metal-organic compounds
Bis(4-amino-3,5-di-2-pyridyl-4H-1,2,4-triazole)diaquanickel(II) bis(perchlorate)
aCollege of Chemistry and Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: switeric@hotmail.com
In the molecular structure of the centrosymmetric mononuclear complex [Ni(2-bpt)2(H2O)2](ClO4)2 [2-bpt = 4-amino-3,5-di-2-pyridyl-1,2,4-triazole, (C12H10N6)], the central NiII atom is six-coordinated by a pair of chelating 2-bpt ligands and two water molecules. Intermolecular O—H⋯N interactions link the monomeric units into a two-dimensional hydrogen-bonded (4,4) network, which is extended to a three-dimensional supramolecular aggregate via π⋯π stacking interactions [centroid–centroid distances 3.809 (3) and 3.499 (3) Å].
Related literature
Diverse coordination architectures can be constructed by coordinative bonds using metal ions to combine with multifunctional ligands, see: Moulton & Zaworotko (2001). Supramolecular interactions such as hydrogen bonding and aromatic stacking are usually used to extend or sustain the resultant structures, see: Roesky & Andruh (2003); Ye et al. (2005); Du et al. (2007). For polypyridyl–transition metal complexes, see: Haasnoot (2000). For the potential ability of 4-amino-3,5-di-2-pyridyl-1,2,4-triazole (2-bpt) to provide multi-coordination modes and generate hydrogen-bonding and/or aromatic stacking interactions, see: Van Koningsbruggen et al. (1998); Moliner et al. (2001); García-Couceiro et al. (2004); Peng et al. (2006). For NiII–2-bpt complexes, see: Keij et al. (1984); Tong et al. (2007). For the (4,4) topology, see: Batten & Robson (1998).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2003); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809012598/hg2489sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809012598/hg2489Isup2.hkl
To a methanol (10 ml) solution of 2-bpt (12.0 mg, 0.05 mmol) was added a water (5 ml) solution of Ni(ClO4)2.6H2O (18.0 mg, 0.05 mmol) with stirring, then a methanol (10 ml) solution of 5-Nipa (11.0 mg, 0.05 mmol) was added to the above mixture. After vigorous stirring for ca 20 min, the resultant solution was filtered and left to stand at room temperature. Pale-green block crystals suitable for X-ray analysis were produced by slow evaporation of the solvent for two weeks in a 52% yield (10.0 mg based on 2-bpt). Anal. Calcd for C24H24Cl2N12NiO10 (%): C, 37.43; H, 3.14; N, 21.83. Found (%): C, 37.40; H, 3.19; N, 21.91. IR (KBr, cm-1)): 3396b, 1708w, 1626s, 1568m, 1539m, 1484m, 1459m, 1424m, 1385m, 1350m, 1276w, 1144vs, 1088vs, 838w, 786w, 730m, 629s.
All H atoms were placed in geometrically calculated positions with C—H = 0.93 Å, N—H = 0.90 Å, and O—H = 0.85 Å, and included in the final
in the riding model approximation, with displacement parameters derived from their parent atoms [Uiso(H) = 1.2Ueq(C) and 1.5Ueq (N and Owater)].Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).[Ni(C12H10N6)2(H2O)2](ClO4)2 | F(000) = 788 |
Mr = 770.16 | Dx = 1.672 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2386 reflections |
a = 9.9219 (15) Å | θ = 2.4–24.5° |
b = 14.359 (2) Å | µ = 0.89 mm−1 |
c = 10.9220 (18) Å | T = 296 K |
β = 100.560 (3)° | Block, pale green |
V = 1529.7 (4) Å3 | 0.20 × 0.18 × 0.16 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 2686 independent reflections |
Radiation source: fine-focus sealed tube | 2171 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
phi and ω scans | θmax = 25.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −10→11 |
Tmin = 0.840, Tmax = 0.870 | k = −17→16 |
7639 measured reflections | l = −11→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.154 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.090P)2 + 1.5989P] where P = (Fo2 + 2Fc2)/3 |
2686 reflections | (Δ/σ)max < 0.001 |
223 parameters | Δρmax = 1.12 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
[Ni(C12H10N6)2(H2O)2](ClO4)2 | V = 1529.7 (4) Å3 |
Mr = 770.16 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.9219 (15) Å | µ = 0.89 mm−1 |
b = 14.359 (2) Å | T = 296 K |
c = 10.9220 (18) Å | 0.20 × 0.18 × 0.16 mm |
β = 100.560 (3)° |
Bruker SMART CCD area-detector diffractometer | 2686 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2171 reflections with I > 2σ(I) |
Tmin = 0.840, Tmax = 0.870 | Rint = 0.028 |
7639 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.154 | H-atom parameters constrained |
S = 1.07 | Δρmax = 1.12 e Å−3 |
2686 reflections | Δρmin = −0.40 e Å−3 |
223 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.0000 | 0.5000 | 0.0297 (2) | |
Cl1 | 0.37983 (11) | 0.36054 (8) | 0.32882 (10) | 0.0472 (3) | |
O1 | 0.5877 (3) | 0.12860 (19) | 0.5625 (3) | 0.0416 (7) | |
H1A | 0.6502 | 0.1302 | 0.6271 | 0.062* | |
H1B | 0.5281 | 0.1717 | 0.5556 | 0.062* | |
O2 | 0.4370 (5) | 0.2802 (3) | 0.3892 (4) | 0.0890 (14) | |
O3 | 0.4030 (7) | 0.3637 (7) | 0.2091 (6) | 0.184 (4) | |
O4 | 0.2372 (5) | 0.3650 (5) | 0.3186 (6) | 0.130 (2) | |
O5 | 0.4382 (8) | 0.4351 (3) | 0.3942 (8) | 0.203 (5) | |
N1 | 0.5588 (3) | 0.0213 (2) | 0.3259 (3) | 0.0330 (7) | |
N2 | 0.3327 (3) | 0.0682 (2) | 0.4056 (3) | 0.0328 (7) | |
N3 | 0.2087 (3) | 0.0979 (2) | 0.4288 (3) | 0.0365 (7) | |
N4 | 0.2168 (3) | 0.1192 (2) | 0.2312 (3) | 0.0318 (7) | |
N5 | 0.1787 (4) | 0.1333 (3) | 0.1001 (3) | 0.0424 (8) | |
H5A | 0.1399 | 0.0796 | 0.0693 | 0.064* | |
H5B | 0.1170 | 0.1795 | 0.0974 | 0.064* | |
N6 | −0.0420 (3) | 0.2165 (3) | 0.2012 (3) | 0.0440 (8) | |
C1 | 0.6805 (4) | 0.0015 (3) | 0.2978 (4) | 0.0396 (9) | |
H1 | 0.7459 | −0.0283 | 0.3566 | 0.047* | |
C2 | 0.7126 (4) | 0.0244 (3) | 0.1820 (4) | 0.0456 (10) | |
H2 | 0.7975 | 0.0085 | 0.1635 | 0.055* | |
C3 | 0.6174 (5) | 0.0706 (3) | 0.0954 (4) | 0.0468 (11) | |
H3 | 0.6380 | 0.0884 | 0.0190 | 0.056* | |
C4 | 0.4893 (4) | 0.0901 (3) | 0.1251 (4) | 0.0414 (10) | |
H4 | 0.4221 | 0.1200 | 0.0681 | 0.050* | |
C5 | 0.4640 (4) | 0.0642 (2) | 0.2404 (3) | 0.0324 (8) | |
C6 | 0.3373 (4) | 0.0829 (2) | 0.2869 (3) | 0.0305 (8) | |
C7 | 0.1398 (4) | 0.1292 (3) | 0.3220 (4) | 0.0332 (8) | |
C8 | 0.0045 (4) | 0.1734 (3) | 0.3089 (4) | 0.0353 (9) | |
C9 | −0.1653 (5) | 0.2580 (3) | 0.1895 (5) | 0.0524 (11) | |
H9 | −0.2008 | 0.2869 | 0.1142 | 0.063* | |
C10 | −0.2413 (5) | 0.2603 (3) | 0.2819 (5) | 0.0542 (12) | |
H10 | −0.3253 | 0.2908 | 0.2703 | 0.065* | |
C11 | −0.1904 (5) | 0.2166 (3) | 0.3918 (5) | 0.0563 (12) | |
H11 | −0.2397 | 0.2174 | 0.4565 | 0.068* | |
C12 | −0.0655 (4) | 0.1712 (3) | 0.4068 (4) | 0.0472 (11) | |
H12 | −0.0301 | 0.1402 | 0.4804 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0277 (4) | 0.0354 (4) | 0.0254 (4) | 0.0013 (3) | 0.0039 (3) | 0.0021 (3) |
Cl1 | 0.0438 (6) | 0.0497 (6) | 0.0437 (6) | 0.0050 (5) | −0.0036 (5) | 0.0001 (5) |
O1 | 0.0389 (16) | 0.0406 (15) | 0.0433 (17) | −0.0022 (12) | 0.0021 (13) | 0.0004 (12) |
O2 | 0.108 (3) | 0.058 (2) | 0.087 (3) | 0.013 (2) | −0.018 (3) | 0.014 (2) |
O3 | 0.150 (6) | 0.339 (11) | 0.077 (4) | 0.078 (6) | 0.055 (4) | 0.074 (5) |
O4 | 0.061 (3) | 0.203 (6) | 0.129 (5) | 0.035 (3) | 0.028 (3) | 0.020 (4) |
O5 | 0.230 (8) | 0.055 (3) | 0.247 (8) | 0.012 (4) | −0.159 (7) | −0.024 (4) |
N1 | 0.0329 (17) | 0.0362 (16) | 0.0301 (17) | 0.0002 (13) | 0.0064 (14) | −0.0015 (13) |
N2 | 0.0325 (17) | 0.0390 (17) | 0.0269 (16) | 0.0028 (13) | 0.0051 (13) | 0.0010 (13) |
N3 | 0.0338 (18) | 0.0441 (18) | 0.0308 (17) | 0.0025 (14) | 0.0038 (14) | 0.0006 (14) |
N4 | 0.0336 (17) | 0.0352 (16) | 0.0256 (16) | 0.0004 (13) | 0.0029 (13) | 0.0006 (13) |
N5 | 0.044 (2) | 0.055 (2) | 0.0268 (17) | 0.0075 (16) | 0.0039 (15) | 0.0078 (15) |
N6 | 0.0336 (18) | 0.056 (2) | 0.042 (2) | 0.0059 (16) | 0.0061 (15) | 0.0106 (17) |
C1 | 0.033 (2) | 0.036 (2) | 0.048 (2) | 0.0017 (16) | 0.0034 (18) | −0.0033 (18) |
C2 | 0.036 (2) | 0.055 (3) | 0.049 (3) | −0.0033 (19) | 0.016 (2) | −0.010 (2) |
C3 | 0.053 (3) | 0.056 (3) | 0.036 (2) | −0.006 (2) | 0.020 (2) | −0.002 (2) |
C4 | 0.044 (2) | 0.050 (2) | 0.031 (2) | 0.0007 (19) | 0.0095 (18) | 0.0035 (18) |
C5 | 0.036 (2) | 0.0314 (19) | 0.0306 (19) | −0.0021 (15) | 0.0085 (16) | −0.0006 (15) |
C6 | 0.033 (2) | 0.0306 (18) | 0.0283 (19) | −0.0012 (15) | 0.0056 (16) | 0.0000 (15) |
C7 | 0.031 (2) | 0.0362 (19) | 0.031 (2) | −0.0004 (15) | 0.0037 (16) | −0.0015 (16) |
C8 | 0.0298 (19) | 0.037 (2) | 0.039 (2) | −0.0018 (16) | 0.0063 (16) | −0.0005 (17) |
C9 | 0.041 (2) | 0.053 (3) | 0.061 (3) | 0.009 (2) | 0.004 (2) | 0.014 (2) |
C10 | 0.038 (2) | 0.049 (3) | 0.077 (4) | 0.009 (2) | 0.015 (2) | 0.002 (2) |
C11 | 0.045 (3) | 0.065 (3) | 0.066 (3) | 0.001 (2) | 0.029 (2) | −0.006 (3) |
C12 | 0.043 (2) | 0.059 (3) | 0.042 (2) | 0.002 (2) | 0.012 (2) | 0.003 (2) |
Ni1—N2i | 2.037 (3) | N5—H5B | 0.9000 |
Ni1—N2 | 2.037 (3) | N6—C8 | 1.334 (5) |
Ni1—O1 | 2.101 (3) | N6—C9 | 1.346 (5) |
Ni1—O1i | 2.101 (3) | C1—C2 | 1.399 (6) |
Ni1—N1 | 2.111 (3) | C1—H1 | 0.9300 |
Ni1—N1i | 2.111 (3) | C2—C3 | 1.378 (7) |
Cl1—O5 | 1.357 (5) | C2—H2 | 0.9300 |
Cl1—O3 | 1.369 (6) | C3—C4 | 1.397 (6) |
Cl1—O2 | 1.396 (4) | C3—H3 | 0.9300 |
Cl1—O4 | 1.401 (5) | C4—C5 | 1.379 (5) |
O1—H1A | 0.8499 | C4—H4 | 0.9300 |
O1—H1B | 0.8500 | C5—C6 | 1.465 (5) |
N1—C1 | 1.330 (5) | C7—C8 | 1.468 (5) |
N1—C5 | 1.348 (5) | C8—C12 | 1.378 (6) |
N2—C6 | 1.323 (5) | C9—C10 | 1.367 (7) |
N2—N3 | 1.369 (4) | C9—H9 | 0.9300 |
N3—C7 | 1.318 (5) | C10—C11 | 1.367 (7) |
N4—C6 | 1.343 (5) | C10—H10 | 0.9300 |
N4—C7 | 1.366 (5) | C11—C12 | 1.383 (6) |
N4—N5 | 1.426 (4) | C11—H11 | 0.9300 |
N5—H5A | 0.9000 | C12—H12 | 0.9300 |
N2i—Ni1—N2 | 180.00 (16) | C8—N6—C9 | 116.8 (4) |
N2i—Ni1—O1 | 90.42 (11) | N1—C1—C2 | 121.7 (4) |
N2—Ni1—O1 | 89.58 (11) | N1—C1—H1 | 119.1 |
N2i—Ni1—O1i | 89.58 (11) | C2—C1—H1 | 119.1 |
N2—Ni1—O1i | 90.42 (11) | C3—C2—C1 | 119.5 (4) |
O1—Ni1—O1i | 180.00 (7) | C3—C2—H2 | 120.2 |
N2i—Ni1—N1 | 101.04 (12) | C1—C2—H2 | 120.2 |
N2—Ni1—N1 | 78.96 (12) | C2—C3—C4 | 118.4 (4) |
O1—Ni1—N1 | 89.94 (11) | C2—C3—H3 | 120.8 |
O1i—Ni1—N1 | 90.06 (11) | C4—C3—H3 | 120.8 |
N2i—Ni1—N1i | 78.96 (12) | C5—C4—C3 | 118.9 (4) |
N2—Ni1—N1i | 101.04 (12) | C5—C4—H4 | 120.5 |
O1—Ni1—N1i | 90.06 (11) | C3—C4—H4 | 120.5 |
O1i—Ni1—N1i | 89.94 (11) | N1—C5—C4 | 122.4 (4) |
N1—Ni1—N1i | 180.000 (1) | N1—C5—C6 | 112.2 (3) |
O5—Cl1—O3 | 110.3 (6) | C4—C5—C6 | 125.3 (4) |
O5—Cl1—O2 | 107.8 (3) | N2—C6—N4 | 108.5 (3) |
O3—Cl1—O2 | 110.8 (4) | N2—C6—C5 | 119.8 (3) |
O5—Cl1—O4 | 109.5 (5) | N4—C6—C5 | 131.6 (3) |
O3—Cl1—O4 | 105.5 (4) | N3—C7—N4 | 109.8 (3) |
O2—Cl1—O4 | 113.1 (4) | N3—C7—C8 | 123.4 (3) |
Ni1—O1—H1A | 119.3 | N4—C7—C8 | 126.7 (3) |
Ni1—O1—H1B | 111.7 | N6—C8—C12 | 123.5 (4) |
H1A—O1—H1B | 116.3 | N6—C8—C7 | 116.6 (3) |
C1—N1—C5 | 119.0 (4) | C12—C8—C7 | 119.8 (4) |
C1—N1—Ni1 | 126.2 (3) | N6—C9—C10 | 123.7 (4) |
C5—N1—Ni1 | 114.7 (2) | N6—C9—H9 | 118.2 |
C6—N2—N3 | 109.0 (3) | C10—C9—H9 | 118.2 |
C6—N2—Ni1 | 113.7 (2) | C9—C10—C11 | 118.2 (4) |
N3—N2—Ni1 | 137.1 (2) | C9—C10—H10 | 120.9 |
C7—N3—N2 | 106.3 (3) | C11—C10—H10 | 120.9 |
C6—N4—C7 | 106.4 (3) | C10—C11—C12 | 119.9 (4) |
C6—N4—N5 | 124.0 (3) | C10—C11—H11 | 120.0 |
C7—N4—N5 | 129.3 (3) | C12—C11—H11 | 120.0 |
N4—N5—H5A | 105.7 | C8—C12—C11 | 117.8 (4) |
N4—N5—H5B | 101.1 | C8—C12—H12 | 121.1 |
H5A—N5—H5B | 112.2 | C11—C12—H12 | 121.1 |
N2i—Ni1—N1—C1 | −5.8 (3) | Ni1—N2—C6—N4 | 173.7 (2) |
N2—Ni1—N1—C1 | 174.2 (3) | N3—N2—C6—C5 | 174.9 (3) |
O1—Ni1—N1—C1 | 84.6 (3) | Ni1—N2—C6—C5 | −9.6 (4) |
O1i—Ni1—N1—C1 | −95.4 (3) | C7—N4—C6—N2 | 2.2 (4) |
N2i—Ni1—N1—C5 | 178.4 (2) | N5—N4—C6—N2 | −172.0 (3) |
N2—Ni1—N1—C5 | −1.6 (2) | C7—N4—C6—C5 | −174.1 (4) |
O1—Ni1—N1—C5 | −91.2 (3) | N5—N4—C6—C5 | 11.8 (6) |
O1i—Ni1—N1—C5 | 88.8 (3) | N1—C5—C6—N2 | 8.2 (5) |
O1—Ni1—N2—C6 | 95.9 (3) | C4—C5—C6—N2 | −169.2 (4) |
O1i—Ni1—N2—C6 | −84.1 (3) | N1—C5—C6—N4 | −175.9 (4) |
N1—Ni1—N2—C6 | 5.9 (3) | C4—C5—C6—N4 | 6.7 (7) |
N1i—Ni1—N2—C6 | −174.1 (3) | N2—N3—C7—N4 | 0.6 (4) |
O1—Ni1—N2—N3 | −90.3 (4) | N2—N3—C7—C8 | −175.7 (3) |
O1i—Ni1—N2—N3 | 89.7 (4) | C6—N4—C7—N3 | −1.7 (4) |
N1—Ni1—N2—N3 | 179.7 (4) | N5—N4—C7—N3 | 172.1 (3) |
N1i—Ni1—N2—N3 | −0.3 (4) | C6—N4—C7—C8 | 174.4 (4) |
C6—N2—N3—C7 | 0.8 (4) | N5—N4—C7—C8 | −11.8 (6) |
Ni1—N2—N3—C7 | −173.2 (3) | C9—N6—C8—C12 | −1.1 (6) |
C5—N1—C1—C2 | 0.2 (6) | C9—N6—C8—C7 | −179.2 (4) |
Ni1—N1—C1—C2 | −175.4 (3) | N3—C7—C8—N6 | 168.3 (4) |
N1—C1—C2—C3 | 1.6 (6) | N4—C7—C8—N6 | −7.3 (6) |
C1—C2—C3—C4 | −2.3 (6) | N3—C7—C8—C12 | −9.9 (6) |
C2—C3—C4—C5 | 1.4 (6) | N4—C7—C8—C12 | 174.5 (4) |
C1—N1—C5—C4 | −1.2 (6) | C8—N6—C9—C10 | 1.9 (7) |
Ni1—N1—C5—C4 | 174.9 (3) | N6—C9—C10—C11 | −1.1 (7) |
C1—N1—C5—C6 | −178.6 (3) | C9—C10—C11—C12 | −0.4 (7) |
Ni1—N1—C5—C6 | −2.6 (4) | N6—C8—C12—C11 | −0.3 (7) |
C3—C4—C5—N1 | 0.4 (6) | C7—C8—C12—C11 | 177.7 (4) |
C3—C4—C5—C6 | 177.5 (4) | C10—C11—C12—C8 | 1.1 (7) |
N3—N2—C6—N4 | −1.9 (4) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O3ii | 0.85 | 2.51 | 3.245 (8) | 146 |
O1—H1A···O4ii | 0.85 | 2.11 | 2.918 (7) | 158 |
O1—H1B···O2 | 0.85 | 2.44 | 3.085 (5) | 134 |
O1—H1B···N6ii | 0.85 | 2.45 | 3.100 (5) | 134 |
N5—H5A···O5iii | 0.90 | 2.28 | 3.078 (7) | 148 |
N5—H5B···N6 | 0.90 | 2.17 | 2.886 (5) | 136 |
Symmetry codes: (ii) x+1/2, −y+1/2, z+1/2; (iii) −x+1/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C12H10N6)2(H2O)2](ClO4)2 |
Mr | 770.16 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 9.9219 (15), 14.359 (2), 10.9220 (18) |
β (°) | 100.560 (3) |
V (Å3) | 1529.7 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.89 |
Crystal size (mm) | 0.20 × 0.18 × 0.16 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.840, 0.870 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7639, 2686, 2171 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.154, 1.07 |
No. of reflections | 2686 |
No. of parameters | 223 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.12, −0.40 |
Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O3i | 0.85 | 2.51 | 3.245 (8) | 146 |
O1—H1A···O4i | 0.85 | 2.11 | 2.918 (7) | 158 |
O1—H1B···O2 | 0.85 | 2.44 | 3.085 (5) | 134 |
O1—H1B···N6i | 0.85 | 2.45 | 3.100 (5) | 134 |
N5—H5A···O5ii | 0.90 | 2.28 | 3.078 (7) | 148 |
N5—H5B···N6 | 0.90 | 2.17 | 2.886 (5) | 136 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1/2, y−1/2, −z+1/2. |
References
Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494. Web of Science CrossRef Google Scholar
Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Du, M., Li, C.-P., Zhao, X. J. & Yu, Q. (2007). CrystEngComm, 9, 1011–1028. Web of Science CSD CrossRef CAS Google Scholar
García-Couceiro, U., Castillo, O., Luque, A., Beobide, G. & Román, P. (2004). Acta Cryst. E60, m720–m722. Web of Science CSD CrossRef IUCr Journals Google Scholar
Haasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185. Web of Science CrossRef CAS Google Scholar
Keij, F. S., de Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1984). J. Chem. Soc. Dalton Trans. pp. 2093–2097. CSD CrossRef Web of Science Google Scholar
Moliner, N., Gaspar, A. B., Munoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem. 40, 3986–3991. Web of Science CSD CrossRef PubMed CAS Google Scholar
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS Google Scholar
Peng, M.-X., Hong, C.-G., Tan, C.-K., Chen, J.-C. & Tong, M.-L. (2006). J. Chem. Cryst. 36, 703–707. Web of Science CSD CrossRef CAS Google Scholar
Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91–119. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tong, M.-L., Hong, C.-G., Zheng, L.-L., Peng, M.-X., Gaita-Arino, A. & Juan, J.-M. C. (2007). Eur. J . Inorg. Chem. pp. 3710–3717. Web of Science CSD CrossRef Google Scholar
Van Koningsbruggen, P. J., Goubitz, K., Haasnoot, J. G. & Reedijk, J. (1998). Inorg. Chim. Acta, 268, 37–42. Web of Science CSD CrossRef CAS Google Scholar
Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545–565. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
It is widely known that diverse coordination architectures can be constructed by coordinative bonds using metal ions to combine with multifunctional ligands (Moulton & Zaworotko, 2001). Aside from that, supramolecular interactions such as hydrogen bonding and aromatic stacking are usually used as the assistant tools to extend or sustain the resultant structures (Roesky & Andruh, 2003; Ye et al., 2005; Du et al., 2007). It has been reported that 1,2,4-triazole a is stronger σ-donor and weaker π-acceptor than 2,2'-bipyridine and their derivatives have gained considerable interest in recent years in the development of polypyridyl transition metal complexes (Haasnoot, 2000). Recently, one triazole derivative, 4-amino-3,5-di-2-pyridyl-1,2,4-triazole (2-bpt) has attracted our interest because of its potential ability for providing multi-coordination modes and generating hydrogen-bonding and/or aromatic stacking interactions (Van Koningsbruggen et al., 1998; Moliner et al., 2001; García-Couceiro et al.,2004; Peng et al., 2006). With respect to the NiII-2-bpt complexes, mononuclear and binuclear molecules have been reported (Keij et al., 1984; Tong et al., 2007), in which anions such as Cl- and N3- are existent, coordinating to the metal ion or serving as lattice entity to charge compensate. Here we report a new mononuclear NiII-2-bpt complex [Ni(2-bpt)2(H2O)2](ClO4)2 (I), in which 2-bpt acts as a chelating reagent and supramolecular interactions such as hydrogen bonds and aromatic stacking can extend the mononuclear molecule into a three-dimensional architecture.
The molecular structure of (I) reveals a neutral centrosymmetric mononuclear complex, with the asymmetric unit of which comprising a half-occupied NiII atom, one 2-bpt molecule, one water ligand as well as one lattice ClO4- anion. As depicted in Fig. 1, the distorted octahedral NiII center, which is located on a crystallographic inversion center, is defined by two pairs of chelating nitrogen donors from two individual 2-bpt molecules as well as two water ligands. The axial Ni—N distances [2.037 (3) Å] are significantly shorter than those of the Ni—O and Ni—N equatorial lengths [2.101 (3) and 2.111 (3) Å]. In the structure, 2-bpt molecule exhibits trans-conformation and intramolecular N5—H5B···N6 hydrogen bond (Table 2) can be detected between the adjacent amino and pyridyl groups. Along the [011] plane, such mononuclear units related by 2-fold screw operation are interlinked by intermolecular O1—H1B···N6 interactions (Table 1) involving water ligands and pyridyl rings of 2-bpt to generate a 2-D net with simple (4,4) topology, (Batten et al., 1998) as shown in Fig. 2. The dimension of the large grid of the net is 9.8005 * 9.8005 Å2. Furthermore, the hydrogen-bonded 2-D nets are interdigitated and interlayer π···π stacking interaction can be observed between the nearly parallel pyridyl of the 2-bpt molecules as expected, which can extend the structure to a 3-D supramolecular architecture (Fig. 3). The center-to-center and center-to-plane separations of the pyridyl groups are 3.809 and 3.499/3.294 Å (with a dihedral angle of 6.9°), respectively. What's more, the lattice ClO4- anions are located in the interlayer space [a volume of 308.9 Å, 20.2% of the unit-cell volume as evaluated by PLATON (Spek, 2009)] and also hydrogen bonded to the 3-D aggregate via multiple Owater—H···OClO4- and Namino—H···OClO4- interactions (Table 1).