inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dilead(II) hydrogen­phosphite dinitrate

aLaboratoire d'Ingénierie des Matériaux Organométalliques et Moléculaires, `LIMOM', Département de Chimie, Faculté des Sciences, BP 1796, Fès-Atlas, 30000 Fès, Morocco, bInstitute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic, and cLaboratory of Mineral, Solid and Analytical Chemistry, `LCSMA', Department of Chemistry, Faculty of Sciences, University Mohamed I, PO Box 717, 60000 Oujda, Morocco
*Correspondence e-mail: belbali@fso.ump.ma

(Received 14 April 2009; accepted 17 April 2009; online 25 April 2009)

In the title compound, Pb2(HPO3)(NO3)2, the two distinct Pb2+ ions (both with site symmetry m) adopt irregular PbO10 coordination polyhedra. The structure is completed by two distinct nitrate groups (in which one O atom and the N atom have m site symmetry for both ions) and an HPO32− anion (in which one O atom and the P and H atoms have m site symmetry). The connectivity of the PbO10, NO3 and HPO3 units in the crystal structure results in a three-dimensional network.

Related literature

For related structures, see: Ouarsal et al. (2005a[Ouarsal, R., El Bali, B., Lachkar, M., Dusek, M. & Fejfarova, K. (2005a). Acta Cryst. E61, i168-i170.],b[Ouarsal, R., El Bali, B., Lachkar, M., Dusek, M. & Fejfarova, K. (2005b). Acta Cryst. E61, i171-i173.]); Vasić et al. (1981[Vasić, P., Prelesnik, B., Herak, R. & Čurić, M. (1981). Acta Cryst. B37, 660-662.]). For bond-valence sum calculations, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]).

Experimental

Crystal data
  • Pb2(HPO3)(NO3)2

  • Mr = 618.4

  • Orthorhombic, P m n 21

  • a = 5.4069 (2) Å

  • b = 10.4079 (6) Å

  • c = 7.1958 (4) Å

  • V = 404.94 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 41.76 mm−1

  • T = 120 K

  • 0.25 × 0.10 × 0.05 mm

Data collection
  • Oxford Diffraction CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2005). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.013, Tmax = 0.156

  • 6814 measured reflections

  • 932 independent reflections

  • 919 reflections with I > 3σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.012

  • wR(F2) = 0.030

  • S = 1.25

  • 932 reflections

  • 78 parameters

  • 1 restraint

  • Only H-atom coordinates refined

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.53 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 431 Friedel pairs

  • Flack parameter: 0.01 (1)

Table 1
Selected bond lengths (Å)

Pb1—O1 2.346 (6)
Pb1—O1i 3.042 (3)
Pb1—O3ii 2.418 (4)
Pb1—O4iii 2.884 (4)
Pb1—O6iv 2.881 (7)
Pb1—O6i 3.168 (4)
Pb2—O2v 2.7756 (11)
Pb2—O3ii 2.513 (4)
Pb2—O4ii 2.707 (4)
Pb2—O5vi 2.782 (4)
Pb2—O5vii 2.948 (4)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) -x+1, y, z; (iii) [x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) x, y, z-1; (v) x+1, y+1, z; (vi) [x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (vii) -x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2005). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic. http://www-xray.fzu.cz/jana/jana.html ]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

As part of our ongoing structural stuides of metal hydrogenphosphites (Ouarsal et al. 2005a,b) we now report on the preparation and crystal structure of the title compound, (I).

The structure of (I) consists of two symmetry-independent nitrate groups and one HPO3 hydrogenphosphite tetrahedron. The Pb atoms are located between them in two different crystallographic positions, both of them being irregularly coordinated by ten O atoms (Fig. 1). In the coordination of Pb1, shorter bonds occur causing larger bond valence sum (Brown & Altermatt, 1985) [2.028 (10) and 1.917 (6) for Pb(1)O10 and Pb(2)O10, respectively]. On the other hand, the mean Pb—O distance is rather larger in Pb(1)O10 than in Pb(2)O10, respectively 2.835 (5) Å and 2.745 (6) Å. These values are comparable to those reported in Pb(H2PO4)2, 2.617 Å (Vasić et al., 1981). One can distinguish the two decahedrons by their respective coordination forms: one monodentate NO3 and one monodentate HPO3 occurs in the coordination of Pb1, while two bidentate NO3 contribute to that of Pb2. Accordingly, the polyhedron Pb(1)O10 turns to be more distorted as Pb(2)O10.

Pb2(HPO3)(NO3)2 is characterized by a three-dimensional network. Although this is not a layer structure it is convenient from the explanatory point of view to distinguish two layers as indicated in Fig. 2. The slightly rotated view of a layer along [100] (Fig. 3) reveals strips extended in the c directions that are not interconnected within the same layer. Their connection in the b direction is mediated via the neighbouring layer which is shifted so that its Pb atoms fall into the holes. The shortest Pb—O bonds participate in the connection of the two PbO10 units and in the bond towards the HPO3 tetrahedron. As expected, H1 atom bonded to P is not involved in any hydrogen bonding. Average P—O distance and O—P—O and H—P—O angles are 1.531 (5) Å, 110.4 (2)° and 108.6 (2)° respectively. dP—H = 1.20 (5) Å. These values lie in the same range as the ones previously reported in known phosphites (Ouarsal et al. 2005b).

Related literature top

For related structures, see: Ouarsal et al. (2005a,b); Vasić et al. (1981). For bond-valence sum calculations, see: Brown & Altermatt (1985).

Experimental top

1.6161 g lead nitrate Pb(NO3)2.6H2O was dissolved in 6 ml of distilled water and added to a solution of 0.4 g phosphorous acid H3PO3, dissolved in 5 ml water. The mixture was stirred for 1 h at 333 K, after which time the precipitate obtained was filtered out of the solution. The filtrate was allowed to stand at room temperature until many large, colourless needles of (I) arose. The crystals were recovered by filtration and washed with a water–ethanol (80:20 v/v) mixture.

Refinement top

The H atom was located in a difference map and its position and Uiso values were freely refined.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit and some symmetry-related atoms of (I) showing 60% probability displacement ellipsoids. The various bonds lengths are distinguished by colours and style: indigo-thick up to 2.514 Å, yellow-thick from 2.707 Å to 3.042 Å, yellow-thin-dashed for 3.168 Å. [Symmetry codes: (i) x, y, -1 + z; (ii) 1/2 - x, 1 - y, -1/2 + z; (iii) 3/2 - x, 1 - y, -1/2 + z; (iv) -1/2 - x, 1 - y, -1/2 + z; (v) 1 - x, y, -1 + z; (vi) 1 + x, 1 + y, -1 + z; (vii) -x, 1 + y, -1 + z; (viii) x, 1 + y, -1 + z; (ix) 1/2 + x, 1 - y, -3/2 + z; (x) 1/2 - x, 1 - y, -3/2 + z]
[Figure 2] Fig. 2. A view of the structure of the title compound along [010]. The HPO3 groups are indicated as pink tetraedra. The bonds to Pb are omitted for clarity. The black thick rectangles denote the layers that will be plotted in more details in Fig. 3.
[Figure 3] Fig. 3. The layers indicated in Fig. 2 in a view along the a direction. The first layer (grey, blue and red atoms) is plotted together with all coordinated O atoms. The various bonds lengths are distinguished by the same way as in Fig. 1.
Dilead(II) hydrogenphosphite dinitrate top
Crystal data top
Pb2(HPO3)(NO3)2F(000) = 532
Mr = 618.4Dx = 5.070 Mg m3
Orthorhombic, Pmn21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac -2Cell parameters from 6814 reflections
a = 5.4069 (2) Åθ = 3.4–26.5°
b = 10.4079 (6) ŵ = 41.76 mm1
c = 7.1958 (4) ÅT = 120 K
V = 404.94 (4) Å3Plate, colourless
Z = 20.25 × 0.10 × 0.05 mm
Data collection top
Oxford Diffraction CCD
diffractometer
932 independent reflections
Radiation source: X-ray tube919 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.3438 pixels mm-1θmax = 26.5°, θmin = 3.4°
Rotation method data acquisition using ω scansh = 66
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1313
Tmin = 0.013, Tmax = 0.156l = 99
6814 measured reflections
Refinement top
Refinement on F2Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0004I2]
R[F2 > 2σ(F2)] = 0.012(Δ/σ)max = 0.013
wR(F2) = 0.030Δρmax = 0.94 e Å3
S = 1.25Δρmin = 0.53 e Å3
932 reflectionsExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
78 parametersExtinction coefficient: 48 (5)
1 restraintAbsolute structure: Flack (1983), with 431 Friedel pairs
1 constraintAbsolute structure parameter: 0.01 (1)
Only H-atom coordinates refined
Crystal data top
Pb2(HPO3)(NO3)2V = 404.94 (4) Å3
Mr = 618.4Z = 2
Orthorhombic, Pmn21Mo Kα radiation
a = 5.4069 (2) ŵ = 41.76 mm1
b = 10.4079 (6) ÅT = 120 K
c = 7.1958 (4) Å0.25 × 0.10 × 0.05 mm
Data collection top
Oxford Diffraction CCD
diffractometer
932 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
919 reflections with I > 3σ(I)
Tmin = 0.013, Tmax = 0.156Rint = 0.026
6814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.012Only H-atom coordinates refined
wR(F2) = 0.030Δρmax = 0.94 e Å3
S = 1.25Δρmin = 0.53 e Å3
932 reflectionsAbsolute structure: Flack (1983), with 431 Friedel pairs
78 parametersAbsolute structure parameter: 0.01 (1)
1 restraint
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, JANA2000, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger then the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.50.47428 (2)0.209480.01003 (7)
Pb20.50.84356 (2)0.37011 (5)0.01002 (8)
O10.50.4667 (5)0.5354 (8)0.0147 (15)
P10.50.34607 (15)0.6573 (3)0.0083 (5)
N100.0035 (6)0.4972 (8)0.0103 (17)
O200.0975 (5)0.3893 (8)0.0155 (14)
N20.50.7144 (6)0.7547 (8)0.0134 (18)
O30.2358 (7)0.6561 (4)0.2748 (5)0.0109 (10)
O40.7011 (7)0.7548 (3)0.6898 (6)0.0205 (11)
O50.2007 (7)0.0434 (3)0.5539 (6)0.0194 (11)
O60.50.6317 (6)0.8801 (10)0.033 (2)
H10.50.248 (4)0.568 (10)0.0099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.00890 (14)0.01098 (13)0.01022 (12)000.00077 (12)
Pb20.00891 (15)0.01137 (12)0.00978 (12)000.00032 (9)
O10.012 (3)0.020 (2)0.013 (2)000.002 (2)
P10.0048 (9)0.0110 (8)0.0091 (9)000.0017 (5)
N10.011 (3)0.013 (2)0.007 (3)000.000 (2)
O20.012 (3)0.015 (2)0.019 (2)000.006 (2)
N20.019 (4)0.011 (3)0.010 (3)000.000 (2)
O30.0055 (18)0.0151 (16)0.0123 (17)0.0002 (15)0.0003 (14)0.0033 (11)
O40.0123 (19)0.0226 (16)0.027 (2)0.0012 (15)0.0004 (16)0.0012 (17)
O50.013 (2)0.0235 (17)0.0222 (16)0.0054 (16)0.0001 (18)0.0102 (17)
O60.049 (4)0.030 (3)0.019 (3)000.015 (3)
Geometric parameters (Å, º) top
Pb1—O12.346 (6)Pb2—O4iii2.707 (4)
Pb1—O1i3.042 (3)Pb2—O5vii2.948 (4)
Pb1—O1ii3.042 (3)Pb2—O5i2.782 (4)
Pb1—O32.418 (4)Pb2—O5viii2.782 (4)
Pb1—O3iii2.418 (4)Pb2—O5ix2.948 (4)
Pb1—O4ii2.884 (4)P1—O11.532 (6)
Pb1—O4iv2.884 (4)P1—O3x1.530 (4)
Pb1—O6v2.881 (7)P1—O3xi1.530 (4)
Pb1—O6i3.168 (4)P1—H11.20 (5)
Pb1—O6ii3.168 (4)N1—O21.249 (8)
Pb2—O2vi2.7756 (11)N1—O51.258 (5)
Pb2—O2vii2.7756 (11)N1—O5xii1.258 (5)
Pb2—O32.513 (4)N2—O41.255 (5)
Pb2—O3iii2.513 (4)N2—O4iii1.255 (5)
Pb2—O42.707 (4)N2—O61.247 (9)
O1—Pb1—O1i114.73 (10)O2vii—Pb2—O5i64.37 (14)
O1—Pb1—O1ii114.73 (10)O2vii—Pb2—O5viii109.11 (14)
O1—Pb1—O380.31 (13)O2vii—Pb2—O5ix110.88 (13)
O1—Pb1—O3iii80.31 (13)O3—Pb2—O3iii69.28 (12)
O1—Pb1—O4ii91.22 (13)O3—Pb2—O4101.25 (12)
O1—Pb1—O4iv91.22 (13)O3—Pb2—O4iii74.85 (12)
O1—Pb1—O6v147.26 (18)O3—Pb2—O5vii169.07 (12)
O1—Pb1—O6i66.48 (13)O3—Pb2—O5i109.08 (12)
O1—Pb1—O6ii66.48 (13)O3—Pb2—O5viii83.30 (11)
O1i—Pb1—O1ii125.41 (13)O3—Pb2—O5ix110.97 (11)
O1i—Pb1—O352.92 (13)O3iii—Pb2—O474.85 (12)
O1i—Pb1—O3iii116.57 (13)O3iii—Pb2—O4iii101.25 (12)
O1i—Pb1—O4ii130.14 (13)O3iii—Pb2—O5vii110.97 (11)
O1i—Pb1—O4iv69.42 (12)O3iii—Pb2—O5i83.30 (11)
O1i—Pb1—O6v63.03 (9)O3iii—Pb2—O5viii109.08 (12)
O1i—Pb1—O6i58.09 (14)O3iii—Pb2—O5ix169.07 (12)
O1i—Pb1—O6ii171.25 (15)O4—Pb2—O4iii47.35 (12)
O1ii—Pb1—O3116.57 (13)O4—Pb2—O5vii68.85 (11)
O1ii—Pb1—O3iii52.92 (13)O4—Pb2—O5i133.06 (12)
O1ii—Pb1—O4ii69.42 (12)O4—Pb2—O5viii174.94 (11)
O1ii—Pb1—O4iv130.14 (13)O4—Pb2—O5ix94.59 (12)
O1ii—Pb1—O6v63.03 (9)O4iii—Pb2—O5vii94.59 (12)
O1ii—Pb1—O6i171.25 (15)O4iii—Pb2—O5i174.94 (11)
O1ii—Pb1—O6ii58.09 (14)O4iii—Pb2—O5viii133.06 (12)
O3—Pb1—O3iii72.44 (12)O4iii—Pb2—O5ix68.85 (11)
O3—Pb1—O4ii171.11 (12)O5vii—Pb2—O5i81.63 (12)
O3—Pb1—O4iv109.00 (12)O5vii—Pb2—O5viii106.42 (11)
O3—Pb1—O6v73.43 (14)O5vii—Pb2—O5ix66.57 (11)
O3—Pb1—O6i72.12 (14)O5i—Pb2—O5viii45.92 (11)
O3—Pb1—O6ii134.56 (15)O5i—Pb2—O5ix106.42 (11)
O3iii—Pb1—O4ii109.00 (12)O5viii—Pb2—O5ix81.63 (12)
O3iii—Pb1—O4iv171.11 (12)Pb1—O1—P1126.8 (3)
O3iii—Pb1—O6v73.43 (14)O1—P1—O3x109.20 (18)
O3iii—Pb1—O6i134.56 (15)O1—P1—O3xi109.20 (18)
O3iii—Pb1—O6ii72.12 (14)O1—P1—H1113 (3)
O4ii—Pb1—O4iv68.18 (11)O3x—P1—O3xi112.8 (2)
O4ii—Pb1—O6v115.45 (13)O3x—P1—H1106.4 (16)
O4ii—Pb1—O6i102.09 (13)O3xi—P1—H1106.4 (16)
O4ii—Pb1—O6ii41.64 (14)O2—N1—O5120.4 (3)
O4iv—Pb1—O6v115.45 (13)O2—N1—O5xii120.4 (3)
O4iv—Pb1—O6i41.64 (14)O5—N1—O5xii119.3 (5)
O4iv—Pb1—O6ii102.09 (13)Pb2xiii—O2—Pb2xiv153.8 (2)
O6v—Pb1—O6i121.12 (11)Pb2xiii—O2—N1101.78 (11)
O6v—Pb1—O6ii121.12 (11)O4—N2—O4iii120.0 (5)
O6i—Pb1—O6ii117.19 (15)O4—N2—O6120.0 (3)
O2vi—Pb2—O2vii153.82 (14)O4iii—N2—O6120.0 (3)
O2vi—Pb2—O368.37 (13)Pb1—O3—Pb2108.96 (14)
O2vi—Pb2—O3iii137.63 (13)Pb1—O3—P1i111.9 (2)
O2vi—Pb2—O4115.10 (14)Pb2—O3—P1i129.5 (2)
O2vi—Pb2—O4iii69.02 (14)Pb1xv—O4—Pb2123.29 (14)
O2vi—Pb2—O5vii110.88 (13)Pb1xv—O4—N2101.0 (3)
O2vi—Pb2—O5i109.11 (14)Pb2—O4—N294.7 (3)
O2vi—Pb2—O5viii64.37 (14)Pb2xiii—O5—Pb2x151.56 (16)
O2vi—Pb2—O5ix44.54 (13)Pb2xiii—O5—N193.1 (3)
O2vii—Pb2—O3137.63 (13)Pb2x—O5—N195.3 (3)
O2vii—Pb2—O3iii68.37 (13)Pb1xvi—O6—N2171.0 (5)
O2vii—Pb2—O469.02 (14)Pb1xvi—O6—O4148.84 (17)
O2vii—Pb2—O4iii115.10 (14)Pb1xvi—O6—O4iii148.84 (17)
O2vii—Pb2—O5vii44.54 (13)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+3/2, y+1, z1/2; (iii) x+1, y, z; (iv) x1/2, y+1, z1/2; (v) x, y, z1; (vi) x, y+1, z; (vii) x+1, y+1, z; (viii) x+1/2, y+1, z1/2; (ix) x, y+1, z; (x) x+1/2, y+1, z+1/2; (xi) x+1/2, y+1, z+1/2; (xii) x, y, z; (xiii) x1, y1, z; (xiv) x, y1, z; (xv) x+3/2, y+1, z+1/2; (xvi) x, y, z+1.

Experimental details

Crystal data
Chemical formulaPb2(HPO3)(NO3)2
Mr618.4
Crystal system, space groupOrthorhombic, Pmn21
Temperature (K)120
a, b, c (Å)5.4069 (2), 10.4079 (6), 7.1958 (4)
V3)404.94 (4)
Z2
Radiation typeMo Kα
µ (mm1)41.76
Crystal size (mm)0.25 × 0.10 × 0.05
Data collection
DiffractometerOxford Diffraction CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.013, 0.156
No. of measured, independent and
observed [I > 3σ(I)] reflections
6814, 932, 919
Rint0.026
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.012, 0.030, 1.25
No. of reflections932
No. of parameters78
No. of restraints1
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.94, 0.53
Absolute structureFlack (1983), with 431 Friedel pairs
Absolute structure parameter0.01 (1)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2008), SIR97 (Altomare et al., 1999), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Selected bond lengths (Å) top
Pb1—O12.346 (6)Pb2—O2v2.7756 (11)
Pb1—O1i3.042 (3)Pb2—O3ii2.513 (4)
Pb1—O3ii2.418 (4)Pb2—O4ii2.707 (4)
Pb1—O4iii2.884 (4)Pb2—O5vi2.782 (4)
Pb1—O6iv2.881 (7)Pb2—O5vii2.948 (4)
Pb1—O6i3.168 (4)
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1, y, z; (iii) x1/2, y+1, z1/2; (iv) x, y, z1; (v) x+1, y+1, z; (vi) x+1/2, y+1, z1/2; (vii) x, y+1, z.
 

Acknowledgements

This work was supported by the Grant Agency of the Czech Republic (grant No. 202/06/0757).

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOuarsal, R., El Bali, B., Lachkar, M., Dusek, M. & Fejfarova, K. (2005a). Acta Cryst. E61, i168–i170.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOuarsal, R., El Bali, B., Lachkar, M., Dusek, M. & Fejfarova, K. (2005b). Acta Cryst. E61, i171–i173.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationOxford Diffraction (2005). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic. http://www-xray.fzu.cz/jana/jana.html  Google Scholar
First citationVasić, P., Prelesnik, B., Herak, R. & Čurić, M. (1981). Acta Cryst. B37, 660–662.  CrossRef Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds