Experimental
Crystal data
C7H10N+·H2PO4−·H3PO4 Mr = 303.14 Monoclinic, P 21 /c a = 10.8769 (10) Å b = 7.938 (4) Å c = 15.302 (3) Å β = 91.57 (2)° V = 1320.7 (7) Å3 Z = 4 Ag Kα radiation μ = 0.19 mm−1 T = 298 K 0.37 × 0.31 × 0.25 mm
|
Data collection
Enraf–Nonius CAD-4 diffractometer Absorption correction: none 5416 measured reflections 5250 independent reflections 4134 reflections with I > 2σ(I) Rint = 0.013 2 standard reflections frequency: 120 min intensity decay: 18%
|
P1—O3 | 1.4964 (9) | P1—O4 | 1.5092 (10) | P1—O2 | 1.5571 (9) | P1—O1 | 1.5707 (9) | P2—O8 | 1.4942 (9) | P2—O5 | 1.5422 (10) | P2—O7 | 1.5445 (10) | P2—O6 | 1.5493 (10) | | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O1—H1⋯O4i | 0.82 | 1.83 | 2.6483 (16) | 178 | O2—H2⋯O8i | 0.82 | 1.80 | 2.6132 (13) | 170 | O5—H5⋯O3 | 0.82 | 1.72 | 2.5351 (15) | 176 | O6—H6⋯O8ii | 0.82 | 1.81 | 2.6223 (16) | 170 | O7—H7⋯O4iii | 0.82 | 1.69 | 2.5109 (13) | 177 | N1—H1A⋯O1i | 0.89 | 2.08 | 2.9627 (16) | 172 | N1—H1B⋯O3 | 0.89 | 1.91 | 2.7808 (19) | 164 | N1—H1C⋯O7iv | 0.89 | 2.18 | 3.0086 (15) | 154 | Symmetry codes: (i) ; (ii) -x, -y+1, -z+2; (iii) ; (iv) x, y-1, z. | |
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND Brandenburg (2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
A solution of orthophosphoric acid (0.50 mmol in 30 ml of water) was added drop by drop to an ethanolic solution of 2-methylaniline (2.336 mmol in 5 ml). The so-obtained solution was slowly evaporated at room temperature, until colourless prisms of (I) formed.
The H atoms were fixed geometrically and treated as riding with C—H = 0.93Å, N—H = 0.89 Å and O—H = 0.82 Å with Uiso(H) = 1.2 Ueq(carrier).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND Brandenburg (2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
2-Methylanilinium dihydrogen phosphate–phosphoric acid (1/1)
top Crystal data top C7H10N+·H2PO4−·H3PO4 | F(000) = 632 |
Mr = 303.14 | Dx = 1.525 Mg m−3 |
Monoclinic, P21/c | Ag Kα radiation, λ = 0.56085 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 10.8769 (10) Å | θ = 8–12° |
b = 7.938 (4) Å | µ = 0.19 mm−1 |
c = 15.302 (3) Å | T = 298 K |
β = 91.57 (2)° | Prism, colorless |
V = 1320.7 (7) Å3 | 0.37 × 0.31 × 0.25 mm |
Z = 4 | |
Data collection top Enraf–Nonius CAD-4 diffractometer | θmax = 26.0°, θmin = 2.1° |
Radiation source: fine-focus sealed tube | h = −16→16 |
Nonprofiled ω scans | k = 0→12 |
5416 measured reflections | l = 0→23 |
5250 independent reflections | 2 standard reflections every 120 min |
4134 reflections with I > 2σ(I) | intensity decay: 18% |
Rint = 0.013 | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0493P)2 + 0.181P] where P = (Fo2 + 2Fc2)/3 |
5250 reflections | (Δ/σ)max = 0.001 |
170 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
Crystal data top C7H10N+·H2PO4−·H3PO4 | V = 1320.7 (7) Å3 |
Mr = 303.14 | Z = 4 |
Monoclinic, P21/c | Ag Kα radiation, λ = 0.56085 Å |
a = 10.8769 (10) Å | µ = 0.19 mm−1 |
b = 7.938 (4) Å | T = 298 K |
c = 15.302 (3) Å | 0.37 × 0.31 × 0.25 mm |
β = 91.57 (2)° | |
Data collection top Enraf–Nonius CAD-4 diffractometer | Rint = 0.013 |
5416 measured reflections | 2 standard reflections every 120 min |
5250 independent reflections | intensity decay: 18% |
4134 reflections with I > 2σ(I) | |
Refinement top R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.30 e Å−3 |
5250 reflections | Δρmin = −0.41 e Å−3 |
170 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
P1 | 0.08064 (3) | 0.43847 (3) | 0.736601 (16) | 0.02322 (6) | |
P2 | 0.10749 (3) | 0.71819 (3) | 0.986049 (17) | 0.02487 (7) | |
O1 | −0.06037 (8) | 0.40074 (11) | 0.74454 (6) | 0.03314 (17) | |
H1 | −0.0695 | 0.3079 | 0.7670 | 0.050* | |
O2 | 0.13778 (8) | 0.28822 (10) | 0.68641 (6) | 0.03396 (18) | |
H2 | 0.0974 | 0.2708 | 0.6413 | 0.051* | |
O3 | 0.14542 (9) | 0.44285 (11) | 0.82411 (5) | 0.03420 (18) | |
O4 | 0.08566 (9) | 0.59919 (10) | 0.68413 (6) | 0.03335 (18) | |
O5 | 0.19612 (9) | 0.70906 (12) | 0.90923 (6) | 0.0394 (2) | |
H5 | 0.1806 | 0.6250 | 0.8798 | 0.059* | |
O6 | 0.14555 (9) | 0.58760 (11) | 1.05701 (6) | 0.0372 (2) | |
H6 | 0.1003 | 0.5052 | 1.0530 | 0.056* | |
O7 | 0.13831 (9) | 0.89278 (10) | 1.02544 (5) | 0.03362 (18) | |
H7 | 0.1232 | 0.8928 | 1.0776 | 0.050* | |
O8 | −0.02457 (8) | 0.69700 (11) | 0.95881 (6) | 0.03445 (18) | |
N1 | 0.20745 (9) | 0.11752 (14) | 0.87628 (7) | 0.0355 (2) | |
H1A | 0.1698 | 0.0513 | 0.8370 | 0.053* | |
H1B | 0.1808 | 0.2228 | 0.8695 | 0.053* | |
H1C | 0.1910 | 0.0818 | 0.9298 | 0.053* | |
C1 | 0.34057 (12) | 0.11198 (18) | 0.86394 (10) | 0.0400 (3) | |
C2 | 0.41777 (14) | 0.1876 (2) | 0.92552 (12) | 0.0517 (4) | |
C3 | 0.54313 (16) | 0.1826 (3) | 0.90905 (19) | 0.0797 (7) | |
H3C | 0.5986 | 0.2305 | 0.9492 | 0.096* | |
C4 | 0.58628 (19) | 0.1090 (4) | 0.8354 (2) | 0.0930 (8) | |
H4C | 0.6702 | 0.1099 | 0.8252 | 0.112* | |
C5 | 0.5070 (2) | 0.0340 (4) | 0.7763 (2) | 0.0930 (8) | |
H5C | 0.5374 | −0.0182 | 0.7269 | 0.112* | |
C6 | 0.38195 (18) | 0.0357 (3) | 0.78970 (14) | 0.0643 (5) | |
H6C | 0.3272 | −0.0136 | 0.7496 | 0.077* | |
C7 | 0.3703 (2) | 0.2703 (4) | 1.00570 (16) | 0.0795 (7) | |
H7A | 0.3238 | 0.1902 | 1.0382 | 0.119* | |
H7B | 0.3185 | 0.3634 | 0.9890 | 0.119* | |
H7C | 0.4382 | 0.3104 | 1.0413 | 0.119* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
P1 | 0.03254 (13) | 0.01806 (11) | 0.01906 (11) | 0.00111 (9) | 0.00062 (9) | −0.00078 (8) |
P2 | 0.03360 (14) | 0.02046 (11) | 0.02043 (11) | −0.00449 (9) | −0.00143 (9) | 0.00068 (9) |
O1 | 0.0333 (4) | 0.0282 (4) | 0.0379 (4) | −0.0007 (3) | 0.0019 (3) | 0.0069 (3) |
O2 | 0.0416 (5) | 0.0282 (4) | 0.0317 (4) | 0.0095 (3) | −0.0053 (3) | −0.0105 (3) |
O3 | 0.0498 (5) | 0.0286 (4) | 0.0238 (4) | −0.0003 (3) | −0.0071 (3) | −0.0040 (3) |
O4 | 0.0491 (5) | 0.0222 (3) | 0.0292 (4) | 0.0023 (3) | 0.0101 (3) | 0.0047 (3) |
O5 | 0.0494 (5) | 0.0385 (5) | 0.0309 (4) | −0.0126 (4) | 0.0104 (4) | −0.0106 (4) |
O6 | 0.0437 (5) | 0.0286 (4) | 0.0387 (5) | −0.0069 (3) | −0.0126 (4) | 0.0104 (3) |
O7 | 0.0533 (5) | 0.0225 (3) | 0.0252 (4) | −0.0075 (3) | 0.0034 (3) | −0.0037 (3) |
O8 | 0.0366 (4) | 0.0299 (4) | 0.0363 (4) | −0.0056 (3) | −0.0082 (3) | 0.0101 (3) |
N1 | 0.0315 (5) | 0.0339 (5) | 0.0409 (5) | −0.0036 (4) | −0.0042 (4) | 0.0062 (4) |
C1 | 0.0318 (5) | 0.0355 (6) | 0.0526 (8) | 0.0023 (5) | −0.0013 (5) | 0.0065 (6) |
C2 | 0.0360 (6) | 0.0522 (9) | 0.0662 (10) | 0.0007 (6) | −0.0108 (6) | −0.0003 (8) |
C3 | 0.0317 (7) | 0.0912 (16) | 0.1154 (19) | 0.0004 (9) | −0.0107 (10) | −0.0069 (14) |
C4 | 0.0366 (8) | 0.123 (2) | 0.120 (2) | 0.0120 (11) | 0.0082 (11) | −0.0074 (19) |
C5 | 0.0630 (13) | 0.113 (2) | 0.105 (2) | 0.0177 (13) | 0.0272 (13) | −0.0215 (17) |
C6 | 0.0528 (9) | 0.0726 (12) | 0.0677 (11) | 0.0044 (9) | 0.0066 (8) | −0.0128 (10) |
C7 | 0.0610 (12) | 0.1016 (18) | 0.0752 (14) | −0.0020 (11) | −0.0123 (10) | −0.0313 (13) |
Geometric parameters (Å, º) top P1—O3 | 1.4964 (9) | N1—H1C | 0.8900 |
P1—O4 | 1.5092 (10) | C1—C6 | 1.374 (2) |
P1—O2 | 1.5571 (9) | C1—C2 | 1.382 (2) |
P1—O1 | 1.5707 (9) | C2—C3 | 1.394 (2) |
P2—O8 | 1.4942 (9) | C2—C7 | 1.496 (3) |
P2—O5 | 1.5422 (10) | C3—C4 | 1.365 (4) |
P2—O7 | 1.5445 (10) | C3—H3C | 0.9300 |
P2—O6 | 1.5493 (10) | C4—C5 | 1.368 (4) |
O1—H1 | 0.8200 | C4—H4C | 0.9300 |
O2—H2 | 0.8200 | C5—C6 | 1.381 (3) |
O5—H5 | 0.8200 | C5—H5C | 0.9300 |
O6—H6 | 0.8200 | C6—H6C | 0.9300 |
O7—H7 | 0.8200 | C7—H7A | 0.9600 |
N1—C1 | 1.4659 (16) | C7—H7B | 0.9600 |
N1—H1A | 0.8900 | C7—H7C | 0.9600 |
N1—H1B | 0.8900 | | |
| | | |
O3—P1—O4 | 115.69 (5) | C6—C1—N1 | 117.83 (14) |
O3—P1—O2 | 105.94 (5) | C2—C1—N1 | 118.88 (14) |
O4—P1—O2 | 111.37 (6) | C1—C2—C3 | 116.33 (18) |
O3—P1—O1 | 111.84 (6) | C1—C2—C7 | 122.21 (15) |
O4—P1—O1 | 104.60 (5) | C3—C2—C7 | 121.46 (18) |
O2—P1—O1 | 107.21 (5) | C4—C3—C2 | 121.5 (2) |
O8—P2—O5 | 113.47 (6) | C4—C3—H3C | 119.3 |
O8—P2—O7 | 113.99 (6) | C2—C3—H3C | 119.3 |
O5—P2—O7 | 101.89 (5) | C3—C4—C5 | 120.51 (19) |
O8—P2—O6 | 110.89 (5) | C3—C4—H4C | 119.7 |
O5—P2—O6 | 110.01 (6) | C5—C4—H4C | 119.7 |
O7—P2—O6 | 106.02 (6) | C4—C5—C6 | 120.2 (2) |
P1—O1—H1 | 109.5 | C4—C5—H5C | 119.9 |
P1—O2—H2 | 109.5 | C6—C5—H5C | 119.9 |
P2—O5—H5 | 109.5 | C1—C6—C5 | 118.3 (2) |
P2—O6—H6 | 109.5 | C1—C6—H6C | 120.9 |
P2—O7—H7 | 109.5 | C5—C6—H6C | 120.9 |
C1—N1—H1A | 109.5 | C2—C7—H7A | 109.5 |
C1—N1—H1B | 109.5 | C2—C7—H7B | 109.5 |
H1A—N1—H1B | 109.5 | H7A—C7—H7B | 109.5 |
C1—N1—H1C | 109.5 | C2—C7—H7C | 109.5 |
H1A—N1—H1C | 109.5 | H7A—C7—H7C | 109.5 |
H1B—N1—H1C | 109.5 | H7B—C7—H7C | 109.5 |
C6—C1—C2 | 123.26 (15) | | |
| | | |
C6—C1—C2—C3 | −0.3 (3) | C2—C3—C4—C5 | −1.6 (5) |
N1—C1—C2—C3 | −178.19 (16) | C3—C4—C5—C6 | 1.6 (5) |
C6—C1—C2—C7 | 179.8 (2) | C2—C1—C6—C5 | 0.3 (3) |
N1—C1—C2—C7 | 1.9 (3) | N1—C1—C6—C5 | 178.2 (2) |
C1—C2—C3—C4 | 0.9 (3) | C4—C5—C6—C1 | −0.9 (4) |
C7—C2—C3—C4 | −179.1 (3) | | |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.82 | 1.83 | 2.6483 (16) | 178 |
O2—H2···O8i | 0.82 | 1.80 | 2.6132 (13) | 170 |
O5—H5···O3 | 0.82 | 1.72 | 2.5351 (15) | 176 |
O6—H6···O8ii | 0.82 | 1.81 | 2.6223 (16) | 170 |
O7—H7···O4iii | 0.82 | 1.69 | 2.5109 (13) | 177 |
N1—H1A···O1i | 0.89 | 2.08 | 2.9627 (16) | 172 |
N1—H1B···O3 | 0.89 | 1.91 | 2.7808 (19) | 164 |
N1—H1C···O7iv | 0.89 | 2.18 | 3.0086 (15) | 154 |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x, −y+1, −z+2; (iii) x, −y+3/2, z+1/2; (iv) x, y−1, z. |
Experimental details
Crystal data |
Chemical formula | C7H10N+·H2PO4−·H3PO4 |
Mr | 303.14 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 10.8769 (10), 7.938 (4), 15.302 (3) |
β (°) | 91.57 (2) |
V (Å3) | 1320.7 (7) |
Z | 4 |
Radiation type | Ag Kα, λ = 0.56085 Å |
µ (mm−1) | 0.19 |
Crystal size (mm) | 0.37 × 0.31 × 0.25 |
|
Data collection |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5416, 5250, 4134 |
Rint | 0.013 |
(sin θ/λ)max (Å−1) | 0.781 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.092, 1.08 |
No. of reflections | 5250 |
No. of parameters | 170 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.41 |
Selected bond lengths (Å) topP1—O3 | 1.4964 (9) | P2—O8 | 1.4942 (9) |
P1—O4 | 1.5092 (10) | P2—O5 | 1.5422 (10) |
P1—O2 | 1.5571 (9) | P2—O7 | 1.5445 (10) |
P1—O1 | 1.5707 (9) | P2—O6 | 1.5493 (10) |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.82 | 1.83 | 2.6483 (16) | 178 |
O2—H2···O8i | 0.82 | 1.80 | 2.6132 (13) | 170 |
O5—H5···O3 | 0.82 | 1.72 | 2.5351 (15) | 176 |
O6—H6···O8ii | 0.82 | 1.81 | 2.6223 (16) | 170 |
O7—H7···O4iii | 0.82 | 1.69 | 2.5109 (13) | 177 |
N1—H1A···O1i | 0.89 | 2.08 | 2.9627 (16) | 172 |
N1—H1B···O3 | 0.89 | 1.91 | 2.7808 (19) | 164 |
N1—H1C···O7iv | 0.89 | 2.18 | 3.0086 (15) | 154 |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x, −y+1, −z+2; (iii) x, −y+3/2, z+1/2; (iv) x, y−1, z. |
References
Akriche, S. & Rzaigui, M. (2000). Solid State Sci. 2, 397–403. CSD CrossRef CAS Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2321. CrossRef CAS Web of Science Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zaccaro, J., Bagieu-Beucher, M., Ibanez, A. & Masse, R. (1996). J. Solid State Chem. 124, 8–16. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
| CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
access
Organic cation phosphates have been intensively studied due to their many uses in various fields such as biomolecular sciences, catalysts and nonlinear optics (e.g. Desiraju, 1995). Nevertheless, a bibliographical study on the organic monophosphates, and especially on the adduct monophosphate reveals that this kind of compounds are relatively very rare if compared with another types of phosphates (Zaccaro et al., 1996).
In the atomic arrangement of the title compound (I), the asymmetric unit consists of three fundamentals entities, the H2PO4- anion, the H3PO4 molecule and the organic cation C7H10N+ (Fig. 1). A view of the structure projected along the b direction (Fig. 2) shows that the inorganic entities are organized in layers developed around the bc plane. The organic cations are arranged in opposite direction along the a axis in the interlayer spacing to neutralize the negative charge of the inorganic layers. Inside each layer the H2PO4- anions form an inorganic chains parallel to b direction and situated at Z = 1/4 and Z = 3/4. The H3PO4 molecules are associated by strong hydrogen bonds to form a dimmer of formula [H6P2O8] centred at (0 1/2 0) and (0 0 1/2). The both entities are interconnected together via hydrogen bonds to form inorganic layer parallel to the bc plane (Fig. 2). In the two crystallographically independent phosphate groups, the P—O bonds are shorter than P—OH bonds (Table 1). The average values of P—O distances and O—P—O angles are 1,533 Å, 109,44° and 1,533 Å, 109,38°, respectively for P(1)O4 and P(2)O4 tetrahedra. These configurations are comparable to that observed elsewhere (Zaccaro et al., 1996). The organic and inorganic species establish between them two types of hydrogen bonds. The first one is O—H···O, involving short contacts with H···O lengths ranging between 1,69 - 1,83 Å, connects the H2PO4- and H3PO4 entities to develop the inorganic layer parallel to bc plane. The second type is N—H···O, with H···O distances ranging from 1,91 Å to 2,18 Å, links the organic cations to the phosphoric layer. The pattern of hydrogen bonds participate with the electrostatic and van Der Waals interactions to the cohesion of the network. The atoms C1, C2, C3, C4, C5 and C6 of the anilinium ring of the title compound are coplanar and they form a conjugated plane with average deviation of 0.0013 Å. The C—C distances ranging from 1.374 (2) to 1.496 (3) Å agree with those observed in literature (Akriche & Rzaigui 2000).