organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1102

3β,12β,14α-Tri­hydroxy­pregnan-20-one

aKey Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
*Correspondence e-mail: liyx417@ouc.edu.cn

(Received 30 March 2009; accepted 13 April 2009; online 25 April 2009)

The title compound, C21H34O4, is a steriod of the pregnane family prepared by the sequential oxidation and reduction of 3β,12β-diacet­oxy-20-ethyl­enedioxy­pregnan-14-ene. The con­formations of the six-membered rings are close to chair forms, while the five-membered ring adopts an envelope conformation. All the rings are trans-fused and an intra­molecular O—H⋯O hydrogen bond occurs. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into a two-dimensional network.

Related literature

For the synthesis, see: Templeton & Yan (1992[Templeton, J. F. & Yan, Y. (1992). Org. Prep. Proced. Int. 24, 159-163.]); Fell & Heathcock (2002[Fell, J. D. & Heathcock, C. H. (2002). J. Org. Chem. 67, 4742-4746.]). For background on hecogenin, see: Ranu & Samanta (2003[Ranu, B. C. & Samanta, S. (2003). J. Org. Chem. 68, 7130-7132.]).

[Scheme 1]

Experimental

Crystal data
  • C21H34O4

  • Mr = 350.48

  • Monoclinic, P 21

  • a = 6.1364 (7) Å

  • b = 12.1472 (13) Å

  • c = 12.7593 (14) Å

  • β = 101.513 (2)°

  • V = 931.94 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.50 × 0.44 × 0.32 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.729, Tmax = 0.97

  • 5569 measured reflections

  • 2194 independent reflections

  • 1930 reflections with I > 2σ(I)

  • Rint = 0.107

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.125

  • S = 1.01

  • 2194 reflections

  • 238 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4i 0.81 (4) 2.19 (4) 2.916 (3) 150 (3)
O2—H2⋯O4 0.80 (4) 2.01 (4) 2.771 (3) 158 (3)
O1—H1⋯O2ii 0.88 (5) 2.05 (6) 2.928 (3) 170 (4)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was obtained by oxidation and reduction of the corresponding 3β,12β-diacetoxypregnan-20-ethylenedioxy-14-ene, which was prepared from hecogenin (Fell & Heathcock, 2002; Ranu & Samanta, 2003). We have undertaken the X-ray crystal structure determination of (I) in order to establish its molecular conformation and relative stereochemistry.

The hydroxyl group at C12 and the acetyl group at C17 are beta-oriented respectively, whereas the hydroxyl group at C14 is alpha-oriented (Fig. 1). The conformation of the six-membered rings in both molecules are close to chair forms, while the five-membered ring adopts an envelope conformation. All rings in both molecules are trans-fused. The molecules of (I) are held together by an extensive O—H···O hydrogen-bonding two-dimensional network (Table 1, Fig. 2).

Related literature top

For the synthesis, see: Templeton & Yan (1992); Fell & Heathcock (2002). For background on hecogenin, see: Ranu & Samanta (2003).

Experimental top

The title compound was prepared according to the literature method (Fell & Heathcock, 2002; Templeton & Yan 1992). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution at room temperature (m.p. 343–347 K).

Refinement top

Anomalous dispersion was negligible and Friedel pairs were merged before refinement. The O-bond H atoms were located in a difference map and their positions were freely refined with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were fixed geometrically at ideal positions (C—H = 0.96–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of (I) viewed down the a axis. Dashed lines indicate hydrogen bonds.
3β,12β,14α-Trihydroxypregnan-20-one top
Crystal data top
C21H34O4F(000) = 384
Mr = 350.48Dx = 1.249 Mg m3
Monoclinic, P21Melting point: 431(2) K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 6.1364 (7) ÅCell parameters from 2719 reflections
b = 12.1472 (13) Åθ = 4.7–55.9°
c = 12.7593 (14) ŵ = 0.08 mm1
β = 101.513 (2)°T = 293 K
V = 931.94 (18) Å3Prism, colourless
Z = 20.50 × 0.44 × 0.32 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2194 independent reflections
Radiation source: fine-focus sealed tube1930 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.107
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 77
Tmin = 0.729, Tmax = 0.97k = 1513
5569 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0733P)2]
where P = (Fo2 + 2Fc2)/3
2194 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C21H34O4V = 931.94 (18) Å3
Mr = 350.48Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.1364 (7) ŵ = 0.08 mm1
b = 12.1472 (13) ÅT = 293 K
c = 12.7593 (14) Å0.50 × 0.44 × 0.32 mm
β = 101.513 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2194 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1930 reflections with I > 2σ(I)
Tmin = 0.729, Tmax = 0.97Rint = 0.107
5569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.28 e Å3
2194 reflectionsΔρmin = 0.24 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2262 (4)0.0588 (2)0.28839 (15)0.0605 (6)
H10.152 (7)0.121 (5)0.292 (3)0.091*
O20.9924 (3)0.22625 (16)0.32210 (14)0.0440 (4)
H21.062 (6)0.223 (4)0.382 (3)0.066*
O30.7898 (3)0.09548 (15)0.33306 (15)0.0455 (5)
H30.767 (6)0.146 (4)0.371 (3)0.068*
O41.1201 (4)0.2028 (2)0.54187 (16)0.0695 (7)
C10.5918 (4)0.0590 (2)0.04305 (19)0.0439 (6)
H1A0.66050.13110.03170.053*
H1B0.70990.00460.03160.053*
C20.4657 (5)0.0512 (3)0.1588 (2)0.0503 (6)
H2A0.35930.11110.17350.060*
H2B0.56950.05870.20660.060*
C30.3446 (5)0.0573 (2)0.18001 (19)0.0476 (6)
H3A0.45490.11660.17040.057*
C40.1926 (4)0.0747 (2)0.1019 (2)0.0457 (6)
H4A0.11980.14560.11500.055*
H4B0.07850.01820.11240.055*
C50.3237 (4)0.07015 (19)0.01358 (19)0.0384 (5)
H50.43980.12650.01940.046*
C60.1835 (5)0.1005 (2)0.0945 (2)0.0479 (6)
H6A0.11040.17040.07480.057*
H6B0.06930.04510.09370.057*
C70.3245 (5)0.1090 (2)0.2067 (2)0.0470 (6)
H7A0.42390.17150.21000.056*
H7B0.22830.12160.25730.056*
C80.4612 (4)0.0048 (2)0.23833 (18)0.0355 (5)
H80.35770.05510.24490.043*
C90.5946 (4)0.02912 (18)0.15366 (17)0.0317 (5)
H90.69850.03120.14920.038*
C100.4450 (4)0.04102 (19)0.04009 (18)0.0345 (5)
C110.7364 (4)0.1310 (2)0.19024 (19)0.0359 (5)
H11A0.83190.14470.13960.043*
H11B0.63850.19390.18830.043*
C120.8806 (4)0.12266 (18)0.30152 (19)0.0348 (5)
H120.99220.06510.30100.042*
C130.7415 (4)0.09215 (19)0.38462 (19)0.0348 (5)
C140.6210 (4)0.01731 (19)0.34639 (18)0.0361 (5)
C150.5234 (5)0.0524 (2)0.44230 (19)0.0473 (6)
H15A0.50040.13140.44230.057*
H15B0.38270.01580.44170.057*
C160.6988 (5)0.0170 (3)0.5398 (2)0.0541 (7)
H16A0.77070.08100.57690.065*
H16B0.62970.02490.58920.065*
C170.8697 (4)0.0546 (2)0.49776 (19)0.0403 (5)
H170.98850.00510.48580.048*
C180.5805 (4)0.1853 (2)0.3979 (2)0.0424 (6)
H18A0.66350.25060.42240.064*
H18B0.49340.16380.44920.064*
H18C0.48370.19980.33040.064*
C190.2822 (4)0.1371 (2)0.0358 (2)0.0448 (6)
H19A0.36060.20530.03470.067*
H19B0.21530.13500.09770.067*
H19C0.16850.13130.02760.067*
C200.9805 (4)0.1466 (2)0.5690 (2)0.0438 (6)
C210.9195 (6)0.1652 (3)0.6749 (2)0.0545 (7)
H21A1.01510.22050.71350.082*
H21B0.93640.09780.71500.082*
H21C0.76780.18940.66450.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0810 (15)0.0551 (12)0.0400 (9)0.0012 (12)0.0008 (9)0.0079 (9)
O20.0463 (10)0.0431 (9)0.0411 (9)0.0159 (8)0.0053 (7)0.0008 (8)
O30.0571 (11)0.0313 (8)0.0501 (10)0.0073 (8)0.0156 (8)0.0067 (7)
O40.0806 (15)0.0832 (17)0.0480 (11)0.0383 (14)0.0209 (10)0.0205 (10)
C10.0452 (13)0.0503 (14)0.0374 (12)0.0085 (12)0.0109 (10)0.0003 (11)
C20.0565 (16)0.0568 (15)0.0380 (12)0.0097 (14)0.0106 (11)0.0009 (11)
C30.0550 (15)0.0472 (14)0.0383 (12)0.0041 (13)0.0036 (11)0.0058 (11)
C40.0495 (14)0.0386 (13)0.0471 (13)0.0047 (11)0.0047 (11)0.0069 (10)
C50.0405 (12)0.0307 (11)0.0441 (12)0.0020 (10)0.0087 (10)0.0033 (9)
C60.0463 (14)0.0444 (14)0.0533 (14)0.0170 (12)0.0108 (11)0.0031 (12)
C70.0540 (15)0.0400 (13)0.0491 (14)0.0182 (12)0.0154 (11)0.0018 (11)
C80.0374 (11)0.0306 (10)0.0412 (11)0.0044 (9)0.0142 (9)0.0002 (9)
C90.0316 (11)0.0288 (10)0.0362 (10)0.0017 (9)0.0103 (8)0.0013 (8)
C100.0365 (12)0.0303 (11)0.0376 (11)0.0008 (9)0.0092 (8)0.0005 (9)
C110.0372 (11)0.0335 (11)0.0393 (11)0.0070 (10)0.0132 (9)0.0013 (9)
C120.0329 (11)0.0345 (12)0.0391 (11)0.0029 (10)0.0120 (9)0.0006 (9)
C130.0374 (11)0.0324 (10)0.0369 (11)0.0013 (10)0.0129 (9)0.0017 (9)
C140.0384 (12)0.0314 (11)0.0416 (12)0.0031 (10)0.0155 (9)0.0008 (9)
C150.0569 (15)0.0443 (13)0.0441 (13)0.0121 (12)0.0178 (11)0.0053 (11)
C160.0656 (17)0.0578 (16)0.0401 (13)0.0111 (15)0.0134 (12)0.0057 (12)
C170.0461 (13)0.0412 (12)0.0343 (11)0.0013 (11)0.0098 (9)0.0007 (10)
C180.0419 (13)0.0385 (12)0.0505 (13)0.0019 (11)0.0183 (10)0.0062 (10)
C190.0465 (13)0.0331 (11)0.0528 (14)0.0037 (11)0.0047 (11)0.0009 (11)
C200.0483 (13)0.0439 (13)0.0397 (12)0.0006 (12)0.0098 (10)0.0033 (10)
C210.0740 (18)0.0466 (15)0.0462 (14)0.0022 (14)0.0200 (13)0.0081 (12)
Geometric parameters (Å, º) top
O1—C31.428 (3)C9—C111.531 (3)
O1—H10.88 (5)C9—C101.560 (3)
O2—C121.432 (3)C9—H90.9800
O2—H20.80 (4)C10—C191.530 (3)
O3—C141.440 (3)C11—C121.519 (3)
O3—H30.81 (4)C11—H11A0.9700
O4—C201.200 (3)C11—H11B0.9700
C1—C21.528 (3)C12—C131.533 (3)
C1—C101.538 (3)C12—H120.9800
C1—H1A0.9700C13—C181.534 (3)
C1—H1B0.9700C13—C141.552 (3)
C2—C31.510 (4)C13—C171.568 (3)
C2—H2A0.9700C14—C151.527 (3)
C2—H2B0.9700C15—C161.536 (4)
C3—C41.510 (4)C15—H15A0.9700
C3—H3A0.9800C15—H15B0.9700
C4—C51.532 (3)C16—C171.539 (4)
C4—H4A0.9700C16—H16A0.9700
C4—H4B0.9700C16—H16B0.9700
C5—C61.515 (3)C17—C201.513 (4)
C5—C101.546 (3)C17—H170.9800
C5—H50.9800C18—H18A0.9600
C6—C71.521 (4)C18—H18B0.9600
C6—H6A0.9700C18—H18C0.9600
C6—H6B0.9700C19—H19A0.9600
C7—C81.528 (3)C19—H19B0.9600
C7—H7A0.9700C19—H19C0.9600
C7—H7B0.9700C20—C211.489 (4)
C8—C141.532 (3)C21—H21A0.9600
C8—C91.536 (3)C21—H21B0.9600
C8—H80.9800C21—H21C0.9600
C3—O1—H1103 (3)C12—C11—C9114.89 (18)
C12—O2—H2106 (3)C12—C11—H11A108.5
C14—O3—H3102 (3)C9—C11—H11A108.5
C2—C1—C10113.85 (19)C12—C11—H11B108.5
C2—C1—H1A108.8C9—C11—H11B108.5
C10—C1—H1A108.8H11A—C11—H11B107.5
C2—C1—H1B108.8O2—C12—C11106.34 (17)
C10—C1—H1B108.8O2—C12—C13113.46 (19)
H1A—C1—H1B107.7C11—C12—C13111.22 (18)
C3—C2—C1111.3 (2)O2—C12—H12108.6
C3—C2—H2A109.4C11—C12—H12108.6
C1—C2—H2A109.4C13—C12—H12108.6
C3—C2—H2B109.4C12—C13—C18110.96 (19)
C1—C2—H2B109.4C12—C13—C14106.61 (18)
H2A—C2—H2B108.0C18—C13—C14112.93 (19)
O1—C3—C4112.1 (2)C12—C13—C17117.45 (19)
O1—C3—C2108.8 (2)C18—C13—C17109.21 (19)
C4—C3—C2110.5 (2)C14—C13—C1799.21 (18)
O1—C3—H3A108.5O3—C14—C15108.5 (2)
C4—C3—H3A108.5O3—C14—C8107.79 (18)
C2—C3—H3A108.5C15—C14—C8117.80 (19)
C3—C4—C5110.8 (2)O3—C14—C13107.04 (18)
C3—C4—H4A109.5C15—C14—C13103.07 (18)
C5—C4—H4A109.5C8—C14—C13112.14 (19)
C3—C4—H4B109.5C14—C15—C16104.3 (2)
C5—C4—H4B109.5C14—C15—H15A110.9
H4A—C4—H4B108.1C16—C15—H15A110.9
C6—C5—C4112.7 (2)C14—C15—H15B110.9
C6—C5—C10112.1 (2)C16—C15—H15B110.9
C4—C5—C10112.28 (19)H15A—C15—H15B108.9
C6—C5—H5106.4C15—C16—C17107.0 (2)
C4—C5—H5106.4C15—C16—H16A110.3
C10—C5—H5106.4C17—C16—H16A110.3
C5—C6—C7111.4 (2)C15—C16—H16B110.3
C5—C6—H6A109.4C17—C16—H16B110.3
C7—C6—H6A109.4H16A—C16—H16B108.6
C5—C6—H6B109.4C20—C17—C16117.6 (2)
C7—C6—H6B109.4C20—C17—C13114.9 (2)
H6A—C6—H6B108.0C16—C17—C13103.5 (2)
C6—C7—C8111.8 (2)C20—C17—H17106.7
C6—C7—H7A109.3C16—C17—H17106.7
C8—C7—H7A109.3C13—C17—H17106.7
C6—C7—H7B109.3C13—C18—H18A109.5
C8—C7—H7B109.3C13—C18—H18B109.5
H7A—C7—H7B107.9H18A—C18—H18B109.5
C7—C8—C14112.00 (19)C13—C18—H18C109.5
C7—C8—C9112.19 (19)H18A—C18—H18C109.5
C14—C8—C9108.93 (17)H18B—C18—H18C109.5
C7—C8—H8107.8C10—C19—H19A109.5
C14—C8—H8107.8C10—C19—H19B109.5
C9—C8—H8107.8H19A—C19—H19B109.5
C11—C9—C8110.64 (17)C10—C19—H19C109.5
C11—C9—C10113.70 (18)H19A—C19—H19C109.5
C8—C9—C10112.37 (17)H19B—C19—H19C109.5
C11—C9—H9106.5O4—C20—C21119.9 (3)
C8—C9—H9106.5O4—C20—C17120.5 (2)
C10—C9—H9106.5C21—C20—C17119.6 (2)
C19—C10—C1109.6 (2)C20—C21—H21A109.5
C19—C10—C5112.09 (18)C20—C21—H21B109.5
C1—C10—C5107.21 (19)H21A—C21—H21B109.5
C19—C10—C9111.28 (19)C20—C21—H21C109.5
C1—C10—C9109.66 (17)H21A—C21—H21C109.5
C5—C10—C9106.91 (18)H21B—C21—H21C109.5
C10—C1—C2—C355.5 (3)C11—C12—C13—C1866.8 (2)
C1—C2—C3—O1178.7 (2)O2—C12—C13—C14176.39 (17)
C1—C2—C3—C455.3 (3)C11—C12—C13—C1456.5 (2)
O1—C3—C4—C5178.8 (2)O2—C12—C13—C1773.5 (3)
C2—C3—C4—C557.3 (3)C11—C12—C13—C17166.6 (2)
C3—C4—C5—C6173.2 (2)C7—C8—C14—O368.6 (2)
C3—C4—C5—C1059.0 (3)C9—C8—C14—O356.1 (2)
C4—C5—C6—C7173.0 (2)C7—C8—C14—C1554.5 (3)
C10—C5—C6—C759.2 (3)C9—C8—C14—C15179.1 (2)
C5—C6—C7—C853.6 (3)C7—C8—C14—C13173.83 (19)
C6—C7—C8—C14174.2 (2)C9—C8—C14—C1361.5 (2)
C6—C7—C8—C951.3 (3)C12—C13—C14—O355.5 (2)
C7—C8—C9—C11177.7 (2)C18—C13—C14—O3177.62 (18)
C14—C8—C9—C1153.1 (2)C17—C13—C14—O366.9 (2)
C7—C8—C9—C1054.0 (2)C12—C13—C14—C15169.8 (2)
C14—C8—C9—C10178.61 (19)C18—C13—C14—C1568.1 (2)
C2—C1—C10—C1967.9 (3)C17—C13—C14—C1547.4 (2)
C2—C1—C10—C553.9 (3)C12—C13—C14—C862.5 (2)
C2—C1—C10—C9169.6 (2)C18—C13—C14—C859.6 (2)
C6—C5—C10—C1963.2 (3)C17—C13—C14—C8175.10 (18)
C4—C5—C10—C1964.9 (3)O3—C14—C15—C1677.3 (3)
C6—C5—C10—C1176.6 (2)C8—C14—C15—C16160.0 (2)
C4—C5—C10—C155.4 (2)C13—C14—C15—C1635.9 (3)
C6—C5—C10—C959.0 (2)C14—C15—C16—C179.7 (3)
C4—C5—C10—C9172.89 (18)C15—C16—C17—C20147.8 (2)
C11—C9—C10—C1960.2 (2)C15—C16—C17—C1319.9 (3)
C8—C9—C10—C1966.4 (2)C12—C13—C17—C2075.4 (3)
C11—C9—C10—C161.2 (2)C18—C13—C17—C2052.0 (3)
C8—C9—C10—C1172.2 (2)C14—C13—C17—C20170.3 (2)
C11—C9—C10—C5177.11 (18)C12—C13—C17—C16155.0 (2)
C8—C9—C10—C556.2 (2)C18—C13—C17—C1677.6 (3)
C8—C9—C11—C1251.3 (2)C14—C13—C17—C1640.8 (2)
C10—C9—C11—C12178.83 (19)C16—C17—C20—O4177.7 (3)
C9—C11—C12—O2177.92 (18)C13—C17—C20—O460.1 (3)
C9—C11—C12—C1353.9 (2)C16—C17—C20—C210.7 (4)
O2—C12—C13—C1853.0 (3)C13—C17—C20—C21121.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.81 (4)2.19 (4)2.916 (3)150 (3)
O2—H2···O40.80 (4)2.01 (4)2.771 (3)158 (3)
O1—H1···O2ii0.88 (5)2.05 (6)2.928 (3)170 (4)
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+1, y1/2, z.

Experimental details

Crystal data
Chemical formulaC21H34O4
Mr350.48
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)6.1364 (7), 12.1472 (13), 12.7593 (14)
β (°) 101.513 (2)
V3)931.94 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.44 × 0.32
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.729, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
5569, 2194, 1930
Rint0.107
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.125, 1.01
No. of reflections2194
No. of parameters238
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.24

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.81 (4)2.19 (4)2.916 (3)150 (3)
O2—H2···O40.80 (4)2.01 (4)2.771 (3)158 (3)
O1—H1···O2ii0.88 (5)2.05 (6)2.928 (3)170 (4)
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+1, y1/2, z.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 30572245).

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFell, J. D. & Heathcock, C. H. (2002). J. Org. Chem. 67, 4742–4746.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRanu, B. C. & Samanta, S. (2003). J. Org. Chem. 68, 7130–7132.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTempleton, J. F. & Yan, Y. (1992). Org. Prep. Proced. Int. 24, 159–163.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1102
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds