organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1152

2-Methyl­anilinium di­hydrogen phosphate–phospho­ric acid (1/1)

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: hamedkhemiri@voila.fr

(Received 16 April 2009; accepted 18 April 2009; online 30 April 2009)

In the title compound, C7H10N+·H2PO4·H3PO4, there is a clear distinction between the P—O/P=O and P—OH bond lengths. In the crystal, the H2PO4 anions and H3PO4 mol­ecules are linked by O—H⋯O hydrogen bonds, leading to layers propagating in the bc plane. The organic cations are located between these layers and inter­act with them by way of N—H⋯O hydrogen bonds.

Related literature

For related structures, see: Akriche & Rzaigui (2000[Akriche, S. & Rzaigui, M. (2000). Solid State Sci. 2, 397-403.]); Zaccaro et al. (1996[Zaccaro, J., Bagieu-Beucher, M., Ibanez, A. & Masse, R. (1996). J. Solid State Chem. 124, 8-16.]). For background, see: Desiraju (1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2321.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N+·H2PO4·H3PO4

  • Mr = 303.14

  • Monoclinic, P 21 /c

  • a = 10.8769 (10) Å

  • b = 7.938 (4) Å

  • c = 15.302 (3) Å

  • β = 91.57 (2)°

  • V = 1320.7 (7) Å3

  • Z = 4

  • Ag Kα radiation

  • μ = 0.19 mm−1

  • T = 298 K

  • 0.37 × 0.31 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 5416 measured reflections

  • 5250 independent reflections

  • 4134 reflections with I > 2σ(I)

  • Rint = 0.013

  • 2 standard reflections frequency: 120 min intensity decay: 18%

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.092

  • S = 1.08

  • 5250 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

P1—O3 1.4964 (9)
P1—O4 1.5092 (10)
P1—O2 1.5571 (9)
P1—O1 1.5707 (9)
P2—O8 1.4942 (9)
P2—O5 1.5422 (10)
P2—O7 1.5445 (10)
P2—O6 1.5493 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 1.83 2.6483 (16) 178
O2—H2⋯O8i 0.82 1.80 2.6132 (13) 170
O5—H5⋯O3 0.82 1.72 2.5351 (15) 176
O6—H6⋯O8ii 0.82 1.81 2.6223 (16) 170
O7—H7⋯O4iii 0.82 1.69 2.5109 (13) 177
N1—H1A⋯O1i 0.89 2.08 2.9627 (16) 172
N1—H1B⋯O3 0.89 1.91 2.7808 (19) 164
N1—H1C⋯O7iv 0.89 2.18 3.0086 (15) 154
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x, -y+1, -z+2; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) x, y-1, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND Brandenburg (2005); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Organic cation phosphates have been intensively studied due to their many uses in various fields such as biomolecular sciences, catalysts and nonlinear optics (e.g. Desiraju, 1995). Nevertheless, a bibliographical study on the organic monophosphates, and especially on the adduct monophosphate reveals that this kind of compounds are relatively very rare if compared with another types of phosphates (Zaccaro et al., 1996).

In the atomic arrangement of the title compound (I), the asymmetric unit consists of three fundamentals entities, the H2PO4- anion, the H3PO4 molecule and the organic cation C7H10N+ (Fig. 1). A view of the structure projected along the b direction (Fig. 2) shows that the inorganic entities are organized in layers developed around the bc plane. The organic cations are arranged in opposite direction along the a axis in the interlayer spacing to neutralize the negative charge of the inorganic layers. Inside each layer the H2PO4- anions form an inorganic chains parallel to b direction and situated at Z = 1/4 and Z = 3/4. The H3PO4 molecules are associated by strong hydrogen bonds to form a dimmer of formula [H6P2O8] centred at (0 1/2 0) and (0 0 1/2). The both entities are interconnected together via hydrogen bonds to form inorganic layer parallel to the bc plane (Fig. 2). In the two crystallographically independent phosphate groups, the P—O bonds are shorter than P—OH bonds (Table 1). The average values of P—O distances and O—P—O angles are 1,533 Å, 109,44° and 1,533 Å, 109,38°, respectively for P(1)O4 and P(2)O4 tetrahedra. These configurations are comparable to that observed elsewhere (Zaccaro et al., 1996). The organic and inorganic species establish between them two types of hydrogen bonds. The first one is O—H···O, involving short contacts with H···O lengths ranging between 1,69 - 1,83 Å, connects the H2PO4- and H3PO4 entities to develop the inorganic layer parallel to bc plane. The second type is N—H···O, with H···O distances ranging from 1,91 Å to 2,18 Å, links the organic cations to the phosphoric layer. The pattern of hydrogen bonds participate with the electrostatic and van Der Waals interactions to the cohesion of the network. The atoms C1, C2, C3, C4, C5 and C6 of the anilinium ring of the title compound are coplanar and they form a conjugated plane with average deviation of 0.0013 Å. The C—C distances ranging from 1.374 (2) to 1.496 (3) Å agree with those observed in literature (Akriche & Rzaigui 2000).

Related literature top

For related structures, see: Akriche & Rzaigui (2000); Zaccaro et al. (1996). For background, see: Desiraju (1995).

Experimental top

A solution of orthophosphoric acid (0.50 mmol in 30 ml of water) was added drop by drop to an ethanolic solution of 2-methylaniline (2.336 mmol in 5 ml). The so-obtained solution was slowly evaporated at room temperature, until colourless prisms of (I) formed.

Refinement top

The H atoms were fixed geometrically and treated as riding with C—H = 0.93Å, N—H = 0.89 Å and O—H = 0.82 Å with Uiso(H) = 1.2 Ueq(carrier).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND Brandenburg (2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radius. Hydrogen bonds are represented as dashed lines.
[Figure 2] Fig. 2. DIAMOND (Brandenburg, 2005) Projection of (I) along the b axis.
2-Methylanilinium dihydrogen phosphate–phosphoric acid (1/1) top
Crystal data top
C7H10N+·H2PO4·H3PO4F(000) = 632
Mr = 303.14Dx = 1.525 Mg m3
Monoclinic, P21/cAg Kα radiation, λ = 0.56085 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.8769 (10) Åθ = 8–12°
b = 7.938 (4) ŵ = 0.19 mm1
c = 15.302 (3) ÅT = 298 K
β = 91.57 (2)°Prism, colorless
V = 1320.7 (7) Å30.37 × 0.31 × 0.25 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
θmax = 26.0°, θmin = 2.1°
Radiation source: fine-focus sealed tubeh = 1616
Nonprofiled ω scansk = 012
5416 measured reflectionsl = 023
5250 independent reflections2 standard reflections every 120 min
4134 reflections with I > 2σ(I) intensity decay: 18%
Rint = 0.013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.181P]
where P = (Fo2 + 2Fc2)/3
5250 reflections(Δ/σ)max = 0.001
170 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C7H10N+·H2PO4·H3PO4V = 1320.7 (7) Å3
Mr = 303.14Z = 4
Monoclinic, P21/cAg Kα radiation, λ = 0.56085 Å
a = 10.8769 (10) ŵ = 0.19 mm1
b = 7.938 (4) ÅT = 298 K
c = 15.302 (3) Å0.37 × 0.31 × 0.25 mm
β = 91.57 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.013
5416 measured reflections2 standard reflections every 120 min
5250 independent reflections intensity decay: 18%
4134 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.08Δρmax = 0.30 e Å3
5250 reflectionsΔρmin = 0.41 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.08064 (3)0.43847 (3)0.736601 (16)0.02322 (6)
P20.10749 (3)0.71819 (3)0.986049 (17)0.02487 (7)
O10.06037 (8)0.40074 (11)0.74454 (6)0.03314 (17)
H10.06950.30790.76700.050*
O20.13778 (8)0.28822 (10)0.68641 (6)0.03396 (18)
H20.09740.27080.64130.051*
O30.14542 (9)0.44285 (11)0.82411 (5)0.03420 (18)
O40.08566 (9)0.59919 (10)0.68413 (6)0.03335 (18)
O50.19612 (9)0.70906 (12)0.90923 (6)0.0394 (2)
H50.18060.62500.87980.059*
O60.14555 (9)0.58760 (11)1.05701 (6)0.0372 (2)
H60.10030.50521.05300.056*
O70.13831 (9)0.89278 (10)1.02544 (5)0.03362 (18)
H70.12320.89281.07760.050*
O80.02457 (8)0.69700 (11)0.95881 (6)0.03445 (18)
N10.20745 (9)0.11752 (14)0.87628 (7)0.0355 (2)
H1A0.16980.05130.83700.053*
H1B0.18080.22280.86950.053*
H1C0.19100.08180.92980.053*
C10.34057 (12)0.11198 (18)0.86394 (10)0.0400 (3)
C20.41777 (14)0.1876 (2)0.92552 (12)0.0517 (4)
C30.54313 (16)0.1826 (3)0.90905 (19)0.0797 (7)
H3C0.59860.23050.94920.096*
C40.58628 (19)0.1090 (4)0.8354 (2)0.0930 (8)
H4C0.67020.10990.82520.112*
C50.5070 (2)0.0340 (4)0.7763 (2)0.0930 (8)
H5C0.53740.01820.72690.112*
C60.38195 (18)0.0357 (3)0.78970 (14)0.0643 (5)
H6C0.32720.01360.74960.077*
C70.3703 (2)0.2703 (4)1.00570 (16)0.0795 (7)
H7A0.32380.19021.03820.119*
H7B0.31850.36340.98900.119*
H7C0.43820.31041.04130.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.03254 (13)0.01806 (11)0.01906 (11)0.00111 (9)0.00062 (9)0.00078 (8)
P20.03360 (14)0.02046 (11)0.02043 (11)0.00449 (9)0.00143 (9)0.00068 (9)
O10.0333 (4)0.0282 (4)0.0379 (4)0.0007 (3)0.0019 (3)0.0069 (3)
O20.0416 (5)0.0282 (4)0.0317 (4)0.0095 (3)0.0053 (3)0.0105 (3)
O30.0498 (5)0.0286 (4)0.0238 (4)0.0003 (3)0.0071 (3)0.0040 (3)
O40.0491 (5)0.0222 (3)0.0292 (4)0.0023 (3)0.0101 (3)0.0047 (3)
O50.0494 (5)0.0385 (5)0.0309 (4)0.0126 (4)0.0104 (4)0.0106 (4)
O60.0437 (5)0.0286 (4)0.0387 (5)0.0069 (3)0.0126 (4)0.0104 (3)
O70.0533 (5)0.0225 (3)0.0252 (4)0.0075 (3)0.0034 (3)0.0037 (3)
O80.0366 (4)0.0299 (4)0.0363 (4)0.0056 (3)0.0082 (3)0.0101 (3)
N10.0315 (5)0.0339 (5)0.0409 (5)0.0036 (4)0.0042 (4)0.0062 (4)
C10.0318 (5)0.0355 (6)0.0526 (8)0.0023 (5)0.0013 (5)0.0065 (6)
C20.0360 (6)0.0522 (9)0.0662 (10)0.0007 (6)0.0108 (6)0.0003 (8)
C30.0317 (7)0.0912 (16)0.1154 (19)0.0004 (9)0.0107 (10)0.0069 (14)
C40.0366 (8)0.123 (2)0.120 (2)0.0120 (11)0.0082 (11)0.0074 (19)
C50.0630 (13)0.113 (2)0.105 (2)0.0177 (13)0.0272 (13)0.0215 (17)
C60.0528 (9)0.0726 (12)0.0677 (11)0.0044 (9)0.0066 (8)0.0128 (10)
C70.0610 (12)0.1016 (18)0.0752 (14)0.0020 (11)0.0123 (10)0.0313 (13)
Geometric parameters (Å, º) top
P1—O31.4964 (9)N1—H1C0.8900
P1—O41.5092 (10)C1—C61.374 (2)
P1—O21.5571 (9)C1—C21.382 (2)
P1—O11.5707 (9)C2—C31.394 (2)
P2—O81.4942 (9)C2—C71.496 (3)
P2—O51.5422 (10)C3—C41.365 (4)
P2—O71.5445 (10)C3—H3C0.9300
P2—O61.5493 (10)C4—C51.368 (4)
O1—H10.8200C4—H4C0.9300
O2—H20.8200C5—C61.381 (3)
O5—H50.8200C5—H5C0.9300
O6—H60.8200C6—H6C0.9300
O7—H70.8200C7—H7A0.9600
N1—C11.4659 (16)C7—H7B0.9600
N1—H1A0.8900C7—H7C0.9600
N1—H1B0.8900
O3—P1—O4115.69 (5)C6—C1—N1117.83 (14)
O3—P1—O2105.94 (5)C2—C1—N1118.88 (14)
O4—P1—O2111.37 (6)C1—C2—C3116.33 (18)
O3—P1—O1111.84 (6)C1—C2—C7122.21 (15)
O4—P1—O1104.60 (5)C3—C2—C7121.46 (18)
O2—P1—O1107.21 (5)C4—C3—C2121.5 (2)
O8—P2—O5113.47 (6)C4—C3—H3C119.3
O8—P2—O7113.99 (6)C2—C3—H3C119.3
O5—P2—O7101.89 (5)C3—C4—C5120.51 (19)
O8—P2—O6110.89 (5)C3—C4—H4C119.7
O5—P2—O6110.01 (6)C5—C4—H4C119.7
O7—P2—O6106.02 (6)C4—C5—C6120.2 (2)
P1—O1—H1109.5C4—C5—H5C119.9
P1—O2—H2109.5C6—C5—H5C119.9
P2—O5—H5109.5C1—C6—C5118.3 (2)
P2—O6—H6109.5C1—C6—H6C120.9
P2—O7—H7109.5C5—C6—H6C120.9
C1—N1—H1A109.5C2—C7—H7A109.5
C1—N1—H1B109.5C2—C7—H7B109.5
H1A—N1—H1B109.5H7A—C7—H7B109.5
C1—N1—H1C109.5C2—C7—H7C109.5
H1A—N1—H1C109.5H7A—C7—H7C109.5
H1B—N1—H1C109.5H7B—C7—H7C109.5
C6—C1—C2123.26 (15)
C6—C1—C2—C30.3 (3)C2—C3—C4—C51.6 (5)
N1—C1—C2—C3178.19 (16)C3—C4—C5—C61.6 (5)
C6—C1—C2—C7179.8 (2)C2—C1—C6—C50.3 (3)
N1—C1—C2—C71.9 (3)N1—C1—C6—C5178.2 (2)
C1—C2—C3—C40.9 (3)C4—C5—C6—C10.9 (4)
C7—C2—C3—C4179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.832.6483 (16)178
O2—H2···O8i0.821.802.6132 (13)170
O5—H5···O30.821.722.5351 (15)176
O6—H6···O8ii0.821.812.6223 (16)170
O7—H7···O4iii0.821.692.5109 (13)177
N1—H1A···O1i0.892.082.9627 (16)172
N1—H1B···O30.891.912.7808 (19)164
N1—H1C···O7iv0.892.183.0086 (15)154
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1, z+2; (iii) x, y+3/2, z+1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC7H10N+·H2PO4·H3PO4
Mr303.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.8769 (10), 7.938 (4), 15.302 (3)
β (°) 91.57 (2)
V3)1320.7 (7)
Z4
Radiation typeAg Kα, λ = 0.56085 Å
µ (mm1)0.19
Crystal size (mm)0.37 × 0.31 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5416, 5250, 4134
Rint0.013
(sin θ/λ)max1)0.781
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.08
No. of reflections5250
No. of parameters170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.41

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND Brandenburg (2005), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
P1—O31.4964 (9)P2—O81.4942 (9)
P1—O41.5092 (10)P2—O51.5422 (10)
P1—O21.5571 (9)P2—O71.5445 (10)
P1—O11.5707 (9)P2—O61.5493 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.832.6483 (16)178
O2—H2···O8i0.821.802.6132 (13)170
O5—H5···O30.821.722.5351 (15)176
O6—H6···O8ii0.821.812.6223 (16)170
O7—H7···O4iii0.821.692.5109 (13)177
N1—H1A···O1i0.892.082.9627 (16)172
N1—H1B···O30.891.912.7808 (19)164
N1—H1C···O7iv0.892.183.0086 (15)154
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1, z+2; (iii) x, y+3/2, z+1/2; (iv) x, y1, z.
 

References

First citationAkriche, S. & Rzaigui, M. (2000). Solid State Sci. 2, 397–403.  CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2321.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaccaro, J., Bagieu-Beucher, M., Ibanez, A. & Masse, R. (1996). J. Solid State Chem. 124, 8–16.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1152
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds