organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1082

5-(1,3-Di­thiolo[4,5-d][1,3]di­thiol-2-yl­­idene)-1,3-di­thiolo[4,5-c][1,2,5]thia­diazole: an unsymmetrical tetra­thia­fulvalene with fused 1,2,5-thia­diazole and 1,3-di­thiole rings

aInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan, and bDepartment of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
*Correspondence e-mail: tomura@ims.ac.jp

(Received 13 April 2009; accepted 16 April 2009; online 22 April 2009)

The title unsymmetrical tetra­thia­fulvalene (TTF), C7H2N2S7, contains fused 1,2,5-thia­diazole and 1,3-dithiole rings and is a component mol­ecule for conducting organic solids. The TTF mol­ecule is disordered crystallographically over two orientations related by an inversion center, where each site is half-occupied. The mol­ecule is almost planar with an r.m.s. deviation of 0.096 Å. In the crystal structure, mol­ecules are linked by short inter­molecular S⋯S inter­actions [3.47 (2), 3.507 (8) and 3.517 (13) Å].

Related literature

For general background, see: Williams et al. (1992[Williams, J. M., Ferraro, J. R., Thorn, R. J., Carlson, K. D., Geiser, U., Wang, H. H., Kini, A. M. & Whangbo, M. H. (1992). Organic Superconductors. Englewood Cliffs: Prentice Hall.]); Ishiguro et al. (1998[Ishiguro, T., Yamaji, K. & Saito, G. (1998). Organic Superconductors, edited by P. Fulde, Springer Series Solid-State Science, Vol. 88. Berlin, Heidelberg: Springer.]); Yamashita & Tomura (1998[Yamashita, Y. & Tomura, M. (1998). J. Mater. Chem. 8, 1933-1944.]). For the synthesis of the title compound, see: Tomura & Yamashita (1997[Tomura, M. & Yamashita, Y. (1997). Synth. Met. 86, 1871-1872.]). For unsymmetrical TTF derivatives with a fused 1,2,5-thia­diazole ring, see: Tomura et al. (1993[Tomura, M., Tanaka, S. & Yamashita, Y. (1993). Heterocycles, 35, 69-72.]); Underhill et al. (1993[Underhill, A. E., Hawkins, I., Edge, S. & Wilkes, S. B. (1993). Synth. Met. 56, 1914-1919.]); Naito et al. (1996[Naito, T., Kobayashi, A., Kobayashi, H. & Underhill, A. E. (1996). Chem. Commun. pp. 521-522.]); Tomura & Yamashita (2003[Tomura, M. & Yamashita, Y. (2003). Acta Cryst. E59, o145-o147.]); Tomura & Yamashita (2004[Tomura, M. & Yamashita, Y. (2004). Acta Cryst. E60, o63-o65.]). For values of van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • C7H2N2S7

  • Mr = 338.60

  • Monoclinic, C 2/c

  • a = 27.42 (3) Å

  • b = 4.051 (3) Å

  • c = 11.047 (10) Å

  • β = 113.020 (15)°

  • V = 1129.4 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 291 K

  • 0.10 × 0.05 × 0.01 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: none

  • 4788 measured reflections

  • 1639 independent reflections

  • 737 reflections with I > 2σ(I)

  • Rint = 0.176

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.131

  • S = 0.84

  • 1639 reflections

  • 146 parameters

  • 37 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: TEXSAN (Rigaku, 2004[Rigaku (2004). TEXSAN. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tetrathiafulvalene (TTF) derivatives with a fused 1,2,5-thiadiazole ring have received much attention as component molecules for conducting organic solids (Tomura et al., 1993; Underhill et al., 1993; Naito et al., 1996; Tomura & Yamashita, 2003; Tomura & Yamashita, 2004). Intermolecular interactions caused by S···N and S···S heteroatom contacts may increase the dimensionality in solid states and suppress metal-insulator transitions (Williams et al., 1992; Ishiguro et al., 1998). In addition, such interactions may lead to the formation of unique molecular networks which have special functions such as inclusion properties (Yamashita & Tomura, 1998). We report here the molecular and crystal structure of an unsymmetrical TTF derivative (I), which contains fused 1,2,5-thiadiazole and 1,3-dithiole rings (Fig. 1).

The center of the unsymmetrical TTF molecule (I) is located on an inversion center. Thus, the molecule is disordered crystallographically over two orientations related by the inversion center. Each site is half-occupied and the total site occupation factor (s.o.f.) equals 1.0. This type of disorder was not observed in the crystal of the unsymmetrical tetrathiafulvalene with fused 1,2,5-thiadiazole and 2,3-dihydro-1,4-dioxine rings (Tomura & Yamashita, 2003). Geometric resemblance between 5-membered 1,2,5-thiadiazole and 1,3-dithiole rings causes this disorder in the crystal of (I). Superlattice reflection was not observed on CCD images. This fact also suggests crystallographic disorder in the crystal. The molecular framework is almost planar with an r.m.s. deviation of 0.096 Å from the least-squares plane. The [1,3]dithiolo[4,5-c][1,2,5]thiadiazole framework (S5/S6/S7/N1/N2/C5/C6/C7) is also planar with an r.m.s. deviation of 0.045 Å, while an r.m.s. deviation for the [1,3]dithiolo[4,5-d][1,3]dithiole plane (S1/S2/S3/S4/C1/C2/C3/C4) is large (0.104 Å). The deviations of S3, S4 and C4 atoms from the plane are -0.11 (1), -0.18 (1) and 0.18 (2) Å, respectively. The angle between the two plane is 3.0 (9)°. In the crystal structure, the molecules are linked via short intermolecular S···S interactions [3.517 (13) for S3—S4(x, -y, z - 1/2), 3.47 (2) for S5—S6(x, -y, z - 1/2) and 3.507 (8) Å for S7—S7(-x, -y, -z)] (Fig. 2). The S···S interactions are 2.3–3.6% shorter than the sum of the corresponding van der Waals radii (Bondi, 1964). No short intermolecular S···N interaction was observed.

Related literature top

For general background, see: Williams et al. (1992); Ishiguro et al. (1998); Yamashita & Tomura (1998). For the synthesis of the title compound, see: Tomura & Yamashita (1997). For unsymmetrical TTF derivatives with a fused 1,2,5-thiadiazole ring, see: Tomura et al. (1993); Underhill et al. (1993); Naito et al. (1996); Tomura & Yamashita (2003); Tomura & Yamashita (2004). For values of van der Waals radii, see: Bondi (1964).

Experimental top

The title compound was synthesized according to the literature method (Tomura & Yamashita, 1997). Greenish-brown plates of (I) were grown from a toluene solution.

Refinement top

The molecule (I) was located on an inversion center and was disordered crystallographically over two orientations related by the inversion center. Thus, the occupancy of all atoms was fixed to 0.5. All the H atoms were placed in geometrically calculated positions and refined using a riding model, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). The refinement was slightly unstable, with some oscillating paramter shifts.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: TEXSAN (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms and H atoms are shown as small spheres of arbitrary radii. One component of the disordered molecule is shown.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the b axis. Dashed lines indicate intermolecular S···S interactions. One component of the disordered molecule is shown.
5-(1,3-Dithiolo[4,5-d][1,3]dithiol-2-ylidene)-1,3- dithiolo[4,5-c][1,2,5]thiadiazole top
Crystal data top
C7H2N2S7F(000) = 680
Mr = 338.60Dx = 1.991 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 1272 reflections
a = 27.42 (3) Åθ = 2.0–30.3°
b = 4.051 (3) ŵ = 1.36 mm1
c = 11.047 (10) ÅT = 291 K
β = 113.020 (15)°Platelet, green–brown
V = 1129.4 (18) Å30.10 × 0.05 × 0.01 mm
Z = 4
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
737 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.176
Confocal monochromatorθmax = 31.0°, θmin = 3.2°
Detector resolution: 14.63 pixels mm-1h = 3935
ϕ and ω scansk = 55
4788 measured reflectionsl = 1515
1639 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0051P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.84(Δ/σ)max = 0.135
1639 reflectionsΔρmax = 0.42 e Å3
146 parametersΔρmin = 0.41 e Å3
37 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0064 (8)
Crystal data top
C7H2N2S7V = 1129.4 (18) Å3
Mr = 338.60Z = 4
Monoclinic, C2/cMo Kα radiation
a = 27.42 (3) ŵ = 1.36 mm1
b = 4.051 (3) ÅT = 291 K
c = 11.047 (10) Å0.10 × 0.05 × 0.01 mm
β = 113.020 (15)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
737 reflections with I > 2σ(I)
4788 measured reflectionsRint = 0.176
1639 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05237 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 0.84(Δ/σ)max = 0.135
1639 reflectionsΔρmax = 0.42 e Å3
146 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.3251 (4)0.093 (4)0.1411 (15)0.045 (2)0.50
S20.2922 (4)0.410 (3)0.1189 (10)0.0329 (12)0.50
S30.4100 (3)0.388 (3)0.0802 (9)0.0541 (13)0.50
S40.4378 (2)0.0369 (16)0.1767 (6)0.0487 (12)0.50
C10.2792 (6)0.222 (4)0.0102 (19)0.026 (2)0.50
C20.3615 (8)0.325 (7)0.018 (2)0.045 (5)0.50
C30.3735 (8)0.185 (13)0.091 (4)0.037 (5)0.50
C40.4602 (7)0.284 (6)0.0755 (16)0.114 (12)0.50
H4A0.47520.48620.12220.137*0.50
H4B0.48830.16680.06090.137*0.50
S50.1724 (4)0.394 (4)0.1612 (15)0.0391 (17)0.50
S60.2003 (4)0.029 (3)0.0999 (10)0.0320 (11)0.50
S70.04227 (19)0.2329 (14)0.0516 (6)0.0621 (12)0.50
C50.2283 (7)0.206 (4)0.0082 (19)0.028 (3)0.50
C60.1193 (8)0.320 (12)0.102 (4)0.042 (5)0.50
C70.1363 (6)0.153 (7)0.031 (2)0.039 (5)0.50
N10.0679 (7)0.362 (5)0.1582 (19)0.052 (5)0.50
N20.0974 (7)0.090 (9)0.067 (2)0.054 (6)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.054 (3)0.058 (3)0.021 (4)0.000 (2)0.013 (2)0.002 (3)
S20.025 (3)0.045 (4)0.021 (3)0.0144 (17)0.0004 (19)0.0080 (17)
S30.038 (2)0.090 (3)0.0441 (17)0.002 (2)0.0270 (17)0.005 (2)
S40.0308 (14)0.068 (3)0.0469 (17)0.0016 (18)0.0152 (12)0.004 (2)
C10.027 (4)0.023 (6)0.030 (4)0.015 (4)0.014 (3)0.006 (4)
C20.045 (9)0.064 (12)0.041 (8)0.021 (7)0.034 (7)0.012 (7)
C30.012 (4)0.061 (13)0.030 (7)0.013 (5)0.002 (4)0.005 (8)
C40.038 (10)0.18 (3)0.113 (18)0.006 (13)0.012 (9)0.035 (17)
S50.0292 (19)0.070 (4)0.017 (3)0.0054 (19)0.0081 (15)0.005 (2)
S60.025 (3)0.044 (4)0.020 (3)0.0109 (18)0.002 (2)0.0072 (17)
S70.040 (2)0.084 (3)0.0738 (19)0.008 (2)0.0353 (16)0.020 (2)
C50.031 (5)0.026 (7)0.027 (4)0.020 (4)0.012 (4)0.008 (4)
C60.047 (11)0.054 (15)0.028 (11)0.008 (11)0.020 (10)0.002 (8)
C70.024 (7)0.055 (10)0.027 (6)0.017 (7)0.002 (5)0.017 (6)
N10.034 (6)0.070 (12)0.060 (9)0.007 (6)0.029 (6)0.013 (6)
N20.022 (5)0.105 (11)0.042 (8)0.001 (6)0.019 (4)0.002 (7)
Geometric parameters (Å, º) top
S1—C31.67 (4)C4—H4B0.9700
S1—C11.59 (2)S5—C51.94 (2)
S2—C11.77 (3)S5—C61.84 (3)
S2—C21.82 (2)S6—C71.694 (18)
S3—C21.739 (12)S6—C51.80 (3)
S3—C41.784 (13)S7—N21.669 (15)
S4—C31.749 (13)S7—N11.674 (13)
S4—C41.779 (13)C6—N11.311 (14)
C1—C51.331 (8)C6—C71.52 (4)
C2—C31.25 (4)C7—N21.300 (14)
C4—H4A0.9700
S3···S4i3.517 (13)S7···S7ii3.507 (8)
S5···S6i3.47 (2)
C3—S1—C194.3 (15)S4—C4—H4B108.7
C1—S2—C285.1 (9)H4A—C4—H4B107.6
C2—S3—C490.2 (10)C5—S5—C695.4 (12)
C3—S4—C489.5 (16)C7—S6—C5102.7 (10)
C5—C1—S1122.1 (10)N2—S7—N199.2 (9)
C5—C1—S2115.3 (7)C1—C5—S6127.7 (7)
S1—C1—S2122.5 (12)C1—C5—S5122.6 (8)
C3—C2—S3120 (2)S6—C5—S5109.7 (10)
C3—C2—S2119.6 (16)N1—C6—C7112 (3)
S3—C2—S2120.2 (13)N1—C6—S5132 (3)
C2—C3—S1118.4 (13)C7—C6—S5115.5 (11)
C2—C3—S4120 (3)N2—C7—C6114.0 (17)
S1—C3—S4121 (2)N2—C7—S6129.3 (15)
S3—C4—S4114.4 (11)C6—C7—S6116.1 (13)
S3—C4—H4A108.6C6—N1—S7107 (2)
S4—C4—H4A108.6C7—N2—S7107.0 (13)
S3—C4—H4B108.7
C3—S1—C1—C5179 (2)S1—C1—C5—S5175.1 (18)
C3—S1—C1—S23 (3)S2—C1—C5—S53.0 (11)
C2—S2—C1—C5179.7 (11)C7—S6—C5—C1170.1 (13)
C2—S2—C1—S12.3 (17)C7—S6—C5—S57.9 (15)
C4—S3—C2—C312 (4)C6—S5—C5—C1172.9 (18)
C4—S3—C2—S2175.9 (19)C6—S5—C5—S65 (2)
C1—S2—C2—C30 (4)C5—S5—C6—N1174 (4)
C1—S2—C2—S3171.8 (19)C5—S5—C6—C70 (3)
S3—C2—C3—S1174 (3)N1—C6—C7—N22 (5)
S2—C2—C3—S12 (6)S5—C6—C7—N2177 (3)
S3—C2—C3—S43 (6)N1—C6—C7—S6170 (3)
S2—C2—C3—S4169 (2)S5—C6—C7—S65 (4)
C1—S1—C3—C23 (5)C5—S6—C7—N2179 (3)
C1—S1—C3—S4168 (3)C5—S6—C7—C68 (3)
C4—S4—C3—C216 (5)C7—C6—N1—S74 (4)
C4—S4—C3—S1173 (4)S5—C6—N1—S7178 (4)
C2—S3—C4—S422.8 (18)N2—S7—N1—C64 (3)
C3—S4—C4—S324 (2)C6—C7—N2—S71 (4)
S1—C1—C5—S62.8 (14)S6—C7—N2—S7172 (2)
S2—C1—C5—S6179.2 (14)N1—S7—N2—C73 (3)
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC7H2N2S7
Mr338.60
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)27.42 (3), 4.051 (3), 11.047 (10)
β (°) 113.020 (15)
V3)1129.4 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.10 × 0.05 × 0.01
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4788, 1639, 737
Rint0.176
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.131, 0.84
No. of reflections1639
No. of parameters146
No. of restraints37
H-atom treatmentH-atom parameters constrained
(Δ/σ)max0.135
Δρmax, Δρmin (e Å3)0.42, 0.41

Computer programs: CrystalClear (Rigaku/MSC, 2006), TEXSAN (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationIshiguro, T., Yamaji, K. & Saito, G. (1998). Organic Superconductors, edited by P. Fulde, Springer Series Solid-State Science, Vol. 88. Berlin, Heidelberg: Springer.  Google Scholar
First citationNaito, T., Kobayashi, A., Kobayashi, H. & Underhill, A. E. (1996). Chem. Commun. pp. 521–522.  CSD CrossRef Web of Science Google Scholar
First citationRigaku (2004). TEXSAN. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomura, M., Tanaka, S. & Yamashita, Y. (1993). Heterocycles, 35, 69–72.  CAS Google Scholar
First citationTomura, M. & Yamashita, Y. (1997). Synth. Met. 86, 1871–1872.  CrossRef CAS Web of Science Google Scholar
First citationTomura, M. & Yamashita, Y. (2003). Acta Cryst. E59, o145–o147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTomura, M. & Yamashita, Y. (2004). Acta Cryst. E60, o63–o65.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUnderhill, A. E., Hawkins, I., Edge, S. & Wilkes, S. B. (1993). Synth. Met. 56, 1914–1919.  CSD CrossRef CAS Web of Science Google Scholar
First citationWilliams, J. M., Ferraro, J. R., Thorn, R. J., Carlson, K. D., Geiser, U., Wang, H. H., Kini, A. M. & Whangbo, M. H. (1992). Organic Superconductors. Englewood Cliffs: Prentice Hall.  Google Scholar
First citationYamashita, Y. & Tomura, M. (1998). J. Mater. Chem. 8, 1933–1944.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1082
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds