metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[5-(4-Bromo­phen­oxy­meth­yl)-1,3,4-thia­diazole-2-thiol­ato]tri­phenyl­tin(IV)

aSchool of Chemistry and Chemical Engineering, Qufu Normal University, Jining 273165, People's Republic of China, and bTianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
*Correspondence e-mail: tianlaijin2009@yahoo.cn

(Received 1 April 2009; accepted 4 April 2009; online 18 April 2009)

In title compound, [Sn(C6H5)3(C9H6BrN2OS2)], the Sn atom is five-coordinated and the 1,3,4-thia­diazole-2-thiol ligand acts as an S,N-bidentate chelating ligand. The five-coordinate SnIV atom forms four primary bonds, three to the phenyl groups and one to the S atom. Thus, the title complex has a distorted cis-trigonal bipyramidal geometry with the S atom and two C atoms occupying the equatorial plane, whereas the N atom and another C atom are in axial positions. In addition, there is a weak intramolecular Sn⋯N interaction. The crystal structure involves weak intra­molecular C—H⋯N and inter­molecular C—H⋯Br hydrogen bonding.

Related literature

For the biological activity of 1,3,4-thia­diazole compounds, see: Oruc et al. (2004); Sawhney & Sharma (1993); Srivastava & Pandey (1993). For the biological activity of organotin(IV) compounds, see: Jimenez-Perez et al. (2000). For related crystal structures, see: Ma et al. (2006); Ng et al. (1990); Rodarte de Moura et al. (1999).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C9H6BrN2OS2)]

  • Mr = 652.18

  • Monoclinic, P 21 /n

  • a = 15.524 (3) Å

  • b = 9.766 (2) Å

  • c = 18.019 (4) Å

  • β = 107.10 (3)°

  • V = 2611.2 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.69 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.16 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) Tmin = 0.589, Tmax = 0.673

  • 17098 measured reflections

  • 4610 independent reflections

  • 3736 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.077

  • S = 1.04

  • 4610 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C13 2.130 (3)
Sn1—C7 2.146 (3)
Sn1—C1 2.149 (3)
Sn1—S1 2.4721 (10)
Sn1⋯N1 2.919 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Br1i 0.93 2.87 3.627 (4) 139
C8—H8⋯N1 0.93 2.54 3.274 (5) 136
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supporting information


Comment top

1, 3, 4-thiadiazole compounds, an important class of intermediates in the medical and chemical syntheses, have attracted pharmacologist's interest in recent years due to their biological activity, such as antibacterial, antiviral, growth regulation and antitumoural activity (Oruc et al., 2004; Sawhney & Sharma, 1993; Srivastava & Pandey, 1993). Meanwhile, organotins (IV) have been well known for their biological activities (Jimenez-Perez et al., 2000). In order to find a new compound with broad spectrum of bioactivity we have designed and synthesized the title compound.

The title compound, bond lengths and angles are normal and in a good agreement with those reported previously (Ma et al., 2006; Ng et al., 1990). The five coordinated tin atoms forms four primary bonds: three to the phenyl groups and one to the sulfur atom. In addition, there is a weak intramolecular Sn···N interaction, the Sn1···N1 bond length (2.92 (2) Å) is longer than the sum of covalent radii (2.15 Å), but is shorter than that reported in Ph3Sn(MBZ) (3.07 Å) (Rodarte de Moura et al., 1999). So the ligand 1,3,4-thiadiazole-2-thiol acts as a bidentate S, N chelating ligand. The crystal structure involves weak intramolecular C—H···N and intermolecular C—H···Br hydrogen bonding.

Related literature top

For the biological activity of 1,3,4-thiadiazole compounds, see: Oruc et al. (2004); Sawhney & Sharma (1993); Srivastava & Pandey (1993). For the biological activity of organotin(IV) compounds, see: Jimenez-Perez et al. (2000). For related crystal structures, see: Ma et al. (2006); Ng et al. (1990); Rodarte de Moura et al. (1999).

Experimental top

5-[(4-Bromophenoxy)methyl]-2-mercapto-1,3,4-thiadiazole (0.31 g, 1 mmol) and Ph3SnCl (0.385 g, 1 mmol) were dissolved in 30 ml of toluene, and the resultant mixture was heated to reflux for 6 h. The solvent was removed on a rotary evaporator, and the residue was heated in 50 ml of boiling dichloromethane/absolute ethanol (1/1 by volume). The solution was cooled to room temperature and then filtered, and the filtrate was evaporated slowly at room temperature, from which the crystals suitable for the X-ray diffraction were thus obtained.

Refinement top

All H atoms were found on difference maps, with C—H = 0.93 or 0.97 and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, with displacement ellipsoids drawn at the 40% probability level.
[5-(4-Bromophenoxymethyl)-1,3,4-thiadiazole-2-thiolato]triphenyltin(IV) top
Crystal data top
[Sn(C6H5)3(C9H6BrN2OS2)]F(000) = 1288
Mr = 652.18Dx = 1.659 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6604 reflections
a = 15.524 (3) Åθ = 2.5–27.1°
b = 9.766 (2) ŵ = 2.69 mm1
c = 18.019 (4) ÅT = 293 K
β = 107.10 (3)°Platelet, colorless
V = 2611.2 (9) Å30.22 × 0.20 × 0.16 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4610 independent reflections
Radiation source: rotating anode3736 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.034
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.5°
ω and ϕ scansh = 1818
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.589, Tmax = 0.673l = 2120
17098 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0416P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
4610 reflectionsΔρmax = 0.54 e Å3
308 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0068 (4)
Crystal data top
[Sn(C6H5)3(C9H6BrN2OS2)]V = 2611.2 (9) Å3
Mr = 652.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.524 (3) ŵ = 2.69 mm1
b = 9.766 (2) ÅT = 293 K
c = 18.019 (4) Å0.22 × 0.20 × 0.16 mm
β = 107.10 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4610 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3736 reflections with I > 2σ(I)
Tmin = 0.589, Tmax = 0.673Rint = 0.034
17098 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.04Δρmax = 0.54 e Å3
4610 reflectionsΔρmin = 0.38 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.812768 (15)0.08685 (2)1.009453 (13)0.04854 (12)
Br10.04987 (3)0.06136 (5)0.59342 (3)0.08367 (17)
S10.68434 (6)0.19432 (11)1.04208 (6)0.0688 (3)
S20.49137 (6)0.15741 (10)0.93629 (6)0.0633 (3)
O10.32794 (15)0.1042 (2)0.80766 (14)0.0618 (6)
N10.62663 (18)0.0247 (3)0.92206 (17)0.0562 (7)
N20.55438 (19)0.0210 (3)0.86289 (18)0.0596 (8)
C10.9210 (2)0.1827 (3)1.09675 (19)0.0473 (8)
C20.9848 (2)0.2580 (3)1.0757 (2)0.0584 (9)
H20.97860.27131.02320.070*
C31.0581 (2)0.3144 (4)1.1306 (2)0.0705 (11)
H31.10030.36561.11500.085*
C41.0682 (3)0.2949 (4)1.2074 (2)0.0729 (11)
H41.11770.33201.24440.088*
C51.0055 (3)0.2207 (4)1.2304 (2)0.0775 (12)
H51.01240.20721.28290.093*
C60.9316 (3)0.1658 (4)1.1749 (2)0.0674 (10)
H60.88870.11701.19060.081*
C70.8293 (2)0.1298 (3)1.02802 (18)0.0469 (8)
C80.7640 (3)0.2272 (3)0.9964 (2)0.0621 (9)
H80.70800.20050.96420.075*
C90.7824 (3)0.3646 (4)1.0128 (2)0.0737 (11)
H90.73810.42930.99140.088*
C100.8638 (3)0.4068 (4)1.0595 (2)0.0667 (10)
H100.87460.49931.07050.080*
C110.9300 (2)0.3114 (4)1.0904 (2)0.0592 (9)
H110.98630.33941.12140.071*
C120.9121 (2)0.1734 (4)1.0750 (2)0.0548 (9)
H120.95650.10911.09680.066*
C130.8166 (2)0.1580 (3)0.89873 (19)0.0475 (8)
C140.7985 (3)0.2930 (4)0.8760 (2)0.0686 (10)
H140.78000.35370.90800.082*
C150.8078 (3)0.3388 (4)0.8055 (3)0.0816 (13)
H150.79540.42960.79080.098*
C160.8350 (3)0.2514 (5)0.7582 (2)0.0813 (13)
H160.84180.28240.71140.098*
C170.8521 (3)0.1185 (5)0.7795 (2)0.0761 (11)
H170.87010.05840.74690.091*
C180.8431 (2)0.0720 (3)0.8490 (2)0.0590 (9)
H180.85510.01940.86250.071*
C190.6045 (2)0.1174 (3)0.9649 (2)0.0571 (9)
C200.4795 (2)0.0390 (3)0.8630 (2)0.0541 (9)
C210.3936 (2)0.0089 (4)0.8024 (2)0.0681 (11)
H21A0.40250.01400.75140.082*
H21B0.37360.08300.80950.082*
C220.2436 (2)0.0887 (3)0.7565 (2)0.0503 (8)
C230.1754 (2)0.1615 (3)0.7739 (2)0.0541 (9)
H230.18820.21550.81830.065*
C240.0885 (2)0.1538 (3)0.7253 (2)0.0561 (9)
H240.04280.20340.73660.067*
C250.0695 (2)0.0727 (3)0.6602 (2)0.0526 (9)
C260.1366 (2)0.0011 (4)0.6430 (2)0.0639 (10)
H260.12320.05600.59890.077*
C270.2241 (2)0.0064 (4)0.6917 (2)0.0615 (10)
H270.26960.04400.68050.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.04381 (17)0.04862 (16)0.04831 (17)0.00257 (11)0.00596 (11)0.00390 (10)
Br10.0507 (3)0.1201 (4)0.0662 (3)0.0068 (2)0.0046 (2)0.0018 (2)
S10.0507 (6)0.0825 (6)0.0681 (6)0.0058 (5)0.0096 (5)0.0185 (5)
S20.0428 (5)0.0659 (6)0.0766 (7)0.0112 (5)0.0106 (5)0.0134 (5)
O10.0415 (14)0.0626 (14)0.0735 (17)0.0067 (12)0.0047 (12)0.0141 (13)
N10.0398 (16)0.0599 (17)0.0642 (19)0.0036 (15)0.0082 (15)0.0037 (15)
N20.0459 (18)0.0541 (17)0.075 (2)0.0067 (15)0.0116 (16)0.0043 (16)
C10.0456 (19)0.0422 (17)0.051 (2)0.0010 (16)0.0094 (16)0.0037 (15)
C20.054 (2)0.067 (2)0.052 (2)0.0032 (19)0.0142 (18)0.0060 (18)
C30.052 (2)0.075 (3)0.083 (3)0.016 (2)0.018 (2)0.016 (2)
C40.064 (3)0.069 (2)0.073 (3)0.013 (2)0.001 (2)0.018 (2)
C50.104 (3)0.072 (3)0.044 (2)0.014 (3)0.002 (2)0.006 (2)
C60.080 (3)0.070 (2)0.051 (2)0.024 (2)0.016 (2)0.0039 (19)
C70.044 (2)0.0523 (18)0.0446 (19)0.0023 (16)0.0125 (16)0.0013 (15)
C80.049 (2)0.052 (2)0.073 (2)0.0048 (19)0.0012 (18)0.0059 (19)
C90.055 (2)0.050 (2)0.101 (3)0.002 (2)0.001 (2)0.005 (2)
C100.068 (3)0.050 (2)0.079 (3)0.008 (2)0.016 (2)0.004 (2)
C110.043 (2)0.069 (2)0.063 (2)0.017 (2)0.0123 (18)0.0032 (19)
C120.0399 (19)0.061 (2)0.060 (2)0.0001 (18)0.0101 (17)0.0073 (18)
C130.0360 (18)0.0492 (18)0.051 (2)0.0021 (15)0.0031 (15)0.0020 (16)
C140.070 (3)0.055 (2)0.070 (3)0.005 (2)0.004 (2)0.001 (2)
C150.077 (3)0.068 (3)0.081 (3)0.011 (2)0.007 (2)0.024 (2)
C160.069 (3)0.112 (4)0.055 (2)0.024 (3)0.007 (2)0.012 (3)
C170.071 (3)0.098 (3)0.063 (3)0.010 (3)0.025 (2)0.009 (2)
C180.058 (2)0.057 (2)0.060 (2)0.0044 (18)0.0140 (19)0.0003 (18)
C190.048 (2)0.058 (2)0.060 (2)0.0054 (18)0.0094 (18)0.0035 (18)
C200.044 (2)0.0504 (18)0.064 (2)0.0034 (17)0.0102 (18)0.0033 (17)
C210.050 (2)0.063 (2)0.085 (3)0.0012 (19)0.011 (2)0.017 (2)
C220.0373 (18)0.0498 (19)0.059 (2)0.0015 (16)0.0064 (16)0.0007 (17)
C230.048 (2)0.0521 (19)0.061 (2)0.0003 (17)0.0152 (18)0.0091 (17)
C240.046 (2)0.059 (2)0.062 (2)0.0056 (18)0.0134 (18)0.0024 (18)
C250.043 (2)0.057 (2)0.053 (2)0.0025 (17)0.0071 (17)0.0107 (17)
C260.059 (2)0.069 (2)0.055 (2)0.002 (2)0.0044 (19)0.0086 (19)
C270.046 (2)0.069 (2)0.065 (2)0.0097 (19)0.0092 (19)0.014 (2)
Geometric parameters (Å, º) top
Sn1—C132.130 (3)C9—H90.9300
Sn1—C72.146 (3)C10—C111.377 (5)
Sn1—C12.149 (3)C10—H100.9300
Sn1—S12.4721 (10)C11—C121.388 (5)
Sn1—N12.919 (3)C11—H110.9300
Br1—C251.892 (4)C12—H120.9300
S1—C191.738 (4)C13—C181.376 (4)
S2—C191.724 (4)C13—C141.384 (4)
S2—C201.725 (4)C14—C151.393 (5)
O1—C221.370 (4)C14—H140.9300
O1—C211.404 (4)C15—C161.358 (6)
N1—C191.299 (4)C15—H150.9300
N1—N21.375 (4)C16—C171.357 (6)
N2—C201.301 (4)C16—H160.9300
C1—C21.375 (4)C17—C181.376 (5)
C1—C61.378 (4)C17—H170.9300
C2—C31.384 (5)C18—H180.9300
C2—H20.9300C20—C211.485 (5)
C3—C41.360 (5)C21—H21A0.9700
C3—H30.9300C21—H21B0.9700
C4—C51.373 (5)C22—C271.376 (5)
C4—H40.9300C22—C231.386 (4)
C5—C61.389 (5)C23—C241.376 (4)
C5—H50.9300C23—H230.9300
C6—H60.9300C24—C251.375 (5)
C7—C121.382 (4)C24—H240.9300
C7—C81.385 (5)C25—C261.374 (5)
C8—C91.385 (5)C26—C271.386 (5)
C8—H80.9300C26—H260.9300
C9—C101.360 (5)C27—H270.9300
C13—Sn1—C7115.65 (11)C18—C13—Sn1120.5 (2)
C13—Sn1—C1108.20 (12)C14—C13—Sn1121.9 (3)
C7—Sn1—C1106.47 (12)C13—C14—C15120.6 (4)
C13—Sn1—S1109.32 (9)C13—C14—H14119.7
C7—Sn1—S1116.71 (8)C15—C14—H14119.7
C1—Sn1—S198.76 (9)C16—C15—C14120.3 (4)
C19—S1—Sn193.52 (12)C16—C15—H15119.8
C19—S2—C2086.94 (17)C14—C15—H15119.8
C22—O1—C21116.7 (3)C17—C16—C15119.6 (4)
C19—N1—N2112.9 (3)C17—C16—H16120.2
C20—N2—N1112.2 (3)C15—C16—H16120.2
C2—C1—C6117.8 (3)C16—C17—C18120.7 (4)
C2—C1—Sn1120.2 (2)C16—C17—H17119.7
C6—C1—Sn1121.9 (2)C18—C17—H17119.7
C1—C2—C3121.6 (3)C17—C18—C13121.3 (4)
C1—C2—H2119.2C17—C18—H18119.3
C3—C2—H2119.2C13—C18—H18119.3
C4—C3—C2119.8 (4)N1—C19—S2113.8 (3)
C4—C3—H3120.1N1—C19—S1121.7 (3)
C2—C3—H3120.1S2—C19—S1124.4 (2)
C3—C4—C5120.1 (4)N2—C20—C21121.3 (3)
C3—C4—H4120.0N2—C20—S2114.1 (3)
C5—C4—H4120.0C21—C20—S2124.5 (3)
C4—C5—C6119.7 (3)O1—C21—C20109.4 (3)
C4—C5—H5120.2O1—C21—H21A109.8
C6—C5—H5120.2C20—C21—H21A109.8
C1—C6—C5121.1 (3)O1—C21—H21B109.8
C1—C6—H6119.5C20—C21—H21B109.8
C5—C6—H6119.5H21A—C21—H21B108.2
C12—C7—C8118.4 (3)O1—C22—C27124.3 (3)
C12—C7—Sn1116.5 (2)O1—C22—C23115.7 (3)
C8—C7—Sn1125.0 (3)C27—C22—C23120.0 (3)
C7—C8—C9119.9 (4)C24—C23—C22120.0 (3)
C7—C8—H8120.1C24—C23—H23120.0
C9—C8—H8120.1C22—C23—H23120.0
C10—C9—C8121.4 (4)C25—C24—C23119.9 (3)
C10—C9—H9119.3C25—C24—H24120.0
C8—C9—H9119.3C23—C24—H24120.0
C9—C10—C11119.5 (3)C26—C25—C24120.5 (3)
C9—C10—H10120.3C26—C25—Br1119.4 (3)
C11—C10—H10120.3C24—C25—Br1120.1 (3)
C10—C11—C12119.6 (3)C25—C26—C27119.8 (3)
C10—C11—H11120.2C25—C26—H26120.1
C12—C11—H11120.2C27—C26—H26120.1
C7—C12—C11121.2 (3)C22—C27—C26119.8 (3)
C7—C12—H12119.4C22—C27—H27120.1
C11—C12—H12119.4C26—C27—H27120.1
C18—C13—C14117.5 (3)
C13—Sn1—S1—C1963.59 (15)C1—Sn1—C13—C1466.9 (3)
C7—Sn1—S1—C1970.03 (16)S1—Sn1—C13—C1439.7 (3)
C1—Sn1—S1—C19176.47 (15)C18—C13—C14—C150.6 (5)
C19—N1—N2—C200.0 (4)Sn1—C13—C14—C15175.4 (3)
C13—Sn1—C1—C28.8 (3)C13—C14—C15—C160.1 (6)
C7—Sn1—C1—C2116.1 (3)C14—C15—C16—C170.7 (7)
S1—Sn1—C1—C2122.5 (3)C15—C16—C17—C180.7 (7)
C13—Sn1—C1—C6174.5 (3)C16—C17—C18—C130.0 (6)
C7—Sn1—C1—C660.6 (3)C14—C13—C18—C170.6 (5)
S1—Sn1—C1—C660.8 (3)Sn1—C13—C18—C17175.4 (3)
C6—C1—C2—C30.6 (5)N2—N1—C19—S20.1 (4)
Sn1—C1—C2—C3176.3 (3)N2—N1—C19—S1178.5 (2)
C1—C2—C3—C40.4 (6)C20—S2—C19—N10.1 (3)
C2—C3—C4—C50.7 (6)C20—S2—C19—S1178.4 (3)
C3—C4—C5—C60.1 (6)Sn1—S1—C19—N17.6 (3)
C2—C1—C6—C51.3 (6)Sn1—S1—C19—S2170.8 (2)
Sn1—C1—C6—C5175.4 (3)N1—N2—C20—C21177.7 (3)
C4—C5—C6—C11.1 (6)N1—N2—C20—S20.1 (4)
C13—Sn1—C7—C12104.7 (2)C19—S2—C20—N20.1 (3)
C1—Sn1—C7—C1215.5 (3)C19—S2—C20—C21177.6 (3)
S1—Sn1—C7—C12124.6 (2)C22—O1—C21—C20178.6 (3)
C13—Sn1—C7—C875.0 (3)N2—C20—C21—O1169.3 (3)
C1—Sn1—C7—C8164.8 (3)S2—C20—C21—O18.3 (5)
S1—Sn1—C7—C855.7 (3)C21—O1—C22—C2714.0 (5)
C12—C7—C8—C90.6 (5)C21—O1—C22—C23165.3 (3)
Sn1—C7—C8—C9179.7 (3)O1—C22—C23—C24179.2 (3)
C7—C8—C9—C100.2 (6)C27—C22—C23—C241.5 (5)
C8—C9—C10—C110.9 (6)C22—C23—C24—C250.8 (5)
C9—C10—C11—C121.6 (6)C23—C24—C25—C260.1 (5)
C8—C7—C12—C110.1 (5)C23—C24—C25—Br1179.8 (2)
Sn1—C7—C12—C11179.6 (2)C24—C25—C26—C270.1 (5)
C10—C11—C12—C71.2 (5)Br1—C25—C26—C27179.9 (3)
C7—Sn1—C13—C1810.3 (3)O1—C22—C27—C26179.3 (3)
C1—Sn1—C13—C18109.0 (3)C23—C22—C27—C261.4 (5)
S1—Sn1—C13—C18144.5 (3)C25—C26—C27—C220.6 (6)
C7—Sn1—C13—C14173.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Br1i0.932.873.627 (4)139
C8—H8···N10.932.543.274 (5)136
Symmetry code: (i) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C9H6BrN2OS2)]
Mr652.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)15.524 (3), 9.766 (2), 18.019 (4)
β (°) 107.10 (3)
V3)2611.2 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.69
Crystal size (mm)0.22 × 0.20 × 0.16
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.589, 0.673
No. of measured, independent and
observed [I > 2σ(I)] reflections
17098, 4610, 3736
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.077, 1.04
No. of reflections4610
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.38

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Sn1—C132.130 (3)Sn1—S12.4721 (10)
Sn1—C72.146 (3)Sn1—N12.919 (3)
Sn1—C12.149 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Br1i0.932.873.627 (4)139.0
C8—H8···N10.932.543.274 (5)136.2
Symmetry code: (i) x+1/2, y1/2, z+3/2.
 

References

First citationJimenez-Perez, V. M., Camacho-Camacho, C., Guizado-Rodriguez, M., Noth, H. & Contreras, R. (2000). J. Organomet. Chem. 614–615, 283–293.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, C. L., Li, J. K. & Zhang, R. F. (2006). Heteroat. Chem. 17, 353–364.  Web of Science CSD CrossRef CAS Google Scholar
First citationNg, S. W., Kumar Das, V. G., Pelizzi, G. & Vitali, F. (1990). J. Crystallogr. Spectrosc. Res. 20, 491–495.  CAS Google Scholar
First citationOruc, E. E., Rollas, S., Kandemirli, F., Shvets, N. & Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760–6767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRodarte de Moura, C. V., de Sousa, A. P. G., Silva, R. M., Abras, A., Hórner, M., Bortoluzzi, A. J., Filgueiras, C. A. L. & Wardell, J. L. (1999). Polyhedron, 18, 2961–2969.  CSD CrossRef Google Scholar
First citationSawhney, S. N. & Sharma, P. K. (1993). Bioorg. Med. Chem. Lett. 3, 155l–1554.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, K. & Pandey, S. N. (1993). Bioorg. Med. Chem. Lett. 3, 547–552.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds