organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1051

3-Amino-2-methyl-4-oxo-3,4-di­hydro­quinazolin-1-ium p-toluene­sulfonate monohydrate

aUniversity of Peshawar, Institute of Chemical Sciences, Peshawar 25120, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and cGovernment College University, Department of Chemistry, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 13 April 2009; accepted 13 April 2009; online 18 April 2009)

In the title hydrated mol­ecular salt, C9H10N3O+·C7H7O3S·H2O, the cation is protonated at a quinazolinone N atom and an intra­molecular N—H⋯O hydrogen bond occurs. In the crystal structure, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds and C—H⋯O, C—H⋯π and weak aromatic ππ stacking inter­actions [centroid–centroid separations = 3.8648 (12) and 3.9306 (13) Å] help to establish the packing; a short S=O⋯π contact is also seen.

Related literature

For a related structure, see: Atkinson & Meades (2000[Atkinson, R. S. & Meades, C. K. (2000). Tetrahedron Lett. 41, 7769-7772.]). For background on the properties of cyclic amidines and quinazolinones, see: Glaser & Traber (1984[Glaser, T. & Traber, J. (1984). Inflamm. Res. 15, 341-348.]); Havera (1979[Havera, H. J. (1979). J. Med. Chem. 22, 1548-1550.]); Hori et al. (1990[Hori, M., Iemura, R., Hara, H., Ozaki, A., Sukamoto, T. & Ohtaka, H. (1990). Chem. Pharm. Bull. 38, 681-687.]); Liverton et al. (1998[Liverton, N. J., Armstrong, D. J., Claremon, D. A., Remy, D. C., Bardwin, J. J., Lynch, R. J., Zhang, G. & Gould, R. J. (1998). Bioorg. Med. Chem. Lett. 8, 483-486.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N3O+·C7H7O3S·H2O

  • Mr = 365.40

  • Monoclinic, C c

  • a = 20.838 (1) Å

  • b = 6.2769 (3) Å

  • c = 14.7897 (7) Å

  • β = 116.676 (1)°

  • V = 1728.56 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.935, Tmax = 0.958

  • 9546 measured reflections

  • 4390 independent reflections

  • 3952 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.00

  • 4390 reflections

  • 243 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2109 Friedal pairs

  • Flack parameter: 0.04 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.89 (3) 1.89 (3) 2.734 (3) 158 (3)
N3—H3A⋯O1 0.83 (3) 2.31 (4) 2.693 (3) 109 (3)
N3—H3B⋯O3ii 0.86 (3) 2.22 (3) 2.963 (3) 146 (3)
O5—H5A⋯O3i 0.73 (5) 2.16 (5) 2.871 (3) 166 (7)
O5—H5B⋯O2 0.82 (6) 2.07 (6) 2.862 (4) 162 (5)
C4—H4⋯O5iii 0.93 2.58 3.423 (5) 152
C9—H9C⋯O4i 0.96 2.43 3.251 (3) 144
C2—H2⋯CgCi 0.93 2.84 3.533 (2) 132
S1—O2⋯CgB 1.44 (1) 3.17 (1) 3.8430 (9) 107 (1)
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]. CgB and CgC are the centroids of the C1/C6/C7/N2/C8/N1 and C10–C15 rings.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Cyclic amidines and quinazolinones, are known to possess diverse pharmacological activities as phosphodiesterase inhibitors (Glaser & Traber, 1984), anticonvulsants (Hori et al., 1990), antihypertensives (Glaser & Traber, 1984), vasodilators (Havera, 1979) and fibrinogen receptor antagonists (Liverton et al., 1998).

We now report synthesis and structure of the title compound (I), (Fig. 1), through a reaction of 2-aminobenzoic acid and hydrazine in presence of p-toluenesulfonic acid. A one pot, three component, p-toluenesulfonic acid catalyzed heterocyclization has yielded colourless prisms of (I) in the form of a p-toluenesulfonate salt with one water molecule of crystallization.

The crystal structure of (II) 3-(6-Azabicyclo(3.1.0)hex-2-en-6-yl)-2-((S)-1- hydroxy-2,2-dimethylpropyl)quinazolin-4(3H)-one (Atkinson & Meades, 2000) has been published. The title compound has also quinazoline with a chemically different attachements.

In the title compound the two fused rings A (C1—C6) and B(C1/C6/C7/N2/C8/N1) are essentially planar and the ring C (C10—C15) of the p-toluenesulfonate anion is of course planar. The title compound is stabillized due to intra- and intermolecular H-bonding as well as C–H···π and S1==O2···CgB interactions (Table 1). There also exist interactions between the centroids CgA–CgCi [symmetry code: i = x, -y + 1, z + 1/2] and CgB–CgCi at a distance of 3.8648 (12) and 3.9306 (13) Å, respectively. The water molecule connects the p-toluenesulfonate ions only. In the title compound there exist R11(5) and R21(6) ring motifs (Bernstein et al., 1995), (Fig 2).

Related literature top

For a related structure, see: Atkinson & Meades (2000). For background on the properties of cyclic amidines and quinazolinones, see: Glaser & Traber (1984); Havera (1979); Hori et al. (1990); Liverton et al. (1998). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of anthranilic acid (0.14 g, 1 mmol), triethylorthoacetate (0.23 ml, 1.2 mmol), hydrazine hydrate (0.1 ml) and p-toluenesulfonic acid (1 g, 5 mmol) was stirred at room temperature for 1 h. After completion of the reaction as indicated by TLC, the reaction mixture was poured into water and allowed to settle, the product precipitated as colourless prisms of (I). The product was filtered, washed with water and dried. m.p. 585–594 K. yield: 72%.

Refinement top

The coordinates of H-atoms connected with water molecule and NH2 group were refined. C-bound H-atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C, N, O) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. H-atoms are shown by small spheres of arbitrary radius and hydrogen bonds by dotted lines.
[Figure 2] Fig. 2. A fragment of the packing of (I) showing R11(5) and R21(6) ring motifs.
(I) top
Crystal data top
C9H10N3O+·C7H7O3S·H2OF(000) = 768
Mr = 365.40Dx = 1.404 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 4390 reflections
a = 20.838 (1) Åθ = 2.9–28.9°
b = 6.2769 (3) ŵ = 0.22 mm1
c = 14.7897 (7) ÅT = 296 K
β = 116.676 (1)°Prism, colourless
V = 1728.56 (14) Å30.28 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4390 independent reflections
Radiation source: fine-focus sealed tube3952 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 7.30 pixels mm-1θmax = 28.9°, θmin = 2.9°
ω scansh = 2828
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 86
Tmin = 0.935, Tmax = 0.958l = 1920
9546 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.3201P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4390 reflectionsΔρmax = 0.19 e Å3
243 parametersΔρmin = 0.22 e Å3
2 restraintsAbsolute structure: Flack (1983), 2109 Friedal pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (5)
Crystal data top
C9H10N3O+·C7H7O3S·H2OV = 1728.56 (14) Å3
Mr = 365.40Z = 4
Monoclinic, CcMo Kα radiation
a = 20.838 (1) ŵ = 0.22 mm1
b = 6.2769 (3) ÅT = 296 K
c = 14.7897 (7) Å0.28 × 0.24 × 0.20 mm
β = 116.676 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4390 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3952 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.958Rint = 0.022
9546 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091Δρmax = 0.19 e Å3
S = 1.00Δρmin = 0.22 e Å3
4390 reflectionsAbsolute structure: Flack (1983), 2109 Friedal pairs
243 parametersAbsolute structure parameter: 0.04 (5)
2 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12729 (10)0.3093 (3)0.49282 (14)0.0676 (6)
N10.15599 (8)0.8870 (3)0.40550 (11)0.0404 (4)
N20.19969 (9)0.5856 (3)0.49997 (11)0.0442 (5)
N30.26093 (12)0.4718 (4)0.56765 (18)0.0611 (7)
C10.08550 (9)0.8146 (3)0.36387 (13)0.0421 (5)
C20.02990 (11)0.9399 (4)0.29579 (15)0.0534 (6)
C30.03899 (12)0.8605 (5)0.25562 (17)0.0676 (8)
C40.05286 (12)0.6617 (5)0.28300 (18)0.0723 (9)
C50.00197 (13)0.5380 (4)0.34994 (17)0.0607 (8)
C60.07242 (10)0.6139 (3)0.39165 (14)0.0458 (6)
C70.13149 (12)0.4861 (3)0.46325 (15)0.0483 (7)
C80.21066 (10)0.7761 (3)0.46961 (13)0.0407 (5)
C90.28411 (11)0.8657 (4)0.50903 (18)0.0573 (6)
S10.19585 (2)0.35554 (7)0.26006 (3)0.0413 (1)
O20.19879 (10)0.5841 (2)0.27106 (14)0.0654 (5)
O30.24598 (7)0.2742 (3)0.22604 (11)0.0595 (5)
O40.20275 (8)0.2499 (3)0.35157 (10)0.0551 (4)
C100.10901 (9)0.2884 (3)0.16552 (13)0.0390 (5)
C110.09715 (10)0.0902 (3)0.12006 (14)0.0443 (5)
C120.02813 (11)0.0315 (3)0.05242 (15)0.0504 (6)
C130.02945 (11)0.1669 (4)0.02991 (15)0.0528 (6)
C140.01601 (12)0.3654 (4)0.07515 (18)0.0593 (7)
C150.05282 (11)0.4272 (3)0.14287 (15)0.0497 (6)
C160.10500 (13)0.1024 (6)0.0422 (2)0.0780 (9)
O50.30414 (16)0.8511 (4)0.2540 (3)0.1157 (13)
H10.1621 (12)1.020 (4)0.3909 (17)0.0485*
H20.038971.074320.277720.0641*
H30.076740.941970.209380.0809*
H3A0.2495 (16)0.346 (5)0.551 (2)0.0734*
H3B0.2630 (16)0.493 (5)0.626 (2)0.0734*
H40.099830.611620.255730.0867*
H50.007660.403790.367590.0728*
H9A0.314360.767700.495990.0688*
H9B0.303170.888500.580610.0688*
H9C0.282370.998730.476010.0688*
H110.135280.002980.134860.0532*
H120.020280.101450.021500.0605*
H140.053970.459450.059830.0712*
H150.060920.561330.172690.0596*
H16A0.132440.081670.005320.0934*
H16B0.103870.028000.075430.0934*
H16C0.126810.212260.091840.0934*
H5A0.284 (3)0.949 (8)0.248 (4)0.1388*
H5B0.271 (3)0.770 (8)0.245 (4)0.1388*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0927 (12)0.0463 (8)0.0836 (11)0.0072 (9)0.0571 (10)0.0044 (8)
N10.0439 (7)0.0344 (7)0.0429 (7)0.0061 (6)0.0195 (6)0.0032 (6)
N20.0556 (9)0.0390 (8)0.0417 (8)0.0027 (7)0.0252 (7)0.0019 (6)
N30.0707 (12)0.0523 (12)0.0608 (12)0.0167 (10)0.0299 (10)0.0081 (9)
C10.0436 (8)0.0496 (10)0.0373 (8)0.0099 (7)0.0218 (7)0.0078 (7)
C20.0488 (10)0.0620 (13)0.0474 (10)0.0027 (9)0.0197 (8)0.0049 (9)
C30.0440 (10)0.103 (2)0.0505 (11)0.0070 (11)0.0166 (9)0.0046 (12)
C40.0484 (11)0.114 (2)0.0559 (12)0.0311 (13)0.0247 (10)0.0118 (13)
C50.0637 (12)0.0704 (15)0.0578 (12)0.0289 (11)0.0361 (10)0.0144 (10)
C60.0545 (10)0.0497 (11)0.0427 (9)0.0131 (8)0.0304 (8)0.0092 (8)
C70.0670 (13)0.0425 (11)0.0494 (11)0.0065 (9)0.0387 (10)0.0048 (8)
C80.0475 (9)0.0374 (9)0.0388 (8)0.0016 (7)0.0207 (7)0.0063 (7)
C90.0430 (9)0.0518 (12)0.0664 (12)0.0025 (9)0.0150 (9)0.0011 (10)
S10.0448 (2)0.0404 (2)0.0389 (2)0.0109 (2)0.0191 (2)0.0002 (2)
O20.0721 (9)0.0420 (7)0.0751 (10)0.0179 (8)0.0267 (8)0.0047 (8)
O30.0470 (7)0.0789 (11)0.0566 (8)0.0051 (7)0.0269 (7)0.0023 (7)
O40.0604 (8)0.0616 (9)0.0386 (6)0.0227 (7)0.0180 (6)0.0002 (6)
C100.0436 (8)0.0402 (9)0.0353 (8)0.0043 (7)0.0197 (7)0.0000 (7)
C110.0449 (9)0.0429 (10)0.0463 (9)0.0019 (7)0.0215 (7)0.0053 (7)
C120.0517 (10)0.0508 (11)0.0472 (10)0.0104 (9)0.0209 (8)0.0081 (8)
C130.0438 (9)0.0718 (14)0.0432 (10)0.0085 (9)0.0198 (8)0.0012 (9)
C140.0447 (10)0.0708 (15)0.0591 (13)0.0161 (10)0.0204 (9)0.0053 (10)
C150.0572 (11)0.0434 (10)0.0492 (10)0.0058 (9)0.0246 (9)0.0023 (8)
C160.0473 (12)0.114 (2)0.0647 (16)0.0166 (13)0.0180 (11)0.0023 (15)
O50.1089 (19)0.0754 (15)0.205 (3)0.0269 (14)0.108 (2)0.0230 (18)
Geometric parameters (Å, º) top
S1—O31.4412 (17)C8—C91.482 (3)
S1—O41.4551 (16)C2—H20.9300
S1—O21.4420 (13)C3—H30.9300
S1—C101.7707 (19)C4—H40.9300
O1—C71.210 (3)C5—H50.9300
O5—H5B0.82 (6)C9—H9C0.9600
O5—H5A0.73 (5)C9—H9B0.9600
N1—C11.390 (3)C9—H9A0.9600
N1—C81.308 (3)C10—C111.383 (3)
N2—N31.412 (3)C10—C151.375 (3)
N2—C71.418 (3)C11—C121.383 (3)
N2—C81.333 (3)C12—C131.384 (3)
N1—H10.89 (3)C13—C141.382 (3)
N3—H3A0.83 (3)C13—C161.507 (4)
N3—H3B0.86 (3)C14—C151.386 (3)
C1—C61.390 (3)C11—H110.9300
C1—C21.388 (3)C12—H120.9300
C2—C31.377 (4)C14—H140.9300
C3—C41.382 (4)C15—H150.9300
C4—C51.369 (4)C16—H16C0.9600
C5—C61.396 (4)C16—H16A0.9600
C6—C71.453 (3)C16—H16B0.9600
O2—S1—C10107.61 (11)C2—C3—H3119.00
O2—S1—O3113.02 (12)C5—C4—H4120.00
O2—S1—O4111.53 (11)C3—C4—H4120.00
O4—S1—C10105.38 (9)C4—C5—H5120.00
O3—S1—O4112.26 (10)C6—C5—H5120.00
O3—S1—C10106.50 (9)C8—C9—H9A109.00
H5A—O5—H5B96 (7)C8—C9—H9B109.00
C1—N1—C8123.39 (18)C8—C9—H9C109.00
N3—N2—C7118.69 (19)H9A—C9—H9B109.00
N3—N2—C8117.1 (2)H9A—C9—H9C109.00
C7—N2—C8124.06 (17)H9B—C9—H9C110.00
C1—N1—H1116.1 (17)S1—C10—C11119.63 (15)
C8—N1—H1120.3 (17)S1—C10—C15119.88 (15)
N2—N3—H3A103 (2)C11—C10—C15120.33 (18)
H3A—N3—H3B109 (3)C10—C11—C12119.49 (19)
N2—N3—H3B105 (2)C11—C12—C13121.21 (19)
C2—C1—C6121.2 (2)C12—C13—C14118.2 (2)
N1—C1—C2120.53 (19)C14—C13—C16120.3 (2)
N1—C1—C6118.30 (17)C12—C13—C16121.5 (2)
C1—C2—C3118.5 (2)C13—C14—C15121.4 (2)
C2—C3—C4121.0 (2)C10—C15—C14119.38 (19)
C3—C4—C5120.5 (3)C12—C11—H11120.00
C4—C5—C6119.8 (2)C10—C11—H11120.00
C5—C6—C7120.83 (19)C11—C12—H12119.00
C1—C6—C7120.12 (19)C13—C12—H12119.00
C1—C6—C5119.05 (19)C15—C14—H14119.00
N2—C7—C6114.30 (17)C13—C14—H14119.00
O1—C7—N2119.2 (2)C10—C15—H15120.00
O1—C7—C6126.5 (2)C14—C15—H15120.00
N2—C8—C9120.72 (19)C13—C16—H16B109.00
N1—C8—N2119.8 (2)C13—C16—H16C109.00
N1—C8—C9119.51 (19)C13—C16—H16A109.00
C1—C2—H2121.00H16A—C16—H16C109.00
C3—C2—H2121.00H16B—C16—H16C109.00
C4—C3—H3120.00H16A—C16—H16B109.00
O4—S1—C10—C1178.48 (18)N1—C1—C6—C70.6 (3)
O4—S1—C10—C1596.94 (18)C2—C1—C6—C50.1 (3)
O2—S1—C10—C11162.40 (17)C1—C2—C3—C40.7 (4)
O2—S1—C10—C1522.2 (2)C2—C3—C4—C50.8 (4)
O3—S1—C10—C1140.94 (19)C3—C4—C5—C60.6 (4)
O3—S1—C10—C15143.64 (17)C4—C5—C6—C7179.7 (2)
C1—N1—C8—C9179.25 (18)C4—C5—C6—C10.2 (3)
C8—N1—C1—C60.1 (3)C5—C6—C7—N2179.2 (2)
C1—N1—C8—N21.8 (3)C1—C6—C7—O1179.4 (2)
C8—N1—C1—C2179.68 (19)C1—C6—C7—N20.7 (3)
N3—N2—C7—O12.0 (3)C5—C6—C7—O10.7 (4)
C7—N2—C8—C9177.77 (19)S1—C10—C11—C12174.65 (16)
N3—N2—C7—C6178.09 (19)C15—C10—C11—C120.8 (3)
C8—N2—C7—O1177.4 (2)S1—C10—C15—C14174.44 (17)
C8—N2—C7—C62.7 (3)C11—C10—C15—C140.9 (3)
N3—N2—C8—N1178.78 (19)C10—C11—C12—C130.5 (3)
N3—N2—C8—C92.3 (3)C11—C12—C13—C141.5 (3)
C7—N2—C8—N13.3 (3)C11—C12—C13—C16178.8 (2)
C2—C1—C6—C7179.83 (19)C12—C13—C14—C151.3 (4)
N1—C1—C6—C5179.51 (19)C16—C13—C14—C15179.0 (2)
N1—C1—C2—C3179.3 (2)C13—C14—C15—C100.1 (3)
C6—C1—C2—C30.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.89 (3)1.89 (3)2.734 (3)158 (3)
N3—H3A···O10.83 (3)2.31 (4)2.693 (3)109 (3)
N3—H3B···O3ii0.86 (3)2.22 (3)2.963 (3)146 (3)
O5—H5A···O3i0.73 (5)2.16 (5)2.871 (3)166 (7)
O5—H5B···O20.82 (6)2.07 (6)2.862 (4)162 (5)
C4—H4···O5iii0.932.583.423 (5)152
C9—H9C···O4i0.962.433.251 (3)144
C2—H2···CgCi0.932.843.533 (2)132
S1—O2···CgB1.44 (1)3.17 (1)3.8430 (9)107 (1)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1/2; (iii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC9H10N3O+·C7H7O3S·H2O
Mr365.40
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)20.838 (1), 6.2769 (3), 14.7897 (7)
β (°) 116.676 (1)
V3)1728.56 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.935, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
9546, 4390, 3952
Rint0.022
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.00
No. of reflections4390
No. of parameters243
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.22
Absolute structureFlack (1983), 2109 Friedal pairs
Absolute structure parameter0.04 (5)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.89 (3)1.89 (3)2.734 (3)158 (3)
N3—H3A···O10.83 (3)2.31 (4)2.693 (3)109 (3)
N3—H3B···O3ii0.86 (3)2.22 (3)2.963 (3)146 (3)
O5—H5A···O3i0.73 (5)2.16 (5)2.871 (3)166 (7)
O5—H5B···O20.82 (6)2.07 (6)2.862 (4)162 (5)
C4—H4···O5iii0.932.583.423 (5)152
C9—H9C···O4i0.962.433.251 (3)144
C2—H2···CgCi0.932.843.533 (2)132
S1—O2···CgB1.4420 (13)3.169 (2)3.8430 (9)106.86 (10)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1/2; (iii) x1/2, y1/2, z.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore.

References

First citationAtkinson, R. S. & Meades, C. K. (2000). Tetrahedron Lett. 41, 7769–7772.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGlaser, T. & Traber, J. (1984). Inflamm. Res. 15, 341–348.  CAS Google Scholar
First citationHavera, H. J. (1979). J. Med. Chem. 22, 1548–1550.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHori, M., Iemura, R., Hara, H., Ozaki, A., Sukamoto, T. & Ohtaka, H. (1990). Chem. Pharm. Bull. 38, 681–687.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLiverton, N. J., Armstrong, D. J., Claremon, D. A., Remy, D. C., Bardwin, J. J., Lynch, R. J., Zhang, G. & Gould, R. J. (1998). Bioorg. Med. Chem. Lett. 8, 483–486.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1051
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds