metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m511-m512

Bis(4-amino-3,5-di-2-pyridyl-4H-1,2,4-triazole)di­aquanickel(II) bis­(perchlorate)

aCollege of Chemistry and Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: switeric@hotmail.com

(Received 14 March 2009; accepted 3 April 2009; online 10 April 2009)

In the mol­ecular structure of the centrosymmetric mononuclear complex [Ni(2-bpt)2(H2O)2](ClO4)2 [2-bpt = 4-amino-3,5-di-2-pyridyl-1,2,4-triazole, (C12H10N6)], the central NiII atom is six-coordinated by a pair of chelating 2-bpt ligands and two water mol­ecules. Inter­molecular O—H⋯N inter­actions link the monomeric units into a two-dimensional hydrogen-bonded (4,4) network, which is extended to a three-dimensional supra­molecular aggregate via ππ stacking inter­actions [centroid–centroid distances 3.809 (3) and 3.499 (3)  Å].

Related literature

Diverse coordination architectures can be constructed by coordinative bonds using metal ions to combine with multifunctional ligands, see: Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]). Supra­molecular inter­actions such as hydrogen bonding and aromatic stacking are usually used to extend or sustain the resultant structures, see: Roesky & Andruh (2003[Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91-119.]); Ye et al. (2005[Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545-565.]); Du et al. (2007[Du, M., Li, C.-P., Zhao, X. J. & Yu, Q. (2007). CrystEngComm, 9, 1011-1028.]). For polypyrid­yl–transition metal complexes, see: Haasnoot (2000[Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.]). For the potential ability of 4-amino-3,5-di-2-pyridyl-1,2,4-triazole (2-bpt) to provide multi-coordination modes and generate hydrogen-bonding and/or aromatic stacking inter­actions, see: Van Koningsbruggen et al. (1998[Van Koningsbruggen, P. J., Goubitz, K., Haasnoot, J. G. & Reedijk, J. (1998). Inorg. Chim. Acta, 268, 37-42.]); Moliner et al. (2001[Moliner, N., Gaspar, A. B., Munoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem. 40, 3986-3991.]); García-Couceiro et al. (2004[García-Couceiro, U., Castillo, O., Luque, A., Beobide, G. & Román, P. (2004). Acta Cryst. E60, m720-m722.]); Peng et al. (2006[Peng, M.-X., Hong, C.-G., Tan, C.-K., Chen, J.-C. & Tong, M.-L. (2006). J. Chem. Cryst. 36, 703-707.]). For NiII–2-bpt complexes, see: Keij et al. (1984[Keij, F. S., de Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1984). J. Chem. Soc. Dalton Trans. pp. 2093-2097.]); Tong et al. (2007[Tong, M.-L., Hong, C.-G., Zheng, L.-L., Peng, M.-X., Gaita-Arino, A. & Juan, J.-M. C. (2007). Eur. J . Inorg. Chem. pp. 3710-3717.]). For the (4,4) topology, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H10N6)2(H2O)2](ClO4)2

  • Mr = 770.16

  • Monoclinic, P 21 /n

  • a = 9.9219 (15) Å

  • b = 14.359 (2) Å

  • c = 10.9220 (18) Å

  • β = 100.560 (3)°

  • V = 1529.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.840, Tmax = 0.870

  • 7639 measured reflections

  • 2686 independent reflections

  • 2171 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.154

  • S = 1.07

  • 2686 reflections

  • 223 parameters

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.85 2.51 3.245 (8) 146
O1—H1A⋯O4i 0.85 2.11 2.918 (7) 158
O1—H1B⋯O2 0.85 2.44 3.085 (5) 134
O1—H1B⋯N6i 0.85 2.45 3.100 (5) 134
N5—H5A⋯O5ii 0.90 2.28 3.078 (7) 148
N5—H5B⋯N6 0.90 2.17 2.886 (5) 136
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

It is widely known that diverse coordination architectures can be constructed by coordinative bonds using metal ions to combine with multifunctional ligands (Moulton & Zaworotko, 2001). Aside from that, supramolecular interactions such as hydrogen bonding and aromatic stacking are usually used as the assistant tools to extend or sustain the resultant structures (Roesky & Andruh, 2003; Ye et al., 2005; Du et al., 2007). It has been reported that 1,2,4-triazole a is stronger σ-donor and weaker π-acceptor than 2,2'-bipyridine and their derivatives have gained considerable interest in recent years in the development of polypyridyl transition metal complexes (Haasnoot, 2000). Recently, one triazole derivative, 4-amino-3,5-di-2-pyridyl-1,2,4-triazole (2-bpt) has attracted our interest because of its potential ability for providing multi-coordination modes and generating hydrogen-bonding and/or aromatic stacking interactions (Van Koningsbruggen et al., 1998; Moliner et al., 2001; García-Couceiro et al.,2004; Peng et al., 2006). With respect to the NiII-2-bpt complexes, mononuclear and binuclear molecules have been reported (Keij et al., 1984; Tong et al., 2007), in which anions such as Cl- and N3- are existent, coordinating to the metal ion or serving as lattice entity to charge compensate. Here we report a new mononuclear NiII-2-bpt complex [Ni(2-bpt)2(H2O)2](ClO4)2 (I), in which 2-bpt acts as a chelating reagent and supramolecular interactions such as hydrogen bonds and aromatic stacking can extend the mononuclear molecule into a three-dimensional architecture.

The molecular structure of (I) reveals a neutral centrosymmetric mononuclear complex, with the asymmetric unit of which comprising a half-occupied NiII atom, one 2-bpt molecule, one water ligand as well as one lattice ClO4- anion. As depicted in Fig. 1, the distorted octahedral NiII center, which is located on a crystallographic inversion center, is defined by two pairs of chelating nitrogen donors from two individual 2-bpt molecules as well as two water ligands. The axial Ni—N distances [2.037 (3) Å] are significantly shorter than those of the Ni—O and Ni—N equatorial lengths [2.101 (3) and 2.111 (3) Å]. In the structure, 2-bpt molecule exhibits trans-conformation and intramolecular N5—H5B···N6 hydrogen bond (Table 2) can be detected between the adjacent amino and pyridyl groups. Along the [011] plane, such mononuclear units related by 2-fold screw operation are interlinked by intermolecular O1—H1B···N6 interactions (Table 1) involving water ligands and pyridyl rings of 2-bpt to generate a 2-D net with simple (4,4) topology, (Batten et al., 1998) as shown in Fig. 2. The dimension of the large grid of the net is 9.8005 * 9.8005 Å2. Furthermore, the hydrogen-bonded 2-D nets are interdigitated and interlayer π···π stacking interaction can be observed between the nearly parallel pyridyl of the 2-bpt molecules as expected, which can extend the structure to a 3-D supramolecular architecture (Fig. 3). The center-to-center and center-to-plane separations of the pyridyl groups are 3.809 and 3.499/3.294 Å (with a dihedral angle of 6.9°), respectively. What's more, the lattice ClO4- anions are located in the interlayer space [a volume of 308.9 Å, 20.2% of the unit-cell volume as evaluated by PLATON (Spek, 2009)] and also hydrogen bonded to the 3-D aggregate via multiple Owater—H···OClO4- and Namino—H···OClO4- interactions (Table 1).

Related literature top

Diverse coordination architectures can be constructed by coordinative bonds using metal ions to combine with multifunctional ligands, see: Moulton & Zaworotko (2001). Supramolecular interactions such as hydrogen bonding and aromatic stacking are usually used to extend or sustain the resultant structures, see: Roesky & Andruh (2003); Ye et al. (2005); Du et al. (2007).For polypyridyl–transition metal complexes, see: Haasnoot (2000). For the potential ability of 4-amino-3,5-di-2-pyridyl-1,2,4-triazole (2-bpt) to provide multi-coordination modes and generate hydrogen-bonding and/or aromatic stacking interactions, see: Van Koningsbruggen et al. (1998); Moliner et al. (2001); García-Couceiro et al. (2004); Peng et al. (2006). For NiII-2-bpt complexes, see: Keij et al. (1984); Tong et al. (2007). For the (4,4) topology, see: Batten et al. (1998).

Experimental top

To a methanol (10 ml) solution of 2-bpt (12.0 mg, 0.05 mmol) was added a water (5 ml) solution of Ni(ClO4)2.6H2O (18.0 mg, 0.05 mmol) with stirring, then a methanol (10 ml) solution of 5-Nipa (11.0 mg, 0.05 mmol) was added to the above mixture. After vigorous stirring for ca 20 min, the resultant solution was filtered and left to stand at room temperature. Pale-green block crystals suitable for X-ray analysis were produced by slow evaporation of the solvent for two weeks in a 52% yield (10.0 mg based on 2-bpt). Anal. Calcd for C24H24Cl2N12NiO10 (%): C, 37.43; H, 3.14; N, 21.83. Found (%): C, 37.40; H, 3.19; N, 21.91. IR (KBr, cm-1)): 3396b, 1708w, 1626s, 1568m, 1539m, 1484m, 1459m, 1424m, 1385m, 1350m, 1276w, 1144vs, 1088vs, 838w, 786w, 730m, 629s.

Refinement top

All H atoms were placed in geometrically calculated positions with C—H = 0.93 Å, N—H = 0.90 Å, and O—H = 0.85 Å, and included in the final refinement in the riding model approximation, with displacement parameters derived from their parent atoms [Uiso(H) = 1.2Ueq(C) and 1.5Ueq (N and Owater)].

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Representation of (I) with atomic labels of asymmetric unit and coordination sphere, shown with 30% probability displacement ellipsoids. Except for water and amino, all the hydrogen atoms as well as lattice ClO4- anion are omitted for clarity and the intramolecular hydrogen bonds are indicated by dashed lines. [Symmetry code A: - x + 1, - y, - z + 1]
[Figure 2] Fig. 2. A perspective view of the two-dimensional hydrogen-bonded (4,4) net along the [011] plane.
[Figure 3] Fig. 3. View of the 3-D supramolecular aggregate constructed from interlayer aromatic stacking interactions (each color represents a 2-D net and the green line indicates the aromatic stacking interaction).
Bis(4-amino-3,5-di-2-pyridyl-4H-1,2,4-triazole)diaquanickel(II) bis(perchlorate) top
Crystal data top
[Ni(C12H10N6)2(H2O)2](ClO4)2F(000) = 788
Mr = 770.16Dx = 1.672 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2386 reflections
a = 9.9219 (15) Åθ = 2.4–24.5°
b = 14.359 (2) ŵ = 0.89 mm1
c = 10.9220 (18) ÅT = 296 K
β = 100.560 (3)°Block, pale green
V = 1529.7 (4) Å30.20 × 0.18 × 0.16 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2686 independent reflections
Radiation source: fine-focus sealed tube2171 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1011
Tmin = 0.840, Tmax = 0.870k = 1716
7639 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.090P)2 + 1.5989P]
where P = (Fo2 + 2Fc2)/3
2686 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 1.12 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Ni(C12H10N6)2(H2O)2](ClO4)2V = 1529.7 (4) Å3
Mr = 770.16Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.9219 (15) ŵ = 0.89 mm1
b = 14.359 (2) ÅT = 296 K
c = 10.9220 (18) Å0.20 × 0.18 × 0.16 mm
β = 100.560 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2686 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2171 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.870Rint = 0.028
7639 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.07Δρmax = 1.12 e Å3
2686 reflectionsΔρmin = 0.40 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.50000.0297 (2)
Cl10.37983 (11)0.36054 (8)0.32882 (10)0.0472 (3)
O10.5877 (3)0.12860 (19)0.5625 (3)0.0416 (7)
H1A0.65020.13020.62710.062*
H1B0.52810.17170.55560.062*
O20.4370 (5)0.2802 (3)0.3892 (4)0.0890 (14)
O30.4030 (7)0.3637 (7)0.2091 (6)0.184 (4)
O40.2372 (5)0.3650 (5)0.3186 (6)0.130 (2)
O50.4382 (8)0.4351 (3)0.3942 (8)0.203 (5)
N10.5588 (3)0.0213 (2)0.3259 (3)0.0330 (7)
N20.3327 (3)0.0682 (2)0.4056 (3)0.0328 (7)
N30.2087 (3)0.0979 (2)0.4288 (3)0.0365 (7)
N40.2168 (3)0.1192 (2)0.2312 (3)0.0318 (7)
N50.1787 (4)0.1333 (3)0.1001 (3)0.0424 (8)
H5A0.13990.07960.06930.064*
H5B0.11700.17950.09740.064*
N60.0420 (3)0.2165 (3)0.2012 (3)0.0440 (8)
C10.6805 (4)0.0015 (3)0.2978 (4)0.0396 (9)
H10.74590.02830.35660.047*
C20.7126 (4)0.0244 (3)0.1820 (4)0.0456 (10)
H20.79750.00850.16350.055*
C30.6174 (5)0.0706 (3)0.0954 (4)0.0468 (11)
H30.63800.08840.01900.056*
C40.4893 (4)0.0901 (3)0.1251 (4)0.0414 (10)
H40.42210.12000.06810.050*
C50.4640 (4)0.0642 (2)0.2404 (3)0.0324 (8)
C60.3373 (4)0.0829 (2)0.2869 (3)0.0305 (8)
C70.1398 (4)0.1292 (3)0.3220 (4)0.0332 (8)
C80.0045 (4)0.1734 (3)0.3089 (4)0.0353 (9)
C90.1653 (5)0.2580 (3)0.1895 (5)0.0524 (11)
H90.20080.28690.11420.063*
C100.2413 (5)0.2603 (3)0.2819 (5)0.0542 (12)
H100.32530.29080.27030.065*
C110.1904 (5)0.2166 (3)0.3918 (5)0.0563 (12)
H110.23970.21740.45650.068*
C120.0655 (4)0.1712 (3)0.4068 (4)0.0472 (11)
H120.03010.14020.48040.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0277 (4)0.0354 (4)0.0254 (4)0.0013 (3)0.0039 (3)0.0021 (3)
Cl10.0438 (6)0.0497 (6)0.0437 (6)0.0050 (5)0.0036 (5)0.0001 (5)
O10.0389 (16)0.0406 (15)0.0433 (17)0.0022 (12)0.0021 (13)0.0004 (12)
O20.108 (3)0.058 (2)0.087 (3)0.013 (2)0.018 (3)0.014 (2)
O30.150 (6)0.339 (11)0.077 (4)0.078 (6)0.055 (4)0.074 (5)
O40.061 (3)0.203 (6)0.129 (5)0.035 (3)0.028 (3)0.020 (4)
O50.230 (8)0.055 (3)0.247 (8)0.012 (4)0.159 (7)0.024 (4)
N10.0329 (17)0.0362 (16)0.0301 (17)0.0002 (13)0.0064 (14)0.0015 (13)
N20.0325 (17)0.0390 (17)0.0269 (16)0.0028 (13)0.0051 (13)0.0010 (13)
N30.0338 (18)0.0441 (18)0.0308 (17)0.0025 (14)0.0038 (14)0.0006 (14)
N40.0336 (17)0.0352 (16)0.0256 (16)0.0004 (13)0.0029 (13)0.0006 (13)
N50.044 (2)0.055 (2)0.0268 (17)0.0075 (16)0.0039 (15)0.0078 (15)
N60.0336 (18)0.056 (2)0.042 (2)0.0059 (16)0.0061 (15)0.0106 (17)
C10.033 (2)0.036 (2)0.048 (2)0.0017 (16)0.0034 (18)0.0033 (18)
C20.036 (2)0.055 (3)0.049 (3)0.0033 (19)0.016 (2)0.010 (2)
C30.053 (3)0.056 (3)0.036 (2)0.006 (2)0.020 (2)0.002 (2)
C40.044 (2)0.050 (2)0.031 (2)0.0007 (19)0.0095 (18)0.0035 (18)
C50.036 (2)0.0314 (19)0.0306 (19)0.0021 (15)0.0085 (16)0.0006 (15)
C60.033 (2)0.0306 (18)0.0283 (19)0.0012 (15)0.0056 (16)0.0000 (15)
C70.031 (2)0.0362 (19)0.031 (2)0.0004 (15)0.0037 (16)0.0015 (16)
C80.0298 (19)0.037 (2)0.039 (2)0.0018 (16)0.0063 (16)0.0005 (17)
C90.041 (2)0.053 (3)0.061 (3)0.009 (2)0.004 (2)0.014 (2)
C100.038 (2)0.049 (3)0.077 (4)0.009 (2)0.015 (2)0.002 (2)
C110.045 (3)0.065 (3)0.066 (3)0.001 (2)0.029 (2)0.006 (3)
C120.043 (2)0.059 (3)0.042 (2)0.002 (2)0.012 (2)0.003 (2)
Geometric parameters (Å, º) top
Ni1—N2i2.037 (3)N5—H5B0.9000
Ni1—N22.037 (3)N6—C81.334 (5)
Ni1—O12.101 (3)N6—C91.346 (5)
Ni1—O1i2.101 (3)C1—C21.399 (6)
Ni1—N12.111 (3)C1—H10.9300
Ni1—N1i2.111 (3)C2—C31.378 (7)
Cl1—O51.357 (5)C2—H20.9300
Cl1—O31.369 (6)C3—C41.397 (6)
Cl1—O21.396 (4)C3—H30.9300
Cl1—O41.401 (5)C4—C51.379 (5)
O1—H1A0.8499C4—H40.9300
O1—H1B0.8500C5—C61.465 (5)
N1—C11.330 (5)C7—C81.468 (5)
N1—C51.348 (5)C8—C121.378 (6)
N2—C61.323 (5)C9—C101.367 (7)
N2—N31.369 (4)C9—H90.9300
N3—C71.318 (5)C10—C111.367 (7)
N4—C61.343 (5)C10—H100.9300
N4—C71.366 (5)C11—C121.383 (6)
N4—N51.426 (4)C11—H110.9300
N5—H5A0.9000C12—H120.9300
N2i—Ni1—N2180.00 (16)C8—N6—C9116.8 (4)
N2i—Ni1—O190.42 (11)N1—C1—C2121.7 (4)
N2—Ni1—O189.58 (11)N1—C1—H1119.1
N2i—Ni1—O1i89.58 (11)C2—C1—H1119.1
N2—Ni1—O1i90.42 (11)C3—C2—C1119.5 (4)
O1—Ni1—O1i180.00 (7)C3—C2—H2120.2
N2i—Ni1—N1101.04 (12)C1—C2—H2120.2
N2—Ni1—N178.96 (12)C2—C3—C4118.4 (4)
O1—Ni1—N189.94 (11)C2—C3—H3120.8
O1i—Ni1—N190.06 (11)C4—C3—H3120.8
N2i—Ni1—N1i78.96 (12)C5—C4—C3118.9 (4)
N2—Ni1—N1i101.04 (12)C5—C4—H4120.5
O1—Ni1—N1i90.06 (11)C3—C4—H4120.5
O1i—Ni1—N1i89.94 (11)N1—C5—C4122.4 (4)
N1—Ni1—N1i180.000 (1)N1—C5—C6112.2 (3)
O5—Cl1—O3110.3 (6)C4—C5—C6125.3 (4)
O5—Cl1—O2107.8 (3)N2—C6—N4108.5 (3)
O3—Cl1—O2110.8 (4)N2—C6—C5119.8 (3)
O5—Cl1—O4109.5 (5)N4—C6—C5131.6 (3)
O3—Cl1—O4105.5 (4)N3—C7—N4109.8 (3)
O2—Cl1—O4113.1 (4)N3—C7—C8123.4 (3)
Ni1—O1—H1A119.3N4—C7—C8126.7 (3)
Ni1—O1—H1B111.7N6—C8—C12123.5 (4)
H1A—O1—H1B116.3N6—C8—C7116.6 (3)
C1—N1—C5119.0 (4)C12—C8—C7119.8 (4)
C1—N1—Ni1126.2 (3)N6—C9—C10123.7 (4)
C5—N1—Ni1114.7 (2)N6—C9—H9118.2
C6—N2—N3109.0 (3)C10—C9—H9118.2
C6—N2—Ni1113.7 (2)C9—C10—C11118.2 (4)
N3—N2—Ni1137.1 (2)C9—C10—H10120.9
C7—N3—N2106.3 (3)C11—C10—H10120.9
C6—N4—C7106.4 (3)C10—C11—C12119.9 (4)
C6—N4—N5124.0 (3)C10—C11—H11120.0
C7—N4—N5129.3 (3)C12—C11—H11120.0
N4—N5—H5A105.7C8—C12—C11117.8 (4)
N4—N5—H5B101.1C8—C12—H12121.1
H5A—N5—H5B112.2C11—C12—H12121.1
N2i—Ni1—N1—C15.8 (3)Ni1—N2—C6—N4173.7 (2)
N2—Ni1—N1—C1174.2 (3)N3—N2—C6—C5174.9 (3)
O1—Ni1—N1—C184.6 (3)Ni1—N2—C6—C59.6 (4)
O1i—Ni1—N1—C195.4 (3)C7—N4—C6—N22.2 (4)
N2i—Ni1—N1—C5178.4 (2)N5—N4—C6—N2172.0 (3)
N2—Ni1—N1—C51.6 (2)C7—N4—C6—C5174.1 (4)
O1—Ni1—N1—C591.2 (3)N5—N4—C6—C511.8 (6)
O1i—Ni1—N1—C588.8 (3)N1—C5—C6—N28.2 (5)
O1—Ni1—N2—C695.9 (3)C4—C5—C6—N2169.2 (4)
O1i—Ni1—N2—C684.1 (3)N1—C5—C6—N4175.9 (4)
N1—Ni1—N2—C65.9 (3)C4—C5—C6—N46.7 (7)
N1i—Ni1—N2—C6174.1 (3)N2—N3—C7—N40.6 (4)
O1—Ni1—N2—N390.3 (4)N2—N3—C7—C8175.7 (3)
O1i—Ni1—N2—N389.7 (4)C6—N4—C7—N31.7 (4)
N1—Ni1—N2—N3179.7 (4)N5—N4—C7—N3172.1 (3)
N1i—Ni1—N2—N30.3 (4)C6—N4—C7—C8174.4 (4)
C6—N2—N3—C70.8 (4)N5—N4—C7—C811.8 (6)
Ni1—N2—N3—C7173.2 (3)C9—N6—C8—C121.1 (6)
C5—N1—C1—C20.2 (6)C9—N6—C8—C7179.2 (4)
Ni1—N1—C1—C2175.4 (3)N3—C7—C8—N6168.3 (4)
N1—C1—C2—C31.6 (6)N4—C7—C8—N67.3 (6)
C1—C2—C3—C42.3 (6)N3—C7—C8—C129.9 (6)
C2—C3—C4—C51.4 (6)N4—C7—C8—C12174.5 (4)
C1—N1—C5—C41.2 (6)C8—N6—C9—C101.9 (7)
Ni1—N1—C5—C4174.9 (3)N6—C9—C10—C111.1 (7)
C1—N1—C5—C6178.6 (3)C9—C10—C11—C120.4 (7)
Ni1—N1—C5—C62.6 (4)N6—C8—C12—C110.3 (7)
C3—C4—C5—N10.4 (6)C7—C8—C12—C11177.7 (4)
C3—C4—C5—C6177.5 (4)C10—C11—C12—C81.1 (7)
N3—N2—C6—N41.9 (4)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3ii0.852.513.245 (8)146
O1—H1A···O4ii0.852.112.918 (7)158
O1—H1B···O20.852.443.085 (5)134
O1—H1B···N6ii0.852.453.100 (5)134
N5—H5A···O5iii0.902.283.078 (7)148
N5—H5B···N60.902.172.886 (5)136
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C12H10N6)2(H2O)2](ClO4)2
Mr770.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.9219 (15), 14.359 (2), 10.9220 (18)
β (°) 100.560 (3)
V3)1529.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.840, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
7639, 2686, 2171
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.154, 1.07
No. of reflections2686
No. of parameters223
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.12, 0.40

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.852.513.245 (8)146
O1—H1A···O4i0.852.112.918 (7)158
O1—H1B···O20.852.443.085 (5)134
O1—H1B···N6i0.852.453.100 (5)134
N5—H5A···O5ii0.902.283.078 (7)148
N5—H5B···N60.902.172.886 (5)136
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.
 

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, M., Li, C.-P., Zhao, X. J. & Yu, Q. (2007). CrystEngComm, 9, 1011–1028.  Web of Science CSD CrossRef CAS Google Scholar
First citationGarcía-Couceiro, U., Castillo, O., Luque, A., Beobide, G. & Román, P. (2004). Acta Cryst. E60, m720–m722.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185.  Web of Science CrossRef CAS Google Scholar
First citationKeij, F. S., de Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1984). J. Chem. Soc. Dalton Trans. pp. 2093–2097.  CSD CrossRef Web of Science Google Scholar
First citationMoliner, N., Gaspar, A. B., Munoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem. 40, 3986–3991.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeng, M.-X., Hong, C.-G., Tan, C.-K., Chen, J.-C. & Tong, M.-L. (2006). J. Chem. Cryst. 36, 703–707.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91–119.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, M.-L., Hong, C.-G., Zheng, L.-L., Peng, M.-X., Gaita-Arino, A. & Juan, J.-M. C. (2007). Eur. J . Inorg. Chem. pp. 3710–3717.  Web of Science CSD CrossRef Google Scholar
First citationVan Koningsbruggen, P. J., Goubitz, K., Haasnoot, J. G. & Reedijk, J. (1998). Inorg. Chim. Acta, 268, 37–42.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545–565.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m511-m512
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds