organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1130

3-[(3,4-Di­chloro­phen­yl)amino­carbon­yl]propionic acid

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 22 April 2009; accepted 22 April 2009; online 25 April 2009)

In the title compound, C10H9Cl2NO3, inversion dimers occur due to pairs of inter­molecular O—H⋯O hydrogen bonds from the carboxyl groups forming R22(8) loops. The dimers are linked into C(4) chains along the a axis by inter­molecular N—H⋯O links. A short intra­molecular C—H⋯O contact occurs in the mol­ecule.

Related literature

For a related structure, see: Shah et al. (2008[Shah, F. A., Tahir, M. N., Ali, S. & Kashmiri, M. A. (2008). Acta Cryst. E64, o787.]). For background, see: Pellerito & Nagy (2002[Pellerito, L. & Nagy, L. (2002). Coord. Chem. Rev. 224, 111-150.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9Cl2NO3

  • Mr = 262.08

  • Monoclinic, P 21 /n

  • a = 4.8441 (4) Å

  • b = 10.3388 (10) Å

  • c = 22.457 (2) Å

  • β = 90.613 (3)°

  • V = 1124.62 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 296 K

  • 0.25 × 0.12 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.949

  • 11915 measured reflections

  • 2912 independent reflections

  • 2028 reflections with I > 3σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.182

  • S = 1.05

  • 2912 reflections

  • 172 parameters

  • Only H-atom coordinates refined

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.81 (3) 2.10 (3) 2.887 (3) 165 (3)
O1—H1O⋯O2ii 0.80 (4) 1.87 (4) 2.665 (3) 170 (4)
C6—H6⋯O3 0.88 (4) 2.58 (4) 2.960 (4) 107 (3)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+3, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In order to get a better insight in how the metallic species behave inside the biological systems, it is necessary to study their coordination behavior with biomolecules i.e. ligands having hetero-donor oxygen and nitrogen atoms (Pellerito & Nagy, 2002). Therefore, the title compound (I) has been prepared for the study of complexation with different metals.

The title compound is the structural isomer of 3-(3,5-dichloroanilinocarbonyl) propionic acid (Shah et al., 2008). Due to the change of chloro substitution, the packing of the title compound has been changed. In this structure there does not exist any kind of π-interaction. The dimeric nature and the linkage of the dimers in title compound is in agreement with the reported structural isomer. In (I) the C==O bond distances for carboxylate and carbonyl group have values of (C10==O2: 1.236 (3) Å) and (C7==O3: 1.214 (3) Å), and in comparison to 1.219 (3) and 1.225 (2) Å, respectively. The C—N bond distances are compareable within experimental errors. In both compounds similar intermolecular H-bonding (Table 2, Fig. 2) has been observed. The dihedral angle between the aromatic ring (C1—C6) and (C8—C10/O1/O2) have a value of 20.45 (20)°, whereas with (C1/N1/C7/O3) its value is 39.02 (16)°. The value of dihedral angle between (C8—C10/O1/O2) and (C1/N1/C7/O3) is 18.69 (18)°. There exist an intramolecular H-bond of C—H···O type and completes a six-membered heterocyclic ring adjacent to the benzene ring. There does not exist any kind of π-interactions.

Related literature top

For a related structure, see: Shah et al. (2008). For background, see: Pellerito & Nagy (2002). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

3,4-dichloroanilline (16.2 g, 0.1 mol) and succinic anhydride (10 g, 0.1 mole) were mixed in glacial acetic acid and stirred overnight. The solution was filtered and precipitated material was washed with distilled water. The acid formed was recrystallized from acetone to yield colourless blocks of (I). (Yield: 80%).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small spheres of arbitrary radius. The dashed lines represent the intramolecular H-bonds.
[Figure 2] Fig. 2. The partial unit cell packing of (I) showing the dimeric nature and the linkage of dimers along the a axis.
3-[(3,4-Dichlorophenyl)aminocarbonyl]propionic acid top
Crystal data top
C10H9Cl2NO3F(000) = 536
Mr = 262.08Dx = 1.548 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2912 reflections
a = 4.8441 (4) Åθ = 2.7–28.9°
b = 10.3388 (10) ŵ = 0.57 mm1
c = 22.457 (2) ÅT = 296 K
β = 90.613 (3)°Block, colourless
V = 1124.62 (17) Å30.25 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2912 independent reflections
Radiation source: fine-focus sealed tube2028 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 7.5 pixels mm-1θmax = 28.9°, θmin = 2.7°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.925, Tmax = 0.949l = 3030
11915 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182Only H-atom coordinates refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0667P)2 + 1.6338P]
where P = (Fo2 + 2Fc2)/3
2912 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
C10H9Cl2NO3V = 1124.62 (17) Å3
Mr = 262.08Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.8441 (4) ŵ = 0.57 mm1
b = 10.3388 (10) ÅT = 296 K
c = 22.457 (2) Å0.25 × 0.12 × 0.10 mm
β = 90.613 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2912 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2028 reflections with I > 3σ(I)
Tmin = 0.925, Tmax = 0.949Rint = 0.028
11915 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.182Only H-atom coordinates refined
S = 1.05Δρmax = 0.89 e Å3
2912 reflectionsΔρmin = 0.84 e Å3
172 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.2707 (3)0.56808 (11)0.26822 (5)0.0954 (5)
Cl20.6942 (3)0.37607 (10)0.20648 (6)0.0945 (5)
O10.7844 (5)1.3991 (2)0.01026 (13)0.0584 (9)
O20.4038 (4)1.3685 (2)0.04204 (12)0.0551 (8)
O30.9245 (4)0.9675 (2)0.08819 (12)0.0546 (8)
N10.4948 (5)0.9009 (2)0.11088 (11)0.0372 (7)
C10.5572 (5)0.7772 (3)0.13420 (12)0.0341 (8)
C20.4079 (7)0.7353 (3)0.18269 (14)0.0427 (9)
C30.4538 (8)0.6133 (3)0.20585 (14)0.0500 (10)
C40.6432 (8)0.5320 (3)0.18016 (16)0.0543 (11)
C50.7934 (8)0.5742 (3)0.13222 (18)0.0568 (11)
C60.7517 (7)0.6968 (3)0.10907 (15)0.0448 (9)
C70.6785 (5)0.9883 (3)0.09118 (12)0.0345 (8)
C80.5505 (6)1.1164 (3)0.07282 (17)0.0438 (9)
C90.7506 (6)1.2040 (3)0.04237 (17)0.0437 (9)
C100.6312 (5)1.3316 (3)0.02430 (13)0.0384 (8)
H1N0.334 (7)0.922 (3)0.1111 (15)0.0447*
H1O0.722 (9)1.470 (4)0.0157 (19)0.0701*
H20.278 (7)0.793 (4)0.2003 (15)0.0513*
H50.939 (8)0.518 (4)0.1166 (17)0.0680*
H60.846 (7)0.722 (4)0.0777 (16)0.0537*
H8A0.489 (8)1.153 (4)0.1063 (16)0.0527*
H8B0.377 (8)1.101 (3)0.0478 (15)0.0527*
H9A0.899 (7)1.225 (4)0.0680 (16)0.0523*
H9B0.840 (7)1.164 (4)0.0077 (16)0.0523*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1600 (13)0.0566 (6)0.0704 (7)0.0127 (7)0.0418 (7)0.0207 (5)
Cl20.1284 (11)0.0363 (5)0.1187 (10)0.0107 (6)0.0093 (8)0.0277 (5)
O10.0476 (13)0.0356 (12)0.0924 (19)0.0084 (10)0.0234 (12)0.0257 (12)
O20.0400 (11)0.0410 (12)0.0846 (17)0.0114 (9)0.0176 (11)0.0226 (11)
O30.0251 (10)0.0418 (12)0.0969 (18)0.0059 (8)0.0058 (10)0.0219 (12)
N10.0260 (10)0.0317 (12)0.0541 (14)0.0044 (9)0.0040 (10)0.0114 (10)
C10.0337 (13)0.0263 (12)0.0423 (14)0.0008 (10)0.0030 (10)0.0043 (10)
C20.0540 (17)0.0294 (13)0.0449 (16)0.0031 (12)0.0066 (13)0.0006 (12)
C30.073 (2)0.0331 (15)0.0440 (16)0.0104 (14)0.0021 (15)0.0056 (12)
C40.072 (2)0.0276 (14)0.063 (2)0.0001 (14)0.0119 (17)0.0098 (14)
C50.059 (2)0.0345 (16)0.077 (2)0.0123 (15)0.0027 (18)0.0006 (16)
C60.0445 (16)0.0358 (15)0.0542 (18)0.0066 (12)0.0086 (13)0.0038 (13)
C70.0279 (12)0.0302 (13)0.0455 (14)0.0028 (10)0.0029 (10)0.0078 (11)
C80.0307 (14)0.0320 (14)0.069 (2)0.0075 (11)0.0112 (13)0.0165 (14)
C90.0319 (14)0.0315 (14)0.068 (2)0.0042 (11)0.0091 (13)0.0137 (13)
C100.0305 (13)0.0305 (13)0.0543 (16)0.0010 (10)0.0021 (11)0.0090 (12)
Geometric parameters (Å, º) top
Cl1—C31.730 (4)C4—C51.377 (5)
Cl2—C41.734 (3)C5—C61.384 (5)
O1—C101.286 (4)C7—C81.518 (4)
O2—C101.236 (3)C8—C91.497 (5)
O3—C71.214 (3)C9—C101.495 (4)
O1—H1O0.80 (4)C2—H20.96 (4)
N1—C11.414 (4)C5—H50.98 (4)
N1—C71.346 (4)C6—H60.88 (4)
N1—H1N0.81 (3)C8—H8A0.90 (4)
C1—C61.382 (4)C8—H8B1.02 (4)
C1—C21.383 (4)C9—H9A0.94 (4)
C2—C31.382 (4)C9—H9B0.99 (4)
C3—C41.376 (5)
C10—O1—H1O112 (3)C8—C9—C10114.0 (2)
C1—N1—C7126.1 (2)O1—C10—O2123.3 (3)
C7—N1—H1N117 (2)O1—C10—C9114.8 (2)
C1—N1—H1N116 (2)O2—C10—C9121.9 (3)
N1—C1—C6122.5 (3)C1—C2—H2119 (2)
N1—C1—C2117.6 (3)C3—C2—H2121 (2)
C2—C1—C6119.9 (3)C4—C5—H5119 (2)
C1—C2—C3119.9 (3)C6—C5—H5121 (2)
Cl1—C3—C2118.0 (3)C1—C6—H6121 (3)
C2—C3—C4120.4 (3)C5—C6—H6120 (3)
Cl1—C3—C4121.6 (3)C7—C8—H8A106 (3)
C3—C4—C5119.7 (3)C7—C8—H8B110.2 (18)
Cl2—C4—C5119.1 (3)C9—C8—H8A111 (3)
Cl2—C4—C3121.2 (3)C9—C8—H8B112.2 (19)
C4—C5—C6120.5 (3)H8A—C8—H8B104 (3)
C1—C6—C5119.7 (3)C8—C9—H9A111 (2)
O3—C7—N1123.5 (3)C8—C9—H9B114 (2)
O3—C7—C8122.6 (3)C10—C9—H9A105 (2)
N1—C7—C8113.9 (2)C10—C9—H9B109 (2)
C7—C8—C9112.8 (2)H9A—C9—H9B104 (3)
C7—N1—C1—C2140.0 (3)Cl1—C3—C4—C5177.0 (3)
C7—N1—C1—C642.4 (4)C2—C3—C4—Cl2177.3 (3)
C1—N1—C7—O34.2 (5)C2—C3—C4—C52.0 (5)
C1—N1—C7—C8175.8 (3)Cl2—C4—C5—C6178.1 (3)
N1—C1—C2—C3177.7 (3)C3—C4—C5—C61.2 (6)
C6—C1—C2—C30.0 (5)C4—C5—C6—C10.2 (5)
N1—C1—C6—C5176.8 (3)O3—C7—C8—C99.0 (5)
C2—C1—C6—C50.8 (5)N1—C7—C8—C9171.0 (3)
C1—C2—C3—Cl1177.6 (2)C7—C8—C9—C10179.4 (3)
C1—C2—C3—C41.4 (5)C8—C9—C10—O1169.1 (3)
Cl1—C3—C4—Cl23.7 (5)C8—C9—C10—O211.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.81 (3)2.10 (3)2.887 (3)165 (3)
O1—H1O···O2ii0.80 (4)1.87 (4)2.665 (3)170 (4)
C6—H6···O30.88 (4)2.58 (4)2.960 (4)107 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+3, z.

Experimental details

Crystal data
Chemical formulaC10H9Cl2NO3
Mr262.08
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)4.8441 (4), 10.3388 (10), 22.457 (2)
β (°) 90.613 (3)
V3)1124.62 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.25 × 0.12 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.925, 0.949
No. of measured, independent and
observed [I > 3σ(I)] reflections
11915, 2912, 2028
Rint0.028
(sin θ/λ)max1)0.679
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.182, 1.05
No. of reflections2912
No. of parameters172
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.89, 0.84

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.81 (3)2.10 (3)2.887 (3)165 (3)
O1—H1O···O2ii0.80 (4)1.87 (4)2.665 (3)170 (4)
C6—H6···O30.88 (4)2.58 (4)2.960 (4)107 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+3, z.
 

Acknowledgements

The authors acknowledge the the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore. S. Ali is also grateful to the PSF for financial support under project No. PSF/R&D/C–QU/Chem(270).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPellerito, L. & Nagy, L. (2002). Coord. Chem. Rev. 224, 111–150.  Web of Science CrossRef CAS Google Scholar
First citationShah, F. A., Tahir, M. N., Ali, S. & Kashmiri, M. A. (2008). Acta Cryst. E64, o787.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1130
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds