organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1034

(E)-4-Bromo-N′-(2-chloro­benzyl­­idene)benzohydrazide

aCollege of Pharmacy, Dalian Medical University, Liaoning 116044, People's Republic of China, and bCollege of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, People's Republic of China
*Correspondence e-mail: jialiu09@126.com

(Received 4 April 2009; accepted 4 April 2009; online 18 April 2009)

In the title compound, C14H10BrClN2O, the dihedral angle between the two benzene rings is 11.4 (2)°. In the crystal structure, mol­ecules are connected via inter­molecular N—H⋯O hydrogen bonds into one-dimensional chains running parallel to the c axis.

Related literature

For the biological activity of hydrazones and Schiff bases, see: Bhandari et al. (2008[Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822-1831.]); Sinha et al. (2008[Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160-165.]). For a related structure, see: Pan & Yang (2005[Pan, F.-Y. & Yang, J.-G. (2005). Acta Cryst. E61, o354-o355.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10BrClN2O

  • Mr = 337.60

  • Monoclinic, P 21 /c

  • a = 11.218 (4) Å

  • b = 13.512 (5) Å

  • c = 9.200 (3) Å

  • β = 97.077 (6)°

  • V = 1383.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.16 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.491, Tmax = 0.531

  • 6907 measured reflections

  • 2438 independent reflections

  • 1948 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.03

  • 2438 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.12 2.918 (3) 154
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones and Schiff bases have attracted much attention for their excellent biological properties, especially for their potential pharmacological and antitumor properties (Bhandari et al., 2008; Sinha et al., 2008). In this paper, the crystal structure of the title compound, (I), a new Schiff base compound derived from the condensation reaction of 2-chlorobenzaldehyde with 4-bromobenzohydrazide is reported.

The Schiff base molecule of the compound displays a trans configuration with respect to the C=N and C—N bonds (Fig. 1). All the bond lengths are within normal ranges (Allen et al., 1987), and are comparable to those in the related compound N'-(2-chlorobenzylidene)-2-hydroxybenzohydrazide (Pan & Yang, 2005). The dihedral angle between the two benzene rings is 11.4 (2)°. In the crystal structure, the C14H10BrClN2O molecules are connected via intermolecular N—H···O hydrogen bonds into one-dimensional chains running parallel to the c axis (Table 1 & Fig. 2).

Related literature top

For the biological activity of hydrazones and Schiff bases, see: Bhandari et al. (2008); Sinha et al. (2008). For a related structure, see: Pan & Yang (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

2-Chlorobenzaldehyde (0.1 mmol) and 4-bromobenzohydrazide acid hydrazide (0.1 mmol) were dissolved in a 95% ethanol solution (10 ml). The mixture was stirred at room temperature to give a clear colorless solution. Colourless blocks of (I) were formed by gradual evaporation of the solvent over a period of five days at room temperature.

Refinement top

All H atoms were placed in geometrically idealized positions, with C—H = 0.93 Å and N—H = 0.86 Å. Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The one-dimensional chains structure along c axis. The donor···acceptor for the intermolecular hydrogen bonds are shown as dashed lines.
(E)-4-Bromo-N'-(2-chlorobenzylidene)benzohydrazide top
Crystal data top
C14H10BrClN2OF(000) = 672
Mr = 337.60Dx = 1.620 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2695 reflections
a = 11.218 (4) Åθ = 2.4–26.2°
b = 13.512 (5) ŵ = 3.16 mm1
c = 9.200 (3) ÅT = 298 K
β = 97.077 (6)°Block, colorless
V = 1383.9 (8) Å30.23 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2438 independent reflections
Radiation source: fine-focus sealed tube1948 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 1313
Tmin = 0.491, Tmax = 0.531k = 1016
6907 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.9326P]
where P = (Fo2 + 2Fc2)/3
2438 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C14H10BrClN2OV = 1383.9 (8) Å3
Mr = 337.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.218 (4) ŵ = 3.16 mm1
b = 13.512 (5) ÅT = 298 K
c = 9.200 (3) Å0.23 × 0.20 × 0.20 mm
β = 97.077 (6)°
Data collection top
Bruker SMART CCD
diffractometer
2438 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
1948 reflections with I > 2σ(I)
Tmin = 0.491, Tmax = 0.531Rint = 0.023
6907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.03Δρmax = 0.57 e Å3
2438 reflectionsΔρmin = 0.39 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.45713 (4)1.17921 (3)0.84354 (5)0.07653 (18)
Cl10.23484 (10)0.37589 (7)0.63350 (10)0.0790 (3)
N10.1872 (2)0.66418 (16)0.4378 (2)0.0423 (5)
N20.2302 (2)0.74288 (16)0.5254 (2)0.0419 (5)
H20.23310.73980.61910.050*
O10.2623 (2)0.83236 (15)0.3250 (2)0.0555 (6)
C10.1301 (3)0.4950 (2)0.4158 (3)0.0439 (7)
C20.1495 (3)0.3987 (2)0.4655 (3)0.0521 (7)
C30.1046 (3)0.3167 (2)0.3829 (4)0.0634 (9)
H30.11840.25290.41900.076*
C40.0401 (3)0.3319 (3)0.2483 (4)0.0674 (10)
H40.01000.27810.19240.081*
C50.0197 (3)0.4264 (3)0.1954 (4)0.0670 (10)
H50.02450.43580.10410.080*
C60.0637 (3)0.5072 (3)0.2759 (4)0.0558 (8)
H60.04970.57050.23780.067*
C70.1768 (3)0.5816 (2)0.5014 (3)0.0448 (7)
H70.19870.57600.60190.054*
C80.2680 (3)0.82507 (19)0.4591 (3)0.0402 (6)
C90.3160 (2)0.90782 (19)0.5568 (3)0.0387 (6)
C100.3159 (3)1.0028 (2)0.4976 (4)0.0639 (10)
H100.28731.01210.39930.077*
C110.3572 (4)1.0832 (2)0.5811 (4)0.0687 (10)
H110.35491.14630.54040.082*
C120.4020 (3)1.0687 (2)0.7257 (3)0.0485 (7)
C130.4055 (3)0.9757 (2)0.7869 (3)0.0502 (7)
H130.43710.96670.88440.060*
C140.3620 (3)0.8957 (2)0.7029 (3)0.0432 (6)
H140.36350.83300.74470.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0834 (3)0.0523 (2)0.0923 (3)0.02495 (18)0.0047 (2)0.02263 (19)
Cl10.1214 (8)0.0504 (5)0.0598 (6)0.0029 (5)0.0099 (5)0.0011 (4)
N10.0549 (14)0.0366 (13)0.0344 (12)0.0020 (10)0.0014 (10)0.0050 (10)
N20.0650 (15)0.0336 (12)0.0262 (11)0.0013 (10)0.0018 (10)0.0021 (9)
O10.0959 (17)0.0437 (12)0.0263 (11)0.0018 (11)0.0054 (10)0.0010 (8)
C10.0496 (16)0.0391 (15)0.0445 (16)0.0057 (12)0.0120 (13)0.0079 (13)
C20.0590 (19)0.0442 (17)0.0542 (18)0.0014 (14)0.0108 (15)0.0081 (14)
C30.076 (2)0.0392 (17)0.077 (3)0.0050 (15)0.017 (2)0.0117 (16)
C40.076 (2)0.058 (2)0.066 (2)0.0167 (18)0.0048 (19)0.0232 (18)
C50.069 (2)0.071 (2)0.058 (2)0.0143 (18)0.0046 (17)0.0136 (18)
C60.0590 (19)0.0543 (19)0.0540 (19)0.0083 (15)0.0061 (15)0.0098 (15)
C70.0588 (18)0.0397 (16)0.0360 (15)0.0021 (13)0.0058 (13)0.0027 (12)
C80.0519 (17)0.0352 (14)0.0332 (15)0.0075 (12)0.0038 (12)0.0004 (11)
C90.0510 (16)0.0333 (14)0.0322 (14)0.0015 (12)0.0067 (12)0.0004 (11)
C100.105 (3)0.0416 (17)0.0414 (18)0.0093 (17)0.0061 (17)0.0104 (14)
C110.103 (3)0.0325 (17)0.068 (2)0.0132 (17)0.001 (2)0.0098 (16)
C120.0519 (17)0.0397 (16)0.0542 (19)0.0110 (13)0.0078 (14)0.0071 (14)
C130.0638 (19)0.0464 (17)0.0384 (16)0.0065 (14)0.0024 (14)0.0024 (13)
C140.0570 (17)0.0341 (14)0.0381 (15)0.0007 (12)0.0042 (12)0.0041 (12)
Geometric parameters (Å, º) top
Br1—C121.903 (3)C5—C61.377 (4)
Cl1—C21.742 (3)C5—H50.9300
N1—C71.272 (4)C6—H60.9300
N1—N21.385 (3)C7—H70.9300
N2—C81.359 (3)C8—C91.493 (4)
N2—H20.8600C9—C141.388 (4)
O1—C81.232 (3)C9—C101.394 (4)
C1—C21.388 (4)C10—C111.378 (5)
C1—C61.415 (4)C10—H100.9300
C1—C71.470 (4)C11—C121.377 (5)
C2—C31.401 (4)C11—H110.9300
C3—C41.371 (5)C12—C131.376 (4)
C3—H30.9300C13—C141.383 (4)
C4—C51.375 (5)C13—H130.9300
C4—H40.9300C14—H140.9300
C7—N1—N2116.8 (2)N1—C7—H7120.1
C8—N2—N1118.2 (2)C1—C7—H7120.1
C8—N2—H2120.9O1—C8—N2122.3 (3)
N1—N2—H2120.9O1—C8—C9120.9 (2)
C2—C1—C6116.9 (3)N2—C8—C9116.8 (2)
C2—C1—C7122.6 (3)C14—C9—C10117.9 (3)
C6—C1—C7120.5 (3)C14—C9—C8123.9 (2)
C1—C2—C3122.1 (3)C10—C9—C8118.1 (2)
C1—C2—Cl1120.3 (2)C11—C10—C9121.6 (3)
C3—C2—Cl1117.5 (3)C11—C10—H10119.2
C4—C3—C2119.1 (3)C9—C10—H10119.2
C4—C3—H3120.5C12—C11—C10118.9 (3)
C2—C3—H3120.5C12—C11—H11120.5
C3—C4—C5120.3 (3)C10—C11—H11120.5
C3—C4—H4119.8C13—C12—C11121.0 (3)
C5—C4—H4119.8C13—C12—Br1119.5 (2)
C4—C5—C6120.9 (3)C11—C12—Br1119.5 (2)
C4—C5—H5119.5C12—C13—C14119.6 (3)
C6—C5—H5119.5C12—C13—H13120.2
C5—C6—C1120.7 (3)C14—C13—H13120.2
C5—C6—H6119.7C13—C14—C9120.9 (3)
C1—C6—H6119.7C13—C14—H14119.6
N1—C7—C1119.9 (3)C9—C14—H14119.6
C7—N1—N2—C8165.4 (3)N1—N2—C8—C9178.9 (2)
C6—C1—C2—C30.9 (5)O1—C8—C9—C14157.9 (3)
C7—C1—C2—C3180.0 (3)N2—C8—C9—C1422.8 (4)
C6—C1—C2—Cl1177.7 (2)O1—C8—C9—C1021.4 (4)
C7—C1—C2—Cl11.4 (4)N2—C8—C9—C10158.0 (3)
C1—C2—C3—C40.5 (5)C14—C9—C10—C111.6 (5)
Cl1—C2—C3—C4178.1 (3)C8—C9—C10—C11179.1 (3)
C2—C3—C4—C50.2 (6)C9—C10—C11—C121.4 (6)
C3—C4—C5—C60.3 (6)C10—C11—C12—C130.1 (6)
C4—C5—C6—C10.7 (6)C10—C11—C12—Br1179.0 (3)
C2—C1—C6—C51.0 (5)C11—C12—C13—C141.0 (5)
C7—C1—C6—C5179.9 (3)Br1—C12—C13—C14177.9 (2)
N2—N1—C7—C1179.2 (2)C12—C13—C14—C90.8 (5)
C2—C1—C7—N1160.0 (3)C10—C9—C14—C130.5 (5)
C6—C1—C7—N119.1 (4)C8—C9—C14—C13179.7 (3)
N1—N2—C8—O11.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.122.918 (3)154
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H10BrClN2O
Mr337.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.218 (4), 13.512 (5), 9.200 (3)
β (°) 97.077 (6)
V3)1383.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)3.16
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.491, 0.531
No. of measured, independent and
observed [I > 2σ(I)] reflections
6907, 2438, 1948
Rint0.023
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.03
No. of reflections2438
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.39

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.122.918 (3)154
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

This work is supported in part by a grant from the Department of Education of Liaoning, China (05 L122).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822–1831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPan, F.-Y. & Yang, J.-G. (2005). Acta Cryst. E61, o354–o355.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160–165.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1034
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds