organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1074

5-(4-Bromo­phen­yl)-1,2,3,4-tetra­hydro­benzo[a]phenanthridine

aDivision of Science and Technology, Xuzhou Institute of Architectural Technology, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: xie201_xz@yahoo.com.cn

(Received 4 April 2009; accepted 12 April 2009; online 18 April 2009)

The title compound, C23H18BrN, was synthesized by the reaction of 4-bromo­benzaldehyde, naphthalen-2-amine and cyclo­hexa­none in tetra­hydro­furan, catalyzed by iodine. The saturated six-membered ring adopts a half-chair conformation, and the four vicinal rings form a helical conformation, which results in a significant deviation from planarity for the pyridine ring. In the crystal, a weak C—H⋯π inter­action occurs, leading to inversion dimers.

Related literature

For background on phenanthridine derivatives, see: Clement et al. (2005[Clement, B., Weide, M., Wolschendorf, U. & Kock, I. (2005). Angew. Chem. Int. Ed. 44, 635-638.]); Hazeldine et al. (2005[Hazeldine, S. T., Polin, L., Kushner, J., White, K., Corbett, T. H., Biehl, J. & Horwitz, J. P. (2005). Bioorg. Med. Chem. 13, 1069-1081.]); Kock et al. (2005[Kock, I., Heber, D., Weide, M., Wolschendorf, U. & Clement, B. (2005). J. Med. Chem. 48, 2772-2777.]); Lu et al. (2004[Lu, T., Guo, C. & Ni, P. (2004). Zhongguo Yaoke Daxue Xuebao, 35, 99-105.]); Vanquelef et al. (2004[Vanquelef, E., Amoros, M., Boustie, J., Lynch, M. A., Waigh, R. D. & Duval, O. (2004). J. Enzyme Inhib. Med. Chem. 19, 481-487.]); Watanabe et al. (2003[Watanabe, T., Ohashi, Y., Yoshino, R., Komano, N., Eguchi, M., Maruyama, S. & Ishikawa, T. (2003). Org. Biomol. Chem. 1, 3024-3032.]).

[Scheme 1]

Experimental

Crystal data
  • C23H18BrN

  • Mr = 388.29

  • Triclinic, [P \overline 1]

  • a = 5.660 (3) Å

  • b = 11.596 (6) Å

  • c = 13.869 (6) Å

  • α = 78.48 (3)°

  • β = 78.30 (3)°

  • γ = 85.15 (3)°

  • V = 872.5 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.36 mm−1

  • T = 296 K

  • 0.46 × 0.22 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.365, Tmax = 0.593 (expected range = 0.432–0.702)

  • 11744 measured reflections

  • 3826 independent reflections

  • 2174 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.164

  • S = 1.14

  • 3826 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −1.05 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7ACgi 0.93 2.88 3.620 (14) 137
Symmetry code: (i) -x, -y+1, -z+1. Cg is the centroid of the 4-bromophenyl ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phenanthridine derivatives are well known compounds as a consequence of their pharmacological profile as an antitumor reagent (Lu, et al. 2004, Hazeldine, et al. 2005, Watanabe, et al. 2003). They also have been reported possessing antiviral activity (Vanquelef, et al. 2004), antiproliferative activity (Kock, et al. 2005) and cytostatic activity (Clement, et al. 2005), We report here the crystal structure of the title compound, (I).

The six-numbered ring (C2/C3/C14—C17) adopts a half-chair conformation: the atoms C2, C3, C14, C16 and C17 are coplanar, while the atom C15 deviates from the plane by 0.731 (6) Å; The basal plane makes a dihedral angle of 9.6 (2) ° to the coplanar pyridine ring. The dihedral angle between the pyridine ring and benzene ring (C18—C21) is 67.3 (1) °. To our surprise, the naphthalene ring is slightly distorted; with the mean deviation of fitted atoms is 0.080 Å. The largest deviation is -0.121 (2) Å for C4. Perhaps the four vicinal rings form a screw structure, which affects the plane of naphthalene ring. If the naphthalene ring is treated as two vicinal benzene rings (benzene ring (C8—C13) and benzene ring (C4—C8/C13), they make a dihedral angle of 8.6 (2) ° each other. The latter (benzene ring (C4—C8/C13) makes a dihedral angle of 7.6 (2) Å to pyridine ring. The sum of the above dihedral angles (25.8 °) of four vicinal rings is statistically equal to the dihedral angle (25.5 (2) °) between the benzene ring (C8—C13) and the plane defined by the atoms (C2/C3/C14—C17). This result also conforms that the four rings in the benza[a]phenanthridine moiety form a screw structure.

C—H···π stacking is present in the crystal structure of (I) (Table 2), thereby forming inversion dimers (Figure 2).

Related literature top

For background on phenanthridine derivatives, see: Clement et al. (2005); Hazeldine et al. (2005); Kock et al. (2005); Lu et al. (2004); Vanquelef et al. (2004); Watanabe et al. (2003).

Experimental top

The title compound, (I), was prepared by the reaction of 4-bromobenzaldehyde (1 mmol, 0.185 g), naphthalen-2-amine (1 mmol, 0.143 g) and cyclohexanone (1 mmol, 0.098 g) in THF (10 ml) at 338 K catalyzed by iodine. m.p. 491–493 K. Colourless blocks of (I) were obtained by slow evaporation of an ethanol solution.

Refinement top

The H atoms were geometrically placed (C—H = 0.93–0.97Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure drawing for (I) showing 50% probability of displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing diagram showing the C—H···π stacking in the crystal of (I).
5-(4-Bromophenyl)-1,2,3,4-tetrahydrobenzo[a]phenanthridine top
Crystal data top
C23H18BrNZ = 2
Mr = 388.29F(000) = 396
Triclinic, P1Dx = 1.478 Mg m3
Hall symbol: -P 1Melting point = 491–493 K
a = 5.660 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.596 (6) ÅCell parameters from 3260 reflections
c = 13.869 (6) Åθ = 2.6–26.1°
α = 78.48 (3)°µ = 2.36 mm1
β = 78.30 (3)°T = 296 K
γ = 85.15 (3)°Block, colourless
V = 872.5 (8) Å30.46 × 0.22 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
3826 independent reflections
Radiation source: fine-focus sealed tube2174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 27.6°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 77
Tmin = 0.365, Tmax = 0.593k = 1315
11744 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.082P)2 + 0.0233P]
where P = (Fo2 + 2Fc2)/3
3826 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 1.05 e Å3
Crystal data top
C23H18BrNγ = 85.15 (3)°
Mr = 388.29V = 872.5 (8) Å3
Triclinic, P1Z = 2
a = 5.660 (3) ÅMo Kα radiation
b = 11.596 (6) ŵ = 2.36 mm1
c = 13.869 (6) ÅT = 296 K
α = 78.48 (3)°0.46 × 0.22 × 0.15 mm
β = 78.30 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3826 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2174 reflections with I > 2σ(I)
Tmin = 0.365, Tmax = 0.593Rint = 0.041
11744 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.14Δρmax = 0.94 e Å3
3826 reflectionsΔρmin = 1.05 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.54047 (10)0.03144 (4)0.75111 (3)0.0876 (3)
N10.2434 (6)0.4250 (3)0.39876 (17)0.0451 (7)
C10.4456 (7)0.3594 (3)0.3874 (2)0.0416 (8)
C20.6195 (7)0.3727 (3)0.2984 (2)0.0415 (8)
C30.5838 (6)0.4649 (3)0.2203 (2)0.0406 (8)
C40.3867 (6)0.5467 (3)0.23571 (19)0.0392 (8)
C50.2104 (6)0.5181 (3)0.32479 (19)0.0401 (8)
C60.0130 (7)0.5835 (3)0.3388 (2)0.0480 (9)
H6A0.12730.56090.39670.058*
C70.0644 (7)0.6779 (3)0.2703 (2)0.0478 (9)
H7A0.21650.71590.27880.057*
C80.1163 (7)0.7192 (3)0.1846 (2)0.0454 (9)
C90.0690 (8)0.8271 (3)0.1212 (2)0.0558 (10)
H9A0.08240.86560.13170.067*
C100.2477 (8)0.8748 (3)0.0442 (3)0.0571 (11)
H10B0.21640.94460.00150.068*
C110.4733 (8)0.8188 (4)0.0305 (2)0.0582 (11)
H11B0.59520.85250.02030.070*
C120.5202 (7)0.7137 (3)0.0910 (2)0.0486 (9)
H12A0.67440.67820.08050.058*
C130.3405 (7)0.6580 (3)0.1688 (2)0.0420 (9)
C140.7466 (7)0.4650 (3)0.1191 (2)0.0507 (9)
H14C0.65660.49760.06660.061*
H14D0.88050.51490.11210.061*
C150.8432 (9)0.3429 (4)0.1069 (2)0.0651 (12)
H15C0.94450.34550.04110.078*
H15D0.71040.29280.11240.078*
C160.9891 (9)0.2926 (5)0.1872 (3)0.0720 (13)
H16C1.05590.21490.17810.086*
H16D1.12210.34270.18140.086*
C170.8312 (7)0.2847 (4)0.2897 (2)0.0514 (9)
H17A0.76990.20620.31050.062*
H17B0.93120.29420.33650.062*
C180.4726 (6)0.2632 (3)0.47485 (19)0.0424 (8)
C190.6498 (7)0.2655 (4)0.5296 (2)0.0536 (10)
H19A0.75550.32680.51140.064*
C200.6714 (8)0.1771 (4)0.6116 (2)0.0575 (11)
H20B0.79320.17750.64760.069*
C210.5097 (7)0.0887 (3)0.6387 (2)0.0491 (9)
C220.3329 (8)0.0850 (3)0.5860 (2)0.0546 (10)
H22A0.22600.02420.60480.066*
C230.3150 (7)0.1734 (3)0.5038 (2)0.0498 (10)
H23B0.19420.17180.46760.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1254 (6)0.0660 (4)0.0680 (3)0.0038 (3)0.0449 (3)0.0218 (2)
N10.048 (2)0.0464 (18)0.0367 (11)0.0030 (16)0.0065 (11)0.0014 (11)
C10.048 (2)0.0384 (19)0.0381 (13)0.0051 (18)0.0127 (13)0.0011 (12)
C20.046 (2)0.0373 (18)0.0410 (13)0.0039 (17)0.0133 (14)0.0019 (12)
C30.047 (2)0.0366 (19)0.0374 (12)0.0069 (17)0.0098 (13)0.0003 (12)
C40.042 (2)0.0394 (19)0.0371 (12)0.0066 (17)0.0120 (13)0.0022 (12)
C50.042 (2)0.0390 (19)0.0375 (13)0.0016 (17)0.0085 (13)0.0034 (12)
C60.049 (3)0.048 (2)0.0432 (14)0.0004 (19)0.0041 (14)0.0046 (14)
C70.044 (2)0.043 (2)0.0577 (17)0.0109 (18)0.0132 (15)0.0149 (15)
C80.051 (3)0.042 (2)0.0450 (14)0.0058 (19)0.0165 (15)0.0041 (13)
C90.062 (3)0.046 (2)0.0621 (18)0.004 (2)0.0264 (19)0.0037 (16)
C100.067 (3)0.042 (2)0.0589 (18)0.000 (2)0.0223 (19)0.0058 (16)
C110.071 (3)0.049 (2)0.0491 (16)0.011 (2)0.0124 (17)0.0093 (15)
C120.049 (2)0.046 (2)0.0462 (15)0.0039 (18)0.0072 (15)0.0003 (14)
C130.050 (2)0.0373 (19)0.0398 (13)0.0059 (18)0.0155 (14)0.0015 (12)
C140.057 (3)0.052 (2)0.0376 (13)0.0010 (19)0.0037 (14)0.0001 (13)
C150.079 (3)0.061 (3)0.0465 (16)0.005 (2)0.0033 (17)0.0091 (16)
C160.067 (3)0.067 (3)0.067 (2)0.022 (3)0.001 (2)0.000 (2)
C170.051 (3)0.050 (2)0.0490 (15)0.0011 (19)0.0090 (15)0.0016 (15)
C180.045 (2)0.043 (2)0.0351 (12)0.0014 (17)0.0053 (12)0.0004 (12)
C190.053 (3)0.059 (2)0.0483 (15)0.014 (2)0.0154 (15)0.0024 (15)
C200.062 (3)0.067 (3)0.0447 (15)0.006 (2)0.0224 (16)0.0004 (16)
C210.057 (2)0.044 (2)0.0434 (14)0.0040 (18)0.0151 (15)0.0017 (14)
C220.062 (3)0.042 (2)0.0572 (16)0.008 (2)0.0179 (17)0.0056 (15)
C230.054 (3)0.046 (2)0.0487 (14)0.0049 (19)0.0195 (15)0.0033 (14)
Geometric parameters (Å, º) top
Br1—C211.899 (3)C12—C131.416 (5)
N1—C11.320 (5)C12—H12A0.9300
N1—C51.362 (4)C14—C151.504 (6)
C1—C21.404 (5)C14—H14C0.9700
C1—C181.498 (4)C14—H14D0.9700
C2—C31.396 (4)C15—C161.515 (6)
C2—C171.508 (6)C15—H15C0.9700
C3—C41.413 (5)C15—H15D0.9700
C3—C141.514 (5)C16—C171.508 (5)
C4—C51.423 (4)C16—H16C0.9700
C4—C131.469 (4)C16—H16D0.9700
C5—C61.417 (5)C17—H17A0.9700
C6—C71.353 (5)C17—H17B0.9700
C6—H6A0.9300C18—C231.373 (5)
C7—C81.432 (5)C18—C191.380 (4)
C7—H7A0.9300C19—C201.389 (5)
C8—C131.400 (5)C19—H19A0.9300
C8—C91.418 (5)C20—C211.376 (5)
C9—C101.374 (6)C20—H20B0.9300
C9—H9A0.9300C21—C221.361 (5)
C10—C111.378 (6)C22—C231.387 (4)
C10—H10B0.9300C22—H22A0.9300
C11—C121.373 (5)C23—H23B0.9300
C11—H11B0.9300
C1—N1—C5118.9 (3)C15—C14—H14C109.3
N1—C1—C2123.4 (3)C3—C14—H14C109.3
N1—C1—C18115.2 (3)C15—C14—H14D109.3
C2—C1—C18121.3 (3)C3—C14—H14D109.3
C3—C2—C1118.2 (4)H14C—C14—H14D108.0
C3—C2—C17122.8 (3)C14—C15—C16109.5 (3)
C1—C2—C17119.0 (3)C14—C15—H15C109.8
C2—C3—C4119.4 (3)C16—C15—H15C109.8
C2—C3—C14117.4 (3)C14—C15—H15D109.8
C4—C3—C14122.9 (3)C16—C15—H15D109.8
C3—C4—C5117.0 (3)H15C—C15—H15D108.2
C3—C4—C13127.2 (3)C17—C16—C15110.2 (4)
C5—C4—C13115.9 (3)C17—C16—H16C109.6
N1—C5—C6116.8 (3)C15—C16—H16C109.6
N1—C5—C4122.1 (3)C17—C16—H16D109.6
C6—C5—C4121.1 (3)C15—C16—H16D109.6
C7—C6—C5121.7 (3)H16C—C16—H16D108.1
C7—C6—H6A119.2C2—C17—C16116.1 (3)
C5—C6—H6A119.2C2—C17—H17A108.3
C6—C7—C8119.8 (4)C16—C17—H17A108.3
C6—C7—H7A120.1C2—C17—H17B108.3
C8—C7—H7A120.1C16—C17—H17B108.3
C13—C8—C9121.3 (3)H17A—C17—H17B107.4
C13—C8—C7120.1 (3)C23—C18—C19119.0 (3)
C9—C8—C7118.5 (4)C23—C18—C1120.2 (3)
C10—C9—C8119.7 (4)C19—C18—C1120.8 (3)
C10—C9—H9A120.1C18—C19—C20120.5 (3)
C8—C9—H9A120.1C18—C19—H19A119.8
C9—C10—C11119.8 (3)C20—C19—H19A119.8
C9—C10—H10B120.1C21—C20—C19118.9 (3)
C11—C10—H10B120.1C21—C20—H20B120.6
C12—C11—C10120.8 (4)C19—C20—H20B120.6
C12—C11—H11B119.6C22—C21—C20121.6 (3)
C10—C11—H11B119.6C22—C21—Br1119.9 (3)
C11—C12—C13121.9 (4)C20—C21—Br1118.5 (2)
C11—C12—H12A119.1C21—C22—C23118.8 (3)
C13—C12—H12A119.1C21—C22—H22A120.6
C8—C13—C12116.3 (3)C23—C22—H22A120.6
C8—C13—C4120.5 (3)C18—C23—C22121.2 (3)
C12—C13—C4123.0 (3)C18—C23—H23B119.4
C15—C14—C3111.6 (3)C22—C23—H23B119.4
C5—N1—C1—C26.8 (4)C7—C8—C13—C12171.1 (3)
C5—N1—C1—C18176.7 (3)C9—C8—C13—C4179.6 (3)
N1—C1—C2—C34.2 (5)C7—C8—C13—C44.4 (4)
C18—C1—C2—C3179.5 (3)C11—C12—C13—C83.6 (5)
N1—C1—C2—C17173.5 (3)C11—C12—C13—C4178.9 (3)
C18—C1—C2—C172.8 (4)C3—C4—C13—C8167.9 (3)
C1—C2—C3—C45.1 (4)C5—C4—C13—C810.9 (4)
C17—C2—C3—C4177.3 (3)C3—C4—C13—C1216.9 (5)
C1—C2—C3—C14169.1 (3)C5—C4—C13—C12164.3 (3)
C17—C2—C3—C148.5 (5)C2—C3—C14—C1525.2 (4)
C2—C3—C4—C511.0 (4)C4—C3—C14—C15148.8 (3)
C14—C3—C4—C5162.9 (3)C3—C14—C15—C1660.4 (5)
C2—C3—C4—C13170.1 (3)C14—C15—C16—C1761.1 (5)
C14—C3—C4—C1316.0 (5)C3—C2—C17—C166.9 (5)
C1—N1—C5—C6177.9 (3)C1—C2—C17—C16170.7 (3)
C1—N1—C5—C40.1 (4)C15—C16—C17—C227.8 (6)
C3—C4—C5—N18.7 (4)N1—C1—C18—C2363.7 (4)
C13—C4—C5—N1172.3 (3)C2—C1—C18—C23113.0 (4)
C3—C4—C5—C6169.0 (3)N1—C1—C18—C19114.0 (4)
C13—C4—C5—C610.0 (4)C2—C1—C18—C1969.3 (5)
N1—C5—C6—C7179.7 (3)C23—C18—C19—C201.2 (6)
C4—C5—C6—C72.5 (5)C1—C18—C19—C20179.0 (3)
C5—C6—C7—C84.7 (5)C18—C19—C20—C211.5 (6)
C6—C7—C8—C133.6 (5)C19—C20—C21—C221.3 (6)
C6—C7—C8—C9171.7 (3)C19—C20—C21—Br1179.8 (3)
C13—C8—C9—C101.6 (5)C20—C21—C22—C230.7 (6)
C7—C8—C9—C10173.6 (3)Br1—C21—C22—C23179.6 (3)
C8—C9—C10—C111.5 (5)C19—C18—C23—C220.7 (6)
C9—C10—C11—C122.0 (6)C1—C18—C23—C22178.4 (3)
C10—C11—C12—C130.6 (5)C21—C22—C23—C180.4 (6)
C9—C8—C13—C124.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cgi0.932.883.620 (14)137
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H18BrN
Mr388.29
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.660 (3), 11.596 (6), 13.869 (6)
α, β, γ (°)78.48 (3), 78.30 (3), 85.15 (3)
V3)872.5 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.36
Crystal size (mm)0.46 × 0.22 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.365, 0.593
No. of measured, independent and
observed [I > 2σ(I)] reflections
11744, 3826, 2174
Rint0.041
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.164, 1.14
No. of reflections3826
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 1.05

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cgi0.932.883.620 (14)137
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

We thank the Natural Science Fund of Xuzhou Institute of Architectural Technology (project No. JYA308-19) for financial support.

References

First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClement, B., Weide, M., Wolschendorf, U. & Kock, I. (2005). Angew. Chem. Int. Ed. 44, 635–638.  Web of Science CrossRef CAS Google Scholar
First citationHazeldine, S. T., Polin, L., Kushner, J., White, K., Corbett, T. H., Biehl, J. & Horwitz, J. P. (2005). Bioorg. Med. Chem. 13, 1069–1081.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKock, I., Heber, D., Weide, M., Wolschendorf, U. & Clement, B. (2005). J. Med. Chem. 48, 2772–2777.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLu, T., Guo, C. & Ni, P. (2004). Zhongguo Yaoke Daxue Xuebao, 35, 99–105.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVanquelef, E., Amoros, M., Boustie, J., Lynch, M. A., Waigh, R. D. & Duval, O. (2004). J. Enzyme Inhib. Med. Chem. 19, 481–487.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatanabe, T., Ohashi, Y., Yoshino, R., Komano, N., Eguchi, M., Maruyama, S. & Ishikawa, T. (2003). Org. Biomol. Chem. 1, 3024–3032.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1074
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds