organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R)-2-Benzene­sulfonamido-2-phenyl­ethanoic acid

aDepartment of Chemistry, Government College University, Lahore, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cPharmagen Ltd, Lahore 54000, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 27 March 2009; accepted 29 March 2009; online 2 April 2009)

In the title compound, C14H13NO4S, the dihedral angle between the aromatic ring planes is 45.52 (18)°. In the crystal structure, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds lead to chains of mol­ecules propagating in [100] in which the the ring motifs R21(8), R22(8) and R33(11) are apparent. These polymeric chains are linked through C—H⋯O inter­actions.

Related literature

For related structures, see: Chaudhuri (1984[Chaudhuri, S. (1984). J. Chem. Soc. Dalton Trans. pp. 779-783.]); Shan & Huang (1999[Shan, Y. & Huang, S. D. (1999). Z. Kristallogr. 214, 379-380.]). For background, see: Arshad et al. (2008[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.]); Cama et al. (2003[Cama, E., Shin, H. & Christianson, D. W. (2003). J. Am. Chem. Soc. 125, 13052-13057.]); Dankwardt et al. (2002[Dankwardt, S. M., Abbot, S. C., Broka, C. A., Martin, R. L., Chan, C. S., Springman, E. B., Van Wart, H. E. & Walker, K. A. M. (2002). Bioorg. Med. Chem. Lett. 12, 1233-235.]); Zhi-jian et al. (2006[Zhi-jian, H., Chao-shan, D., Li, Q., Ming, N., Yi-feng, Z. & Rui, W. (2006). Lett. Org. Chem. 3, 143-148.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO4S

  • Mr = 291.31

  • Orthorhombic, P 21 21 21

  • a = 5.6022 (5) Å

  • b = 12.5026 (9) Å

  • c = 19.7886 (15) Å

  • V = 1386.03 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.22 × 0.18 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.944, Tmax = 0.966

  • 8476 measured reflections

  • 2818 independent reflections

  • 1679 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.091

  • S = 1.01

  • 2818 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1092 Friedal Pairs

  • Flack parameter: 0.02 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.55 3.155 (4) 128
O3—H3O⋯O4ii 0.82 1.83 2.646 (3) 176
C2—H2⋯O1iii 0.93 2.56 3.340 (5) 142
C3—H3⋯O2iv 0.93 2.54 3.225 (5) 131
C7—H7⋯O1iii 0.98 2.55 3.432 (4) 150
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) x-1, y, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Amino acid derived sulfonamides have been synthesized as ligands (Zhi-jian et al., 2006) which showed potent procollagen C-proteinase (PCP) inhibition (Dankwardt et al., 2002) and arginase inhibition (Cama et al., 2003). The title compound (I), (Fig 1), has been prepared as an intermediate for the synthesis of our ongoing studies of thiazine (Arshad et al., 2008) related heterocycles.

The crystal structure of (II) R-(-)-N-benzenesulfonylglutamic acid (Shan & Huang, 1999) and (III) N-Benzenesulfonyl-DL-alanine (Chaudhuri, 1984) have been published. These structures have a common group with (I) except the benzene ring of phenyl glycine.

The title compound has a chairal center at C7 with slightly distorted tetrahedral geometry with H7 at the apical position. The coordination around the S-atom is distorted tetrahedral. The molecules of the compound are stabilized due to strong intermolecular H-bonding (Table 1). Three ring motifs R21(8), R22(8) and R33(11) (Bernstein et al., 1995) are formed due to two H-bonds of C—H···O type, H-bonding of types C—H···O and N—H···O, and two O—H···O and N—H···O, respectively (Fig 2). The ring motifs are connected to each other in such a way that a rod-shaped attachement of molecules exist along the a axis. These polymeric chains are linked through the remaing H-bonding of C—H···O type.

Related literature top

For related structures, see: Chaudhuri (1984); Shan & Huang (1999). For background, see: Arshad et al. (2008); Cama et al. (2003); Dankwardt et al. (2002); Zhi-jian et al. (2006). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Phenyl glycine (1 g, 6.6 mmol) was dissolved in distilled water (10 ml) in a round bottom flask (25 ml). The pH of the solution was maintained at 8–9 using 1M, Na2CO3 solution. Benzene sulfonyl chloride (1.16 g, 6.6 mmol) was then added to the solution and stirred at room temperature until all the benzene sulfonyl chloride was consumed. On completion of the reaction the pH was adjusted 1–2, using 1 N HCl. The precipitate obtained was filtered, washed with distilled water, dried and recrystalized in dichloromethane and methanol to yield colourless prisms of (I).

Refinement top

The H-atoms were positioned geometrically, with O—H = 0.82 Å N—H = 0.86 Å and C—H = 0.93–0.98 Å for aromatic, C-H = 0.98 Å and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius.
[Figure 2] Fig. 2. The partial packing of (I) showing that molecules form ring motifs through intermolecular H-bonding. The H-atoms not involved in H-bonding and the benzene ring of phenyl glycine are omited for clarity.
(2R)-2-Benzenesulfonamido-2-phenylethanoic acid top
Crystal data top
C14H13NO4SF(000) = 608
Mr = 291.31Dx = 1.396 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2818 reflections
a = 5.6022 (5) Åθ = 2.6–26.7°
b = 12.5026 (9) ŵ = 0.25 mm1
c = 19.7886 (15) ÅT = 296 K
V = 1386.03 (19) Å3Prism, colorless
Z = 40.22 × 0.18 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2818 independent reflections
Radiation source: fine-focus sealed tube1679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 7.80 pixels mm-1θmax = 26.7°, θmin = 2.6°
ω scansh = 73
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1515
Tmin = 0.944, Tmax = 0.966l = 2525
8476 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0304P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2818 reflectionsΔρmax = 0.23 e Å3
182 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: Flack (1983), 1092 Friedal Pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (10)
Crystal data top
C14H13NO4SV = 1386.03 (19) Å3
Mr = 291.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.6022 (5) ŵ = 0.25 mm1
b = 12.5026 (9) ÅT = 296 K
c = 19.7886 (15) Å0.22 × 0.18 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2818 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1679 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.966Rint = 0.050
8476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.23 e Å3
S = 1.01Δρmin = 0.28 e Å3
2818 reflectionsAbsolute structure: Flack (1983), 1092 Friedal Pairs
182 parametersAbsolute structure parameter: 0.02 (10)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.8906 (2)0.51683 (6)0.15187 (4)0.0387 (3)
O11.1438 (4)0.50754 (15)0.15986 (10)0.0489 (9)
O20.7303 (5)0.44742 (17)0.18723 (11)0.0554 (9)
O30.2940 (5)0.62039 (15)0.01637 (12)0.0456 (10)
O40.6710 (5)0.68015 (15)0.01169 (12)0.0496 (9)
N10.8409 (5)0.49873 (16)0.07161 (11)0.0338 (9)
C10.8088 (7)0.6505 (2)0.17079 (15)0.0363 (13)
C20.5942 (8)0.6698 (3)0.20125 (16)0.0533 (14)
C30.5343 (9)0.7746 (4)0.21780 (18)0.0723 (19)
C40.6886 (11)0.8565 (3)0.2012 (2)0.075 (2)
C50.8993 (9)0.8359 (3)0.16954 (19)0.0640 (18)
C60.9639 (7)0.7318 (2)0.15472 (16)0.0521 (14)
C70.6001 (7)0.49830 (19)0.04431 (13)0.0316 (12)
C80.5281 (8)0.6104 (2)0.02287 (14)0.0340 (13)
C90.5829 (7)0.4265 (2)0.01808 (14)0.0318 (13)
C100.3966 (8)0.3565 (2)0.02540 (17)0.0507 (13)
C110.3774 (10)0.2936 (3)0.0832 (2)0.0690 (18)
C120.5456 (10)0.3020 (3)0.1324 (2)0.072 (2)
C130.7293 (9)0.3721 (3)0.1256 (2)0.080 (2)
C140.7496 (7)0.4351 (3)0.06873 (18)0.0583 (16)
H10.959740.489210.044780.0406*
H20.490010.613830.210760.0640*
H30.391470.789310.239850.0865*
H3O0.261380.682490.006760.0547*
H40.648180.926690.211820.0899*
H51.000040.891970.157810.0768*
H61.109720.717060.134260.0624*
H70.489020.472470.078920.0379*
H100.282160.350940.008470.0608*
H110.250620.246140.088040.0827*
H120.534890.259640.170910.0872*
H130.842730.377630.159680.0956*
H140.875500.483130.064660.0702*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0371 (7)0.0395 (4)0.0395 (4)0.0025 (5)0.0015 (5)0.0072 (4)
O10.0308 (18)0.0569 (13)0.0590 (14)0.0051 (14)0.0105 (13)0.0060 (12)
O20.055 (2)0.0573 (14)0.0538 (14)0.0093 (13)0.0066 (13)0.0230 (11)
O30.037 (2)0.0322 (13)0.0677 (16)0.0072 (13)0.0039 (16)0.0136 (12)
O40.048 (2)0.0318 (11)0.0690 (16)0.0128 (14)0.0048 (14)0.0143 (10)
N10.030 (2)0.0351 (13)0.0364 (13)0.0025 (15)0.0059 (13)0.0056 (11)
C10.031 (3)0.0481 (19)0.0297 (18)0.0040 (18)0.0001 (17)0.0046 (14)
C20.045 (3)0.067 (2)0.048 (2)0.001 (3)0.000 (2)0.0200 (17)
C30.049 (4)0.096 (3)0.072 (3)0.016 (3)0.006 (2)0.039 (3)
C40.085 (5)0.059 (3)0.082 (3)0.015 (3)0.011 (3)0.033 (2)
C50.070 (4)0.046 (2)0.076 (3)0.010 (2)0.004 (3)0.0124 (19)
C60.057 (3)0.0494 (19)0.050 (2)0.001 (2)0.009 (2)0.0060 (19)
C70.032 (3)0.0251 (15)0.0378 (16)0.0002 (19)0.0039 (17)0.0037 (12)
C80.041 (3)0.0298 (18)0.0311 (17)0.002 (2)0.003 (2)0.0001 (14)
C90.030 (3)0.0242 (14)0.0412 (18)0.0008 (17)0.0001 (18)0.0012 (13)
C100.057 (3)0.0360 (17)0.059 (2)0.006 (2)0.003 (2)0.0045 (16)
C110.082 (4)0.045 (2)0.080 (3)0.014 (2)0.017 (3)0.012 (2)
C120.093 (5)0.062 (3)0.062 (3)0.005 (3)0.011 (3)0.027 (2)
C130.078 (5)0.103 (3)0.059 (3)0.017 (3)0.020 (3)0.029 (2)
C140.059 (4)0.068 (2)0.048 (2)0.022 (2)0.013 (2)0.017 (2)
Geometric parameters (Å, º) top
S1—O11.432 (3)C9—C141.374 (5)
S1—O21.432 (3)C9—C101.370 (5)
S1—N11.628 (2)C10—C111.392 (5)
S1—C11.773 (3)C11—C121.359 (7)
O3—C81.324 (5)C12—C131.358 (7)
O4—C81.204 (4)C13—C141.378 (5)
O3—H3O0.8200C2—H20.9300
N1—C71.453 (5)C3—H30.9300
N1—H10.8600C4—H40.9300
C1—C21.366 (6)C5—H50.9300
C1—C61.375 (4)C6—H60.9300
C2—C31.392 (6)C7—H70.9800
C3—C41.380 (7)C10—H100.9300
C4—C51.361 (7)C11—H110.9300
C5—C61.382 (5)C12—H120.9300
C7—C81.519 (4)C13—H130.9300
C7—C91.530 (4)C14—H140.9300
O1—S1—O2121.22 (14)C10—C11—C12119.4 (4)
O1—S1—N1105.42 (14)C11—C12—C13120.3 (4)
O1—S1—C1108.01 (15)C12—C13—C14120.8 (4)
O2—S1—N1106.58 (14)C9—C14—C13119.7 (4)
O2—S1—C1107.82 (16)C1—C2—H2121.00
N1—S1—C1107.03 (13)C3—C2—H2121.00
C8—O3—H3O109.00C2—C3—H3120.00
S1—N1—C7121.5 (2)C4—C3—H3120.00
S1—N1—H1119.00C3—C4—H4120.00
C7—N1—H1119.00C5—C4—H4120.00
C2—C1—C6121.9 (3)C4—C5—H5120.00
S1—C1—C2119.2 (3)C6—C5—H5120.00
S1—C1—C6119.0 (3)C1—C6—H6121.00
C1—C2—C3118.8 (4)C5—C6—H6121.00
C2—C3—C4119.5 (4)N1—C7—H7109.00
C3—C4—C5120.8 (4)C8—C7—H7109.00
C4—C5—C6120.2 (4)C9—C7—H7109.00
C1—C6—C5118.8 (4)C9—C10—H10120.00
C8—C7—C9107.4 (2)C11—C10—H10120.00
N1—C7—C9111.2 (3)C10—C11—H11120.00
N1—C7—C8110.3 (3)C12—C11—H11120.00
O3—C8—O4124.9 (3)C11—C12—H12120.00
O3—C8—C7112.2 (3)C13—C12—H12120.00
O4—C8—C7122.9 (4)C12—C13—H13120.00
C7—C9—C10120.6 (3)C14—C13—H13120.00
C7—C9—C14120.0 (3)C9—C14—H14120.00
C10—C9—C14119.4 (3)C13—C14—H14120.00
C9—C10—C11120.4 (4)
O1—S1—N1—C7177.57 (18)C4—C5—C6—C11.8 (6)
O2—S1—N1—C747.6 (2)N1—C7—C8—O3161.7 (2)
C1—S1—N1—C767.6 (2)N1—C7—C8—O420.1 (4)
O1—S1—C1—C2145.8 (3)C9—C7—C8—O377.0 (3)
O1—S1—C1—C633.9 (3)C9—C7—C8—O4101.2 (4)
O2—S1—C1—C213.2 (3)N1—C7—C9—C10134.8 (3)
O2—S1—C1—C6166.5 (3)N1—C7—C9—C1448.0 (4)
N1—S1—C1—C2101.2 (3)C8—C7—C9—C10104.5 (3)
N1—S1—C1—C679.2 (3)C8—C7—C9—C1472.7 (4)
S1—N1—C7—C890.6 (2)C7—C9—C10—C11178.0 (3)
S1—N1—C7—C9150.35 (18)C14—C9—C10—C110.8 (5)
S1—C1—C2—C3178.1 (3)C7—C9—C14—C13178.3 (3)
C6—C1—C2—C31.5 (5)C10—C9—C14—C131.0 (5)
S1—C1—C6—C5180.0 (3)C9—C10—C11—C120.1 (6)
C2—C1—C6—C50.4 (5)C10—C11—C12—C130.8 (7)
C1—C2—C3—C42.1 (6)C11—C12—C13—C140.5 (7)
C2—C3—C4—C50.7 (6)C12—C13—C14—C90.4 (6)
C3—C4—C5—C61.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.553.155 (4)128
O3—H3O···O4ii0.821.832.646 (3)176
C2—H2···O1iii0.932.563.340 (5)142
C3—H3···O2iv0.932.543.225 (5)131
C7—H7···O1iii0.982.553.432 (4)150
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+3/2, z; (iii) x1, y, z; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13NO4S
Mr291.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.6022 (5), 12.5026 (9), 19.7886 (15)
V3)1386.03 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.22 × 0.18 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.944, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
8476, 2818, 1679
Rint0.050
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.091, 1.01
No. of reflections2818
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.28
Absolute structureFlack (1983), 1092 Friedal Pairs
Absolute structure parameter0.02 (10)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.553.155 (4)128
O3—H3O···O4ii0.821.832.646 (3)176
C2—H2···O1iii0.932.563.340 (5)142
C3—H3···O2iv0.932.543.225 (5)131
C7—H7···O1iii0.982.553.432 (4)150
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+3/2, z; (iii) x1, y, z; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

MNA greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 042–120607-PS2-183).

References

First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCama, E., Shin, H. & Christianson, D. W. (2003). J. Am. Chem. Soc. 125, 13052–13057.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChaudhuri, S. (1984). J. Chem. Soc. Dalton Trans. pp. 779–783.  CSD CrossRef Web of Science Google Scholar
First citationDankwardt, S. M., Abbot, S. C., Broka, C. A., Martin, R. L., Chan, C. S., Springman, E. B., Van Wart, H. E. & Walker, K. A. M. (2002). Bioorg. Med. Chem. Lett. 12, 1233–235.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShan, Y. & Huang, S. D. (1999). Z. Kristallogr. 214, 379–380.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhi-jian, H., Chao-shan, D., Li, Q., Ming, N., Yi-feng, Z. & Rui, W. (2006). Lett. Org. Chem. 3, 143–148.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds