only the major disorder component of the furan ring. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity.
Diethyl 4-(4,5-dihydrofuran-2-yl)-3,5-dimethyl-1-phenyl-1,4-dihydropyrazine-2,6-dicarboxylate top
Crystal data top
C22H26N2O5Z = 2
Mr = 398.45F(000) = 424
Triclinic, P1Dx = 1.204 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.069 (2) ÅCell parameters from 7345 reflections
b = 10.242 (2) Åθ = 2.3–25.0°
c = 12.519 (3) ŵ = 0.09 mm1
α = 72.37 (3)°T = 293 K
β = 77.59 (3)°Block, colourless
γ = 63.76 (3)°0.50 × 0.40 × 0.25 mm
V = 1098.8 (4) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3768 independent reflections
Radiation source: fine-focus sealed tube1555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10.00 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scansh = 1110
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1212
Tmin = 0.958, Tmax = 0.979l = 1413
7345 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.102P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.84(Δ/σ)max = 0.005
3768 reflectionsΔρmax = 0.17 e Å3
291 parametersΔρmin = 0.13 e Å3
52 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (5)
Crystal data top
C22H26N2O5γ = 63.76 (3)°
Mr = 398.45V = 1098.8 (4) Å3
Triclinic, P1Z = 2
a = 10.069 (2) ÅMo Kα radiation
b = 10.242 (2) ŵ = 0.09 mm1
c = 12.519 (3) ÅT = 293 K
α = 72.37 (3)°0.50 × 0.40 × 0.25 mm
β = 77.59 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3768 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1555 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.979Rint = 0.045
7345 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05952 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 0.84Δρmax = 0.17 e Å3
3768 reflectionsΔρmin = 0.13 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.6304 (3)0.7169 (3)0.1028 (2)0.1226 (10)
O20.5222 (2)0.5632 (3)0.19260 (19)0.0867 (7)
O30.1854 (3)0.7014 (4)0.5774 (2)0.1395 (12)
O40.2987 (3)0.5488 (3)0.46179 (19)0.1043 (9)
N10.2832 (3)0.7643 (3)0.2761 (2)0.0696 (7)
N20.2680 (3)1.0189 (3)0.2870 (4)0.1035 (11)
C10.4963 (4)1.0117 (4)0.1529 (3)0.1177 (15)
H1A0.46231.10950.16610.177*
H1B0.50471.01980.07350.177*
H1C0.59170.94910.18100.177*
C20.3879 (4)0.9443 (4)0.2120 (3)0.0866 (11)
C30.4005 (3)0.8073 (4)0.2125 (3)0.0699 (9)
C40.5280 (4)0.6958 (4)0.1640 (3)0.0765 (9)
C50.1917 (4)0.9956 (5)0.4888 (4)0.1324 (17)
H5A0.18631.09600.46530.199*
H5B0.26710.93520.53990.199*
H5C0.09740.99670.52580.199*
C60.2298 (4)0.9315 (5)0.3880 (4)0.0951 (12)
C70.2464 (3)0.7984 (4)0.3838 (3)0.0760 (9)
C80.2383 (4)0.6822 (5)0.4836 (4)0.0944 (11)
C90.6449 (4)0.4402 (4)0.1523 (3)0.1075 (13)
H9A0.65390.46410.07070.129*
H9B0.73700.42540.17620.129*
C100.6198 (5)0.3060 (5)0.1958 (4)0.1389 (18)
H10A0.70120.22530.16860.208*
H10B0.52900.32070.17140.208*
H10C0.61240.28180.27660.208*
C110.3014 (6)0.4218 (5)0.5561 (4)0.1469 (19)
H11A0.34770.42070.61690.176*
H11B0.20050.43180.58370.176*
C120.3823 (5)0.2857 (6)0.5208 (4)0.1332 (16)
H12A0.38080.20310.58240.200*
H12B0.48330.27390.49660.200*
H12C0.33750.28800.45950.200*
C130.1673 (3)0.7858 (3)0.2185 (3)0.0658 (8)
C140.1859 (3)0.7952 (4)0.1046 (3)0.0800 (10)
H140.27630.79050.06420.096*
C150.0733 (4)0.8114 (4)0.0497 (3)0.1003 (12)
H150.08730.82060.02760.120*
C160.0604 (4)0.8142 (4)0.1082 (4)0.1045 (12)
H160.13570.82200.07160.125*
C170.0797 (4)0.8053 (4)0.2212 (4)0.0980 (12)
H170.17020.80960.26120.118*
C180.0310 (3)0.7903 (4)0.2771 (3)0.0848 (10)
H180.01550.78310.35420.102*
O50.2634 (3)1.2572 (3)0.2789 (2)0.1113 (9)
C220.0984 (5)1.2576 (5)0.1768 (4)0.1378 (18)
H220.07961.21880.12620.165*
C19A0.1706 (10)1.1824 (7)0.2786 (9)0.098 (3)0.655 (18)
C20A0.1744 (15)1.4006 (12)0.2440 (12)0.133 (4)0.655 (18)
H20A0.23371.45510.19970.160*0.655 (18)
H20B0.12501.44250.30890.160*0.655 (18)
C21A0.0607 (17)1.4213 (11)0.1753 (14)0.152 (5)0.655 (18)
H21A0.07131.47960.09940.182*0.655 (18)
H21B0.03921.46900.20940.182*0.655 (18)
C19B0.2390 (19)1.1784 (12)0.2077 (18)0.107 (6)0.345 (18)
C20B0.206 (4)1.427 (3)0.209 (3)0.208 (17)0.345 (18)
H20C0.13961.49770.25400.250*0.345 (18)
H20D0.28511.45670.16760.250*0.345 (18)
C21B0.127 (3)1.400 (2)0.138 (2)0.163 (12)0.345 (18)
H21C0.18371.39970.06450.196*0.345 (18)
H21D0.03211.48500.12740.196*0.345 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0867 (18)0.118 (2)0.146 (2)0.0465 (16)0.0294 (17)0.0275 (18)
O20.0683 (14)0.0740 (16)0.1007 (17)0.0191 (12)0.0113 (12)0.0256 (13)
O30.131 (2)0.176 (3)0.099 (2)0.048 (2)0.0251 (18)0.063 (2)
O40.119 (2)0.097 (2)0.0760 (16)0.0355 (16)0.0076 (14)0.0158 (15)
N10.0622 (16)0.0669 (16)0.0786 (18)0.0212 (12)0.0053 (14)0.0247 (14)
N20.081 (2)0.063 (2)0.171 (4)0.0093 (17)0.037 (2)0.048 (2)
C10.130 (3)0.105 (3)0.134 (3)0.076 (3)0.047 (3)0.019 (3)
C20.091 (3)0.064 (2)0.108 (3)0.034 (2)0.045 (2)0.005 (2)
C30.0558 (19)0.069 (2)0.075 (2)0.0206 (16)0.0101 (16)0.0075 (17)
C40.064 (2)0.082 (3)0.078 (2)0.0333 (19)0.0047 (18)0.008 (2)
C50.106 (3)0.143 (4)0.177 (4)0.029 (3)0.001 (3)0.118 (4)
C60.068 (2)0.087 (3)0.127 (4)0.017 (2)0.011 (2)0.044 (3)
C70.059 (2)0.078 (2)0.092 (3)0.0144 (17)0.0012 (17)0.047 (2)
C80.082 (3)0.100 (3)0.092 (3)0.020 (2)0.003 (2)0.040 (3)
C90.086 (3)0.092 (3)0.119 (3)0.018 (2)0.018 (2)0.038 (2)
C100.133 (4)0.095 (3)0.172 (4)0.045 (3)0.042 (3)0.051 (3)
C110.189 (5)0.121 (4)0.089 (3)0.057 (4)0.021 (3)0.000 (3)
C120.153 (4)0.125 (4)0.113 (4)0.059 (3)0.020 (3)0.009 (3)
C130.060 (2)0.0530 (18)0.083 (2)0.0165 (14)0.0107 (17)0.0202 (16)
C140.063 (2)0.088 (2)0.081 (3)0.0254 (17)0.0066 (18)0.0182 (19)
C150.083 (3)0.124 (3)0.086 (3)0.034 (2)0.022 (2)0.018 (2)
C160.073 (3)0.118 (3)0.120 (3)0.032 (2)0.023 (2)0.024 (3)
C170.062 (2)0.111 (3)0.115 (3)0.036 (2)0.001 (2)0.023 (3)
C180.060 (2)0.101 (3)0.090 (2)0.0280 (18)0.0035 (19)0.029 (2)
O50.1092 (18)0.0695 (18)0.166 (3)0.0273 (15)0.0492 (17)0.0316 (17)
C220.164 (5)0.087 (3)0.166 (4)0.034 (3)0.097 (4)0.006 (3)
C19A0.088 (5)0.053 (4)0.160 (8)0.010 (3)0.044 (5)0.042 (4)
C20A0.155 (9)0.044 (5)0.207 (10)0.045 (6)0.056 (8)0.004 (7)
C21A0.141 (9)0.093 (7)0.218 (12)0.029 (6)0.094 (9)0.008 (7)
C19B0.082 (10)0.069 (8)0.178 (15)0.004 (6)0.049 (9)0.054 (9)
C20B0.152 (17)0.117 (19)0.32 (3)0.097 (14)0.059 (16)0.092 (17)
C21B0.19 (3)0.073 (12)0.184 (18)0.042 (14)0.037 (17)0.033 (11)
Geometric parameters (Å, º) top
O1—C41.207 (3)C12—H12A0.9600
O2—C41.320 (4)C12—H12B0.9600
O2—C91.452 (4)C12—H12C0.9600
O3—C81.216 (4)C13—C141.376 (4)
O4—C81.316 (4)C13—C181.398 (4)
O4—C111.462 (4)C14—C151.373 (4)
N1—C131.404 (4)C14—H140.9300
N1—C71.426 (4)C15—C161.380 (5)
N1—C31.437 (4)C15—H150.9300
N2—C61.399 (5)C16—C171.367 (5)
N2—C21.433 (4)C16—H160.9300
N2—C19A1.504 (7)C17—C181.368 (5)
N2—C19B1.568 (15)C17—H170.9300
C1—C21.492 (5)C18—H180.9300
C1—H1A0.9600O5—C20A1.329 (12)
C1—H1B0.9600O5—C19A1.448 (8)
C1—H1C0.9600O5—C19B1.488 (13)
C2—C31.350 (4)O5—C20B1.59 (2)
C3—C41.453 (4)C22—C19B1.357 (12)
C5—C61.498 (5)C22—C19A1.433 (8)
C5—H5A0.9600C22—C21B1.530 (17)
C5—H5B0.9600C22—C21A1.541 (10)
C5—H5C0.9600C22—H220.9300
C6—C71.314 (5)C20A—C21A1.480 (11)
C7—C81.458 (5)C20A—H20A0.9700
C9—C101.430 (5)C20A—H20B0.9700
C9—H9A0.9700C21A—H21A0.9700
C9—H9B0.9700C21A—H21B0.9700
C10—H10A0.9600C20B—C21B1.460 (19)
C10—H10B0.9600C20B—H20C0.9700
C10—H10C0.9600C20B—H20D0.9700
C11—C121.420 (5)C21B—H21C0.9700
C11—H11A0.9700C21B—H21D0.9700
C11—H11B0.9700
C4—O2—C9118.7 (3)C14—C13—C18118.0 (3)
C8—O4—C11117.1 (3)C14—C13—N1121.6 (3)
C13—N1—C7118.2 (2)C18—C13—N1120.4 (3)
C13—N1—C3118.2 (3)C15—C14—C13121.1 (3)
C7—N1—C3111.3 (3)C15—C14—H14119.5
C6—N2—C2118.2 (3)C13—C14—H14119.5
C6—N2—C19A110.6 (6)C14—C15—C16120.7 (4)
C2—N2—C19A131.2 (6)C14—C15—H15119.7
C6—N2—C19B148.5 (9)C16—C15—H15119.7
C2—N2—C19B93.3 (8)C17—C16—C15118.4 (4)
C19A—N2—C19B37.9 (5)C17—C16—H16120.8
C2—C1—H1A109.5C15—C16—H16120.8
C2—C1—H1B109.5C16—C17—C18121.6 (3)
H1A—C1—H1B109.5C16—C17—H17119.2
C2—C1—H1C109.5C18—C17—H17119.2
H1A—C1—H1C109.5C17—C18—C13120.2 (3)
H1B—C1—H1C109.5C17—C18—H18119.9
C3—C2—N2114.5 (3)C13—C18—H18119.9
C3—C2—C1125.7 (4)C20A—O5—C19A102.0 (6)
N2—C2—C1119.4 (4)C20A—O5—C19B104.9 (6)
C2—C3—N1116.4 (3)C19A—O5—C19B39.8 (6)
C2—C3—C4125.7 (3)C20A—O5—C20B19.4 (15)
N1—C3—C4117.7 (3)C19A—O5—C20B113.8 (11)
O1—C4—O2121.2 (3)C19B—O5—C20B103.7 (12)
O1—C4—C3125.7 (3)C19B—C22—C19A41.9 (7)
O2—C4—C3113.1 (3)C19B—C22—C21B89.5 (15)
C6—C5—H5A109.5C19A—C22—C21B102.7 (12)
C6—C5—H5B109.5C19B—C22—C21A105.4 (7)
H5A—C5—H5B109.5C19A—C22—C21A99.8 (6)
C6—C5—H5C109.5C21B—C22—C21A27.0 (11)
H5A—C5—H5C109.5C19B—C22—H22111.8
H5B—C5—H5C109.5C19A—C22—H22130.1
C7—C6—N2115.8 (4)C21B—C22—H22121.4
C7—C6—C5128.6 (5)C21A—C22—H22130.1
N2—C6—C5115.3 (4)C22—C19A—O5106.0 (6)
C6—C7—N1117.6 (4)C22—C19A—N2114.1 (6)
C6—C7—C8123.3 (4)O5—C19A—N2108.2 (5)
N1—C7—C8118.9 (3)O5—C20A—C21A112.4 (8)
O3—C8—O4122.4 (4)O5—C20A—H20A109.1
O3—C8—C7125.8 (4)C21A—C20A—H20A109.1
O4—C8—C7111.8 (3)O5—C20A—H20B109.1
C10—C9—O2110.0 (3)C21A—C20A—H20B109.1
C10—C9—H9A109.7H20A—C20A—H20B107.9
O2—C9—H9A109.7C20A—C21A—C22101.2 (7)
C10—C9—H9B109.7C20A—C21A—H21A111.5
O2—C9—H9B109.7C22—C21A—H21A111.5
H9A—C9—H9B108.2C20A—C21A—H21B111.5
C9—C10—H10A109.5C22—C21A—H21B111.5
C9—C10—H10B109.5H21A—C21A—H21B109.4
H10A—C10—H10B109.5C22—C19B—O5107.9 (10)
C9—C10—H10C109.5C22—C19B—N2114.6 (12)
H10A—C10—H10C109.5O5—C19B—N2103.0 (11)
H10B—C10—H10C109.5C21B—C20B—O592.0 (15)
C12—C11—O4110.0 (4)C21B—C20B—H20C113.3
C12—C11—H11A109.7O5—C20B—H20C113.3
O4—C11—H11A109.7C21B—C20B—H20D113.3
C12—C11—H11B109.7O5—C20B—H20D113.3
O4—C11—H11B109.7H20C—C20B—H20D110.6
H11A—C11—H11B108.2C20B—C21B—C22118.7 (18)
C11—C12—H12A109.5C20B—C21B—H21C107.6
C11—C12—H12B109.5C22—C21B—H21C107.6
H12A—C12—H12B109.5C20B—C21B—H21D107.6
C11—C12—H12C109.5C22—C21B—H21D107.6
H12A—C12—H12C109.5H21C—C21B—H21D107.1
H12B—C12—H12C109.5
C6—N2—C2—C333.1 (4)C14—C13—C18—C170.7 (5)
C19A—N2—C2—C3147.6 (4)N1—C13—C18—C17177.4 (3)
C19B—N2—C2—C3147.0 (5)C19B—C22—C19A—O561.0 (10)
C6—N2—C2—C1139.4 (3)C21B—C22—C19A—O513.7 (15)
C19A—N2—C2—C139.8 (6)C21A—C22—C19A—O541.1 (12)
C19B—N2—C2—C140.5 (5)C19B—C22—C19A—N258.0 (10)
N2—C2—C3—N17.5 (4)C21B—C22—C19A—N2132.6 (11)
C1—C2—C3—N1179.5 (3)C21A—C22—C19A—N2160.1 (7)
N2—C2—C3—C4166.2 (3)C20A—O5—C19A—C2242.6 (11)
C1—C2—C3—C45.8 (5)C19B—O5—C19A—C2256.4 (9)
C13—N1—C3—C296.3 (3)C20B—O5—C19A—C2226.4 (16)
C7—N1—C3—C245.5 (4)C20A—O5—C19A—N2165.4 (7)
C13—N1—C3—C489.5 (3)C19B—O5—C19A—N266.4 (9)
C7—N1—C3—C4128.7 (3)C20B—O5—C19A—N2149.2 (13)
C9—O2—C4—O12.2 (5)C6—N2—C19A—C22126.8 (7)
C9—O2—C4—C3178.4 (3)C2—N2—C19A—C2253.9 (9)
C2—C3—C4—O111.4 (5)C19B—N2—C19A—C2252.9 (9)
N1—C3—C4—O1175.0 (3)C6—N2—C19A—O5115.4 (6)
C2—C3—C4—O2169.1 (3)C2—N2—C19A—O563.9 (8)
N1—C3—C4—O24.5 (4)C19B—N2—C19A—O564.9 (10)
C2—N2—C6—C733.5 (5)C19A—O5—C20A—C21A25.3 (13)
C19A—N2—C6—C7147.1 (4)C19B—O5—C20A—C21A15.6 (16)
C19B—N2—C6—C7146.8 (9)C20B—O5—C20A—C21A104 (4)
C2—N2—C6—C5140.0 (3)O5—C20A—C21A—C220.7 (14)
C19A—N2—C6—C539.4 (5)C19B—C22—C21A—C20A18.3 (17)
C19B—N2—C6—C539.7 (10)C19A—C22—C21A—C20A24.3 (13)
N2—C6—C7—N17.5 (4)C21B—C22—C21A—C20A74 (3)
C5—C6—C7—N1180.0 (3)C19A—C22—C19B—O559.3 (12)
N2—C6—C7—C8168.5 (3)C21B—C22—C19B—O550.5 (17)
C5—C6—C7—C83.9 (6)C21A—C22—C19B—O528.3 (19)
C13—N1—C7—C695.6 (4)C19A—C22—C19B—N254.7 (13)
C3—N1—C7—C646.2 (4)C21B—C22—C19B—N2164.5 (13)
C13—N1—C7—C888.2 (3)C21A—C22—C19B—N2142.4 (9)
C3—N1—C7—C8130.0 (3)C20A—O5—C19B—C2228.3 (19)
C11—O4—C8—O30.6 (6)C19A—O5—C19B—C2262.6 (12)
C11—O4—C8—C7178.3 (3)C20B—O5—C19B—C2248 (2)
C6—C7—C8—O316.8 (6)C20A—O5—C19B—N2149.9 (8)
N1—C7—C8—O3167.2 (3)C19A—O5—C19B—N258.9 (12)
C6—C7—C8—O4162.0 (3)C20B—O5—C19B—N2169.8 (13)
N1—C7—C8—O414.0 (4)C6—N2—C19B—C2257.1 (17)
C4—O2—C9—C10177.9 (3)C2—N2—C19B—C22123.1 (12)
C8—O4—C11—C12174.4 (4)C19A—N2—C19B—C2257.7 (13)
C7—N1—C13—C14162.1 (3)C6—N2—C19B—O559.8 (14)
C3—N1—C13—C1423.0 (4)C2—N2—C19B—O5120.0 (10)
C7—N1—C13—C1821.2 (4)C19A—N2—C19B—O559.2 (11)
C3—N1—C13—C18160.4 (3)C20A—O5—C20B—C21B81 (4)
C18—C13—C14—C151.2 (5)C19A—O5—C20B—C21B25 (2)
N1—C13—C14—C15177.9 (3)C19B—O5—C20B—C21B16 (2)
C13—C14—C15—C161.9 (5)O5—C20B—C21B—C2216 (3)
C14—C15—C16—C172.1 (6)C19B—C22—C21B—C20B43 (3)
C15—C16—C17—C181.6 (6)C19A—C22—C21B—C20B3 (3)
C16—C17—C18—C130.9 (5)C21A—C22—C21B—C20B84 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12C···O5i0.962.673.618 (5)169
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC22H26N2O5
Mr398.45
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.069 (2), 10.242 (2), 12.519 (3)
α, β, γ (°)72.37 (3), 77.59 (3), 63.76 (3)
V3)1098.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.40 × 0.25
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.958, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
7345, 3768, 1555
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.182, 0.84
No. of reflections3768
No. of parameters291
No. of restraints52
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.13

Computer programs: RAPID-AUTO (Rigaku, 2000), CrystalStructure (Rigaku/MSC, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12C···O5i0.962.673.618 (5)169
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors thank Professor Jim Simpson of the University of Otago for extensive assistance in refining the single-crystal data and editing the manuscript. This work was supported by the National Natural Sciences Foundation (grant No. 20872009), the Natural Sciences Foundation of Beijing (grant No. 200710005002), and Key Projects in the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period (grant No. 2008ZX10001-015).

References

First citationBrook, D. J. R., Curtis Haltiwanger, R. & Koch, T. H. (1992). J. Am. Chem. Soc. 114, 6017–6023.  CSD CrossRef CAS Web of Science Google Scholar
First citationChorvat, R. J. & Rorig, K. J. (1988). J. Org. Chem. 53, 5779–5781.  CSD CrossRef CAS Web of Science Google Scholar
First citationGoto, T., Inoue, S. & Sugiura, S. (1968). Tetrahedron Lett. 36, 3873–3876.  CrossRef CAS PubMed Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2000). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRodrigues, A., Ferreira, P. M. T. & Monteiro, L. S. (2004). Tetrahedron, 60, 8489–8496.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSit, S. Y., Huang, Y., Antal-Zimanyi, I., Ward, S. & Poindexter, G. S. (2002). Bioorg. Med. Chem. Lett. 12, 337–340.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTeranishi, K. & Goto, T. (1990). Bull. Chem. Soc. Jpn, 63, 3132–3140.  CrossRef CAS Web of Science Google Scholar
First citationWolfbeis, O. S. (1977). Synthesis, pp. 136–138.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1129
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds