organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1069

Bis(2-amino-4,5-di­methyl­anilinium chloride) 4,5-di­methyl­benz­ene-1,2-di­amine monohydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 1 April 2009; accepted 13 April 2009; online 18 April 2009)

The title compound, 2C8H13N2+·2Cl·C8H12N2·H2O, is a hydrated 2:1 cocrystal of the 2-amino-4,5-dimethyl­anilinium chloride salt and the 4,5-dimethyl­benz­ene-1,2-diamine free base. An intra­molecular N—H⋯N hydrogen bond occurs in one of the organic mol­ecules. In the crystal structure, the components are linked by N—H⋯Cl, N—H⋯N, N—H⋯O and O—H⋯Cl hydrogen bonds into a layered motif.

Related literature

4,5-Dimethyl­phenyl­ene-1,2-diamine is used in the synthesis of benzimidazoles; see: El Ashry et al. (1986[El Ashry, E. S. H., El Kilany, Y. & Mousaad, A. (1986). Curr. Sci. 55, 891-892.]). The crystal structures of several metal complexes of 4,5-dimethyl­phenyl­ene-1,2-diamine have been reported; see: Pérez-Cabré et al. (2004[Pérez-Cabré, M., Cervantes, G., Moreno, V., Prieto, M. J., Pérez, J. M., Font-Bardia, M. & Solanis, X. (2004). J. Inorg. Biochem. 98, 510-521.]); Eremenko et al. (2005[Eremenko, I. L., Kiskin, M. A., Fomina, I. G., Sidorov, A. A., Aleksandrov, G. G., Ikorskii, V. N., Shvedenkov, Yu. G., Ratkin, Yu. V. & Novotortsev, V. M. (2005). J. Cluster Sci. 16, 331-351.]); Kiskin et al. (2006[Kiskin, M. A., Aleksandrov, G. G., Dobrokhotova, Zh. V., Novotortsev, V. M., Shvedenkov, Yu. G. & Eremenko, I. (2006). Russ. Chem. Bull. 55, 806-820.]); Malkov et al. (2003[Malkov, A. E., Fomina, I. G., Sidorov, A. A., Aleksandrov, G. G., Ikorskii, V. I., Novotortsev, V. M. & Eremenko, I. L. (2003). Russ. Chem. Bull. 52, 513-515.]); Mikhailova et al. (2002[Mikhailova, T. B., Malkov, A. E., Sidorov, I. G., Aleksandrov, G. G., Golovaneva, I. F., Dem'anovich, V. M., Novotortsev, V. M., Ikorskii, V. N. & Eremenko, I. L. (2002). Russ. J. Inorg. Chem. 47, 1680-1692.]); Redshaw et al. (1992[Redshaw, C., Wilkinson, G., Hussain-Bates, B. & Hursthouse, M. B. (1992). J. Chem. Soc. Dalton Trans. pp. 1803-1811.]).

[Scheme 1]

Experimental

Crystal data
  • 2C8H13N2+·2Cl·C8H12N2·H2O

  • Mr = 499.52

  • Monoclinic, P 21 /n

  • a = 11.7102 (5) Å

  • b = 6.0938 (3) Å

  • c = 35.948 (1) Å

  • β = 91.257 (2)°

  • V = 2564.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 123 K

  • 0.40 × 0.12 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.896, Tmax = 0.994

  • 16985 measured reflections

  • 5877 independent reflections

  • 3608 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.166

  • S = 1.06

  • 5877 reflections

  • 368 parameters

  • 27 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1 0.85 (2) 2.37 (2) 3.212 (3) 172 (4)
O1—H2⋯Cl1i 0.85 (4) 2.82 (3) 3.402 (3) 128 (4)
O1—H2⋯Cl1ii 0.85 (4) 2.73 (4) 3.331 (2) 129 (3)
N1—H12⋯Cl1i 0.88 (3) 2.81 (3) 3.661 (3) 164 (3)
N2—H21⋯Cl1 0.87 (2) 2.61 (3) 3.361 (3) 145 (3)
N2—H22⋯N1 0.87 (4) 2.49 (4) 2.810 (4) 102 (3)
N2—H22⋯Cl1ii 0.87 (4) 2.79 (4) 3.599 (3) 155 (3)
N3—H31⋯N2 0.89 (2) 2.08 (2) 2.927 (4) 160 (2)
N3—H32⋯Cl1i 0.89 (3) 2.22 (3) 3.092 (3) 168 (2)
N3—H33⋯Cl2 0.89 (2) 2.347 (19) 3.216 (3) 167 (2)
N4—H41⋯Cl2i 0.87 (2) 2.38 (3) 3.233 (3) 165 (3)
N4—H42⋯Cl1i 0.87 (3) 2.63 (3) 3.434 (3) 155 (3)
N5—H51⋯O1 0.88 (2) 1.88 (2) 2.758 (3) 172 (3)
N5—H52⋯Cl2iii 0.89 (2) 2.354 (19) 3.242 (3) 176 (2)
N5—H53⋯Cl2 0.89 (2) 2.75 (3) 3.176 (3) 111 (2)
N5—H53⋯Cl2iv 0.89 (2) 2.730 (19) 3.540 (3) 153 (2)
N6—H61⋯Cl2iv 0.88 (3) 2.71 (3) 3.408 (3) 138 (2)
N6—H62⋯N1ii 0.88 (2) 2.45 (3) 3.277 (5) 156 (3)
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

4,5-Dimethylbenzene-1,2-diamine is used in the synthesis of benzimidazoles; see: El Ashry et al. (1986). The crystal structures of several metal complexes with 4,5-dimethylbenzene-1,2-diamine have been reported; see: Pérez-Cabré et al. (2004); Eremenko et al. (2005); Kiskin et al. (2006); Malkov et al. (2003); Mikhailova et al. (2002); Redshaw et al. (1992).

Experimental top

Colourless plates of (I) were unexpectedly isolated from the reaction of dibenzyltin dichloride (1 mmol) and 4,5-dimethylphenene-1,2-diamine in ethanol, in an attempt at synthesizing a tin complex. Atmospheric water was presumably incorporated into the crystal.

Refinement top

The carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

The amino/ammonium and water H-atoms were located in a difference map, and were refined with distance restraint of N–H = 0.88 + 0.01 Å and H···H = 1.44±0.01; O–H = 0.84±0.01 Å and H···H = 1.37±0.01 Å; their Uiso values were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 70% displacement ellipsoids Hydrogen atoms are drawn as spheres of arbitrary radius.
Bis(2-amino-4,5-dimethylanilinium chloride) 4,5-dimethylbenzene-1,2-diamine monohydrate top
Crystal data top
2C8H13N2+·2Cl·C8H12N2·H2OF(000) = 1072
Mr = 499.52Dx = 1.294 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1367 reflections
a = 11.7102 (5) Åθ = 2.3–21.3°
b = 6.0938 (3) ŵ = 0.28 mm1
c = 35.948 (1) ÅT = 123 K
β = 91.257 (2)°Plate, colourless
V = 2564.7 (2) Å30.40 × 0.12 × 0.02 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
5877 independent reflections
Radiation source: fine-focus sealed tube3608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ω scansθmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.896, Tmax = 0.994k = 77
16985 measured reflectionsl = 4646
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0711P)2]
where P = (Fo2 + 2Fc2)/3
5877 reflections(Δ/σ)max = 0.001
368 parametersΔρmax = 0.47 e Å3
27 restraintsΔρmin = 0.45 e Å3
Crystal data top
2C8H13N2+·2Cl·C8H12N2·H2OV = 2564.7 (2) Å3
Mr = 499.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.7102 (5) ŵ = 0.28 mm1
b = 6.0938 (3) ÅT = 123 K
c = 35.948 (1) Å0.40 × 0.12 × 0.02 mm
β = 91.257 (2)°
Data collection top
Bruker SMART APEX
diffractometer
5877 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3608 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.994Rint = 0.087
16985 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06127 restraints
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.47 e Å3
5877 reflectionsΔρmin = 0.45 e Å3
368 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.34435 (7)0.08992 (14)0.23602 (2)0.0211 (2)
Cl20.73644 (7)0.46400 (14)0.21359 (2)0.0195 (2)
O10.4381 (2)0.3932 (4)0.25526 (7)0.0223 (5)
H10.407 (3)0.269 (3)0.2515 (12)0.056 (16)*
H20.386 (3)0.480 (5)0.2618 (15)0.09 (2)*
N10.1622 (3)0.7021 (5)0.15983 (8)0.0221 (7)
H110.134 (3)0.828 (3)0.1521 (10)0.045 (13)*
H120.206 (3)0.723 (6)0.1798 (8)0.063 (16)*
N20.2902 (2)0.3227 (5)0.17615 (8)0.0187 (6)
H210.309 (3)0.188 (3)0.1818 (10)0.044 (13)*
H220.247 (4)0.380 (6)0.1931 (10)0.077 (18)*
N30.4870 (2)0.6160 (5)0.18456 (8)0.0182 (6)
H310.439 (2)0.508 (4)0.1786 (9)0.047 (13)*
H320.454 (2)0.696 (5)0.2021 (7)0.055 (15)*
H330.5496 (15)0.557 (4)0.1946 (8)0.020 (9)*
N40.5951 (3)1.0243 (5)0.19219 (8)0.0226 (7)
H410.623 (3)1.156 (3)0.1953 (9)0.033 (11)*
H420.547 (3)0.991 (5)0.2094 (7)0.034 (11)*
N50.6403 (2)0.4368 (5)0.29539 (7)0.0192 (6)
H510.5748 (14)0.436 (5)0.2828 (8)0.039 (12)*
H520.675 (2)0.309 (3)0.2918 (8)0.017 (9)*
H530.684 (2)0.543 (3)0.2867 (10)0.049 (14)*
N60.5083 (3)0.7947 (5)0.31996 (8)0.0225 (7)
H610.549 (3)0.828 (5)0.3006 (7)0.039 (12)*
H620.480 (3)0.914 (3)0.3300 (9)0.037 (12)*
C10.1979 (3)0.5659 (5)0.13072 (8)0.0163 (7)
C20.2533 (3)0.3666 (5)0.13923 (8)0.0164 (7)
C30.2794 (3)0.2259 (6)0.11040 (9)0.0176 (7)
H30.31580.09030.11610.021*
C40.2541 (3)0.2765 (6)0.07322 (9)0.0181 (7)
C50.2002 (3)0.4753 (6)0.06478 (9)0.0184 (7)
C60.1728 (3)0.6154 (6)0.09380 (9)0.0182 (7)
H60.13560.75010.08810.022*
C70.2850 (3)0.1172 (6)0.04304 (9)0.0240 (8)
H7A0.31610.01710.05430.036*
H7B0.34230.18370.02710.036*
H7C0.21660.08140.02810.036*
C80.1731 (3)0.5393 (6)0.02498 (9)0.0238 (8)
H8A0.12890.67580.02460.036*
H8B0.12850.42250.01280.036*
H8C0.24440.56100.01170.036*
C90.5147 (3)0.7433 (5)0.15144 (9)0.0165 (7)
C100.4943 (3)0.6604 (6)0.11619 (9)0.0178 (7)
H100.45770.52210.11350.021*
C110.5260 (3)0.7745 (6)0.08461 (9)0.0189 (7)
C120.5794 (3)0.9785 (6)0.08938 (9)0.0197 (7)
C130.5985 (3)1.0614 (6)0.12482 (9)0.0207 (7)
H130.63421.20060.12750.025*
C140.5672 (3)0.9480 (6)0.15672 (9)0.0185 (7)
C150.5057 (3)0.6771 (6)0.04653 (9)0.0214 (8)
H15A0.45680.54730.04850.032*
H15B0.57890.63490.03600.032*
H15C0.46810.78590.03030.032*
C160.6182 (3)1.1097 (6)0.05619 (10)0.0284 (9)
H16A0.65761.24280.06490.043*
H16B0.55171.15060.04070.043*
H16C0.67051.02080.04150.043*
C170.6155 (3)0.4633 (6)0.33487 (8)0.0166 (7)
C180.6513 (3)0.3053 (6)0.35998 (9)0.0164 (7)
H180.69240.18140.35140.020*
C190.6281 (3)0.3241 (6)0.39766 (9)0.0176 (7)
C200.5686 (3)0.5114 (6)0.40946 (8)0.0169 (7)
C210.5321 (3)0.6663 (6)0.38371 (9)0.0183 (7)
H21A0.49120.79070.39220.022*
C220.5531 (3)0.6466 (5)0.34573 (9)0.0170 (7)
C230.6664 (3)0.1477 (6)0.42444 (9)0.0226 (8)
H23A0.71830.21100.44330.034*
H23B0.70600.03210.41090.034*
H23C0.59970.08530.43660.034*
C240.5461 (3)0.5479 (6)0.45022 (9)0.0231 (8)
H24A0.49010.66610.45290.035*
H24B0.61750.58860.46320.035*
H24C0.51610.41260.46110.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0203 (4)0.0185 (4)0.0246 (4)0.0007 (3)0.0029 (3)0.0014 (3)
Cl20.0167 (4)0.0210 (4)0.0209 (4)0.0039 (3)0.0022 (3)0.0002 (3)
O10.0174 (12)0.0246 (14)0.0250 (13)0.0005 (12)0.0000 (10)0.0010 (11)
N10.0231 (16)0.0224 (17)0.0207 (16)0.0022 (14)0.0007 (13)0.0035 (13)
N20.0186 (15)0.0185 (16)0.0189 (15)0.0029 (13)0.0023 (12)0.0046 (12)
N30.0171 (14)0.0151 (15)0.0223 (15)0.0023 (13)0.0008 (12)0.0013 (12)
N40.0234 (16)0.0199 (17)0.0244 (16)0.0070 (13)0.0001 (13)0.0029 (13)
N50.0158 (14)0.0259 (18)0.0160 (14)0.0036 (13)0.0005 (12)0.0020 (12)
N60.0245 (16)0.0235 (17)0.0196 (16)0.0050 (14)0.0012 (13)0.0049 (13)
C10.0139 (15)0.0179 (18)0.0172 (16)0.0006 (14)0.0002 (12)0.0009 (14)
C20.0139 (16)0.0182 (18)0.0169 (16)0.0025 (13)0.0012 (12)0.0040 (13)
C30.0126 (16)0.0172 (18)0.0229 (17)0.0018 (13)0.0003 (13)0.0033 (14)
C40.0165 (16)0.0181 (18)0.0197 (17)0.0043 (14)0.0017 (13)0.0037 (14)
C50.0156 (16)0.0206 (18)0.0188 (16)0.0032 (14)0.0012 (13)0.0009 (14)
C60.0148 (16)0.0159 (18)0.0236 (17)0.0010 (14)0.0034 (13)0.0019 (14)
C70.0222 (18)0.024 (2)0.0257 (18)0.0004 (16)0.0005 (15)0.0042 (15)
C80.0251 (18)0.026 (2)0.0203 (17)0.0016 (16)0.0028 (14)0.0003 (15)
C90.0132 (16)0.0161 (17)0.0203 (17)0.0007 (13)0.0010 (13)0.0025 (13)
C100.0101 (15)0.0176 (18)0.0257 (18)0.0018 (13)0.0007 (13)0.0021 (14)
C110.0137 (16)0.0206 (19)0.0222 (17)0.0020 (14)0.0004 (13)0.0008 (14)
C120.0138 (16)0.0219 (19)0.0233 (17)0.0058 (14)0.0007 (13)0.0066 (14)
C130.0148 (16)0.0168 (18)0.0305 (19)0.0019 (14)0.0011 (14)0.0033 (15)
C140.0120 (15)0.0168 (18)0.0267 (17)0.0019 (14)0.0008 (13)0.0025 (14)
C150.0212 (18)0.0211 (19)0.0219 (18)0.0018 (15)0.0012 (14)0.0011 (14)
C160.028 (2)0.028 (2)0.030 (2)0.0002 (17)0.0019 (16)0.0093 (16)
C170.0121 (15)0.0220 (18)0.0156 (15)0.0002 (14)0.0005 (12)0.0016 (14)
C180.0126 (16)0.0174 (18)0.0193 (16)0.0002 (13)0.0004 (13)0.0028 (14)
C190.0133 (16)0.0175 (17)0.0219 (17)0.0045 (14)0.0023 (13)0.0019 (14)
C200.0125 (15)0.0212 (18)0.0171 (16)0.0028 (14)0.0000 (12)0.0022 (14)
C210.0095 (15)0.0218 (19)0.0236 (17)0.0007 (14)0.0005 (13)0.0037 (14)
C220.0115 (15)0.0197 (18)0.0198 (17)0.0034 (14)0.0004 (13)0.0004 (14)
C230.0237 (18)0.022 (2)0.0220 (18)0.0005 (15)0.0026 (14)0.0032 (14)
C240.0235 (18)0.028 (2)0.0178 (17)0.0007 (16)0.0019 (14)0.0021 (15)
Geometric parameters (Å, º) top
O1—H10.85 (1)C8—H8A0.9800
O1—H20.85 (4)C8—H8B0.9800
N1—C11.406 (4)C8—H8C0.9800
N1—H110.88 (1)C9—C101.380 (4)
N1—H120.87 (4)C9—C141.401 (5)
N2—C21.412 (4)C10—C111.389 (4)
N2—H210.87 (1)C10—H100.9500
N2—H220.87 (4)C11—C121.400 (5)
N3—C91.463 (4)C11—C151.506 (4)
N3—H310.89 (3)C12—C131.384 (5)
N3—H320.89 (3)C12—C161.514 (5)
N3—H330.89 (1)C13—C141.395 (5)
N4—C141.390 (4)C13—H130.9500
N4—H410.88 (1)C15—H15A0.9800
N4—H420.87 (3)C15—H15B0.9800
N5—C171.464 (4)C15—H15C0.9800
N5—H510.88 (1)C16—H16A0.9800
N5—H520.89 (1)C16—H16B0.9800
N5—H530.89 (1)C16—H16C0.9800
N6—C221.388 (4)C17—C181.379 (5)
N6—H610.88 (3)C17—C221.395 (5)
N6—H620.88 (1)C18—C191.392 (4)
C1—C61.387 (4)C18—H180.9500
C1—C21.407 (5)C19—C201.407 (5)
C2—C31.384 (4)C19—C231.505 (5)
C3—C41.397 (4)C20—C211.383 (5)
C3—H30.9500C20—C241.511 (4)
C4—C51.396 (5)C21—C221.398 (4)
C4—C71.505 (4)C21—H21A0.9500
C5—C61.391 (4)C23—H23A0.9800
C5—C81.510 (4)C23—H23B0.9800
C6—H60.9500C23—H23C0.9800
C7—H7A0.9800C24—H24A0.9800
C7—H7B0.9800C24—H24B0.9800
C7—H7C0.9800C24—H24C0.9800
H1—O1—H2107.4 (17)C9—C10—C11121.5 (3)
C1—N1—H11113 (3)C9—C10—H10119.2
C1—N1—H12121 (3)C11—C10—H10119.2
H11—N1—H12110.0 (17)C10—C11—C12118.1 (3)
C2—N2—H21118 (3)C10—C11—C15120.4 (3)
C2—N2—H22114 (3)C12—C11—C15121.5 (3)
H21—N2—H22111.0 (17)C13—C12—C11120.0 (3)
C9—N3—H31110 (2)C13—C12—C16119.2 (3)
C9—N3—H32113 (2)C11—C12—C16120.9 (3)
H31—N3—H32107.1 (15)C12—C13—C14122.4 (3)
C9—N3—H33111 (2)C12—C13—H13118.8
H31—N3—H33108.4 (15)C14—C13—H13118.8
H32—N3—H33107.4 (14)N4—C14—C13121.9 (3)
C14—N4—H41120 (2)N4—C14—C9121.0 (3)
C14—N4—H42115 (2)C13—C14—C9116.9 (3)
H41—N4—H42111.9 (16)C11—C15—H15A109.5
C17—N5—H51108 (2)C11—C15—H15B109.5
C17—N5—H52110 (2)H15A—C15—H15B109.5
H51—N5—H52108.5 (15)C11—C15—H15C109.5
C17—N5—H53113 (2)H15A—C15—H15C109.5
H51—N5—H53109.2 (15)H15B—C15—H15C109.5
H52—N5—H53108.2 (14)C12—C16—H16A109.5
C22—N6—H61119 (2)C12—C16—H16B109.5
C22—N6—H62114 (2)H16A—C16—H16B109.5
H61—N6—H62110.3 (16)C12—C16—H16C109.5
C6—C1—N1121.6 (3)H16A—C16—H16C109.5
C6—C1—C2118.9 (3)H16B—C16—H16C109.5
N1—C1—C2119.4 (3)C18—C17—C22122.0 (3)
C3—C2—C1118.7 (3)C18—C17—N5119.6 (3)
C3—C2—N2121.2 (3)C22—C17—N5118.4 (3)
C1—C2—N2119.8 (3)C17—C18—C19121.1 (3)
C2—C3—C4122.3 (3)C17—C18—H18119.5
C2—C3—H3118.9C19—C18—H18119.5
C4—C3—H3118.9C18—C19—C20117.9 (3)
C3—C4—C5119.0 (3)C18—C19—C23120.1 (3)
C3—C4—C7119.9 (3)C20—C19—C23121.9 (3)
C5—C4—C7121.2 (3)C21—C20—C19120.0 (3)
C6—C5—C4118.7 (3)C21—C20—C24119.4 (3)
C6—C5—C8120.3 (3)C19—C20—C24120.6 (3)
C4—C5—C8120.9 (3)C20—C21—C22122.5 (3)
C1—C6—C5122.5 (3)C20—C21—H21A118.8
C1—C6—H6118.8C22—C21—H21A118.8
C5—C6—H6118.8N6—C22—C17121.8 (3)
C4—C7—H7A109.5N6—C22—C21121.6 (3)
C4—C7—H7B109.5C17—C22—C21116.5 (3)
H7A—C7—H7B109.5C19—C23—H23A109.5
C4—C7—H7C109.5C19—C23—H23B109.5
H7A—C7—H7C109.5H23A—C23—H23B109.5
H7B—C7—H7C109.5C19—C23—H23C109.5
C5—C8—H8A109.5H23A—C23—H23C109.5
C5—C8—H8B109.5H23B—C23—H23C109.5
H8A—C8—H8B109.5C20—C24—H24A109.5
C5—C8—H8C109.5C20—C24—H24B109.5
H8A—C8—H8C109.5H24A—C24—H24B109.5
H8B—C8—H8C109.5C20—C24—H24C109.5
C10—C9—C14121.1 (3)H24A—C24—H24C109.5
C10—C9—N3121.1 (3)H24B—C24—H24C109.5
C14—C9—N3117.8 (3)
C6—C1—C2—C30.9 (5)C11—C12—C13—C140.5 (5)
N1—C1—C2—C3174.7 (3)C16—C12—C13—C14178.7 (3)
C6—C1—C2—N2173.5 (3)C12—C13—C14—N4174.6 (3)
N1—C1—C2—N210.9 (5)C12—C13—C14—C90.0 (5)
C1—C2—C3—C41.0 (5)C10—C9—C14—N4175.3 (3)
N2—C2—C3—C4173.4 (3)N3—C9—C14—N41.9 (5)
C2—C3—C4—C50.3 (5)C10—C9—C14—C130.6 (5)
C2—C3—C4—C7179.7 (3)N3—C9—C14—C13176.6 (3)
C3—C4—C5—C60.5 (5)C22—C17—C18—C191.1 (5)
C7—C4—C5—C6179.5 (3)N5—C17—C18—C19179.3 (3)
C3—C4—C5—C8178.8 (3)C17—C18—C19—C201.0 (5)
C7—C4—C5—C81.2 (5)C17—C18—C19—C23179.0 (3)
N1—C1—C6—C5175.3 (3)C18—C19—C20—C212.0 (5)
C2—C1—C6—C50.1 (5)C23—C19—C20—C21178.1 (3)
C4—C5—C6—C10.6 (5)C18—C19—C20—C24176.8 (3)
C8—C5—C6—C1178.8 (3)C23—C19—C20—C243.2 (5)
C14—C9—C10—C110.8 (5)C19—C20—C21—C220.8 (5)
N3—C9—C10—C11176.3 (3)C24—C20—C21—C22177.9 (3)
C9—C10—C11—C120.3 (5)C18—C17—C22—N6173.9 (3)
C9—C10—C11—C15178.3 (3)N5—C17—C22—N64.2 (5)
C10—C11—C12—C130.3 (5)C18—C17—C22—C212.3 (5)
C15—C11—C12—C13178.9 (3)N5—C17—C22—C21179.6 (3)
C10—C11—C12—C16178.8 (3)C20—C21—C22—N6174.9 (3)
C15—C11—C12—C160.3 (5)C20—C21—C22—C171.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl10.85 (2)2.37 (2)3.212 (3)172 (4)
O1—H2···Cl1i0.85 (4)2.82 (3)3.402 (3)128 (4)
O1—H2···Cl1ii0.85 (4)2.73 (4)3.331 (2)129 (3)
N1—H12···Cl1i0.88 (3)2.81 (3)3.661 (3)164 (3)
N2—H21···Cl10.87 (2)2.61 (3)3.361 (3)145 (3)
N2—H22···N10.87 (4)2.49 (4)2.810 (4)102 (3)
N2—H22···Cl1ii0.87 (4)2.79 (4)3.599 (3)155 (3)
N3—H31···N20.89 (2)2.08 (2)2.927 (4)160 (2)
N3—H32···Cl1i0.89 (3)2.22 (3)3.092 (3)168 (2)
N3—H33···Cl20.89 (2)2.35 (2)3.216 (3)167 (2)
N4—H41···Cl2i0.87 (2)2.38 (3)3.233 (3)165 (3)
N4—H42···Cl1i0.87 (3)2.63 (3)3.434 (3)155 (3)
N5—H51···O10.88 (2)1.88 (2)2.758 (3)172 (3)
N5—H52···Cl2iii0.89 (2)2.35 (2)3.242 (3)176 (2)
N5—H53···Cl20.89 (2)2.75 (3)3.176 (3)111 (2)
N5—H53···Cl2iv0.89 (2)2.73 (2)3.540 (3)153 (2)
N6—H61···Cl2iv0.88 (3)2.71 (3)3.408 (3)138 (2)
N6—H62···N1ii0.88 (2)2.45 (3)3.277 (5)156 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula2C8H13N2+·2Cl·C8H12N2·H2O
Mr499.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)11.7102 (5), 6.0938 (3), 35.948 (1)
β (°) 91.257 (2)
V3)2564.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.40 × 0.12 × 0.02
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.896, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
16985, 5877, 3608
Rint0.087
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.166, 1.06
No. of reflections5877
No. of parameters368
No. of restraints27
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.45

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl10.85 (2)2.37 (2)3.212 (3)172 (4)
O1—H2···Cl1i0.85 (4)2.82 (3)3.402 (3)128 (4)
O1—H2···Cl1ii0.85 (4)2.73 (4)3.331 (2)129 (3)
N1—H12···Cl1i0.88 (3)2.81 (3)3.661 (3)164 (3)
N2—H21···Cl10.87 (2)2.61 (3)3.361 (3)145 (3)
N2—H22···N10.87 (4)2.49 (4)2.810 (4)102 (3)
N2—H22···Cl1ii0.87 (4)2.79 (4)3.599 (3)155 (3)
N3—H31···N20.89 (2)2.08 (2)2.927 (4)160 (2)
N3—H32···Cl1i0.89 (3)2.22 (3)3.092 (3)168 (2)
N3—H33···Cl20.89 (2)2.347 (19)3.216 (3)167 (2)
N4—H41···Cl2i0.87 (2)2.38 (3)3.233 (3)165 (3)
N4—H42···Cl1i0.87 (3)2.63 (3)3.434 (3)155 (3)
N5—H51···O10.88 (2)1.88 (2)2.758 (3)172 (3)
N5—H52···Cl2iii0.89 (2)2.354 (19)3.242 (3)176 (2)
N5—H53···Cl20.89 (2)2.75 (3)3.176 (3)111 (2)
N5—H53···Cl2iv0.89 (2)2.730 (19)3.540 (3)153 (2)
N6—H61···Cl2iv0.88 (3)2.71 (3)3.408 (3)138 (2)
N6—H62···N1ii0.88 (2)2.45 (3)3.277 (5)156 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Ashry, E. S. H., El Kilany, Y. & Mousaad, A. (1986). Curr. Sci. 55, 891–892.  CAS Google Scholar
First citationEremenko, I. L., Kiskin, M. A., Fomina, I. G., Sidorov, A. A., Aleksandrov, G. G., Ikorskii, V. N., Shvedenkov, Yu. G., Ratkin, Yu. V. & Novotortsev, V. M. (2005). J. Cluster Sci. 16, 331–351.  Web of Science CSD CrossRef CAS Google Scholar
First citationKiskin, M. A., Aleksandrov, G. G., Dobrokhotova, Zh. V., Novotortsev, V. M., Shvedenkov, Yu. G. & Eremenko, I. (2006). Russ. Chem. Bull. 55, 806–820.  Web of Science CrossRef CAS Google Scholar
First citationMalkov, A. E., Fomina, I. G., Sidorov, A. A., Aleksandrov, G. G., Ikorskii, V. I., Novotortsev, V. M. & Eremenko, I. L. (2003). Russ. Chem. Bull. 52, 513–515.  Web of Science CrossRef Google Scholar
First citationMikhailova, T. B., Malkov, A. E., Sidorov, I. G., Aleksandrov, G. G., Golovaneva, I. F., Dem'anovich, V. M., Novotortsev, V. M., Ikorskii, V. N. & Eremenko, I. L. (2002). Russ. J. Inorg. Chem. 47, 1680–1692.  Google Scholar
First citationPérez-Cabré, M., Cervantes, G., Moreno, V., Prieto, M. J., Pérez, J. M., Font-Bardia, M. & Solanis, X. (2004). J. Inorg. Biochem. 98, 510–521.  Web of Science PubMed Google Scholar
First citationRedshaw, C., Wilkinson, G., Hussain-Bates, B. & Hursthouse, M. B. (1992). J. Chem. Soc. Dalton Trans. pp. 1803–1811.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1069
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds