organic compounds
5-Isopropylidene-1,3-dithiolo[4,5-d][1,3]dithiole-2-thione
aInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan, and bDepartment of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
*Correspondence e-mail: tomura@ims.ac.jp
The title compound, C7H6S5, contains a 5-ylidene-1,3-dithiolo[4,5-d][1,3]dithiole-2-thione framework, which is an important synthetic precursor of multi-dimensional organic superconductors and conductors. The molecular framework is planar with an r.m.s. deviation of 0.012 Å for the non-H atoms. In the molecules are linked by short intermolecular S⋯S interactions [3.501 (5) and 3.581 (4) Å], constructing a zigzag molecular tape network along the c axis.
Related literature
For general background, see: Williams et al. (1992); Ishiguro et al. (1998). For the synthesis of the title compound, see: Misaki et al. (1992). For related structures with a 5-ylidene-1,3-dithiolo[4,5-d][1,3]dithiole-2-thione framework, see: Bryce et al. (2000); Hock et al. (2002); Beck et al. (2006). For bond-length data, see: Allen et al. (1987). For values of van der Waals radii, see: Bondi (1964). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku/MSC, 2006); cell CrystalClear; data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053680901335X/hg2498sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680901335X/hg2498Isup2.hkl
The title compound (I) was synthesized according to the literature method (Misaki et al., 1992). Brown crystals of (I) suitable for X-ray analysis were grown from a dichloromethane solution.
All H atoms were placed in geometrically calculated positions and refined using a riding model, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).
Data collection: CrystalClear (Rigaku/MSC, 2006); cell
CrystalClear (Rigaku/MSC, 2006); data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C7H6S5 | Z = 2 |
Mr = 250.47 | F(000) = 256 |
Triclinic, P1 | Dx = 1.654 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71070 Å |
a = 7.082 (6) Å | Cell parameters from 843 reflections |
b = 7.126 (6) Å | θ = 3.0–29.7° |
c = 10.534 (10) Å | µ = 1.09 mm−1 |
α = 86.12 (3)° | T = 291 K |
β = 84.77 (3)° | Needle, brown |
γ = 71.95 (2)° | 0.09 × 0.02 × 0.01 mm |
V = 502.9 (8) Å3 |
Rigaku/MSC Mercury CCD diffractometer | 785 reflections with I > 2σ(I) |
Radiation source: Rotating Anode | Rint = 0.117 |
Confocal monochromator | θmax = 31.1°, θmin = 3.0° |
Detector resolution: 14.63 pixels mm-1 | h = −9→9 |
ϕ and ω scans | k = −10→10 |
4550 measured reflections | l = −10→15 |
2643 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.072 | H-atom parameters constrained |
wR(F2) = 0.246 | w = 1/[σ2(Fo2) + (0.0747P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.84 | (Δ/σ)max < 0.001 |
2643 reflections | Δρmax = 0.46 e Å−3 |
112 parameters | Δρmin = −0.50 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.003 (3) |
C7H6S5 | γ = 71.95 (2)° |
Mr = 250.47 | V = 502.9 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.082 (6) Å | Mo Kα radiation |
b = 7.126 (6) Å | µ = 1.09 mm−1 |
c = 10.534 (10) Å | T = 291 K |
α = 86.12 (3)° | 0.09 × 0.02 × 0.01 mm |
β = 84.77 (3)° |
Rigaku/MSC Mercury CCD diffractometer | 785 reflections with I > 2σ(I) |
4550 measured reflections | Rint = 0.117 |
2643 independent reflections |
R[F2 > 2σ(F2)] = 0.072 | 0 restraints |
wR(F2) = 0.246 | H-atom parameters constrained |
S = 0.84 | Δρmax = 0.46 e Å−3 |
2643 reflections | Δρmin = −0.50 e Å−3 |
112 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.1573 (3) | 1.3556 (3) | −0.12379 (19) | 0.0502 (6) | |
S2 | 0.2864 (3) | 0.9827 (3) | −0.25144 (18) | 0.0496 (6) | |
S3 | 0.1902 (3) | 1.1364 (3) | 0.13884 (18) | 0.0452 (6) | |
S4 | 0.3259 (3) | 0.7524 (3) | 0.00739 (18) | 0.0434 (6) | |
S5 | 0.1908 (4) | 1.3598 (4) | −0.4066 (2) | 0.0710 (9) | |
C1 | 0.2089 (11) | 1.2401 (12) | −0.2662 (7) | 0.048 (2) | |
C2 | 0.2080 (10) | 1.1425 (11) | −0.0257 (7) | 0.0427 (19) | |
C3 | 0.2706 (10) | 0.8745 (11) | 0.1547 (7) | 0.0407 (18) | |
C4 | 0.2678 (9) | 0.9729 (12) | −0.0871 (7) | 0.0385 (17) | |
C5 | 0.2896 (10) | 0.7741 (12) | 0.2681 (8) | 0.045 (2) | |
C6 | 0.2430 (11) | 0.8811 (12) | 0.3900 (7) | 0.056 (2) | |
H6A | 0.3602 | 0.8472 | 0.4365 | 0.084* | |
H6B | 0.1395 | 0.8439 | 0.4405 | 0.084* | |
H6C | 0.1994 | 1.0210 | 0.3711 | 0.084* | |
C7 | 0.3596 (11) | 0.5529 (11) | 0.2761 (7) | 0.049 (2) | |
H7A | 0.3818 | 0.5036 | 0.1917 | 0.073* | |
H7B | 0.2603 | 0.5056 | 0.3239 | 0.073* | |
H7C | 0.4816 | 0.5078 | 0.3179 | 0.073* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0512 (13) | 0.0409 (13) | 0.0522 (14) | −0.0080 (10) | −0.0035 (10) | 0.0126 (10) |
S2 | 0.0551 (14) | 0.0473 (14) | 0.0417 (12) | −0.0113 (11) | 0.0001 (9) | 0.0038 (10) |
S3 | 0.0519 (13) | 0.0337 (12) | 0.0451 (12) | −0.0077 (10) | 0.0010 (9) | −0.0006 (9) |
S4 | 0.0513 (13) | 0.0308 (12) | 0.0429 (12) | −0.0058 (10) | −0.0014 (9) | 0.0009 (9) |
S5 | 0.0751 (18) | 0.078 (2) | 0.0561 (16) | −0.0221 (15) | −0.0135 (12) | 0.0300 (13) |
C1 | 0.049 (5) | 0.044 (5) | 0.047 (5) | −0.007 (4) | −0.011 (4) | 0.012 (4) |
C2 | 0.046 (5) | 0.031 (5) | 0.047 (5) | −0.008 (4) | −0.002 (4) | −0.003 (4) |
C3 | 0.040 (4) | 0.039 (5) | 0.040 (4) | −0.010 (4) | 0.004 (3) | −0.001 (3) |
C4 | 0.032 (4) | 0.038 (4) | 0.040 (4) | −0.004 (3) | −0.006 (3) | 0.006 (3) |
C5 | 0.039 (4) | 0.037 (5) | 0.058 (5) | −0.014 (4) | 0.013 (4) | −0.001 (4) |
C6 | 0.066 (6) | 0.050 (6) | 0.051 (5) | −0.016 (5) | 0.002 (4) | −0.005 (4) |
C7 | 0.056 (5) | 0.039 (5) | 0.049 (5) | −0.016 (4) | 0.002 (4) | 0.014 (4) |
S1—C1 | 1.716 (8) | C3—C5 | 1.346 (10) |
S1—C2 | 1.738 (8) | C5—C6 | 1.496 (10) |
S2—C4 | 1.723 (7) | C5—C7 | 1.497 (10) |
S2—C1 | 1.744 (8) | C6—H6A | 0.9600 |
S3—C2 | 1.725 (8) | C6—H6B | 0.9600 |
S3—C3 | 1.775 (8) | C6—H6C | 0.9600 |
S4—C4 | 1.758 (7) | C7—H7A | 0.9600 |
S4—C3 | 1.783 (7) | C7—H7B | 0.9600 |
S5—C1 | 1.652 (7) | C7—H7C | 0.9600 |
C2—C4 | 1.341 (10) | ||
S1···S1i | 3.581 (4) | S5···S5ii | 3.501 (5) |
C1—S1—C2 | 96.7 (4) | C3—C5—C6 | 120.7 (8) |
C4—S2—C1 | 94.9 (4) | C3—C5—C7 | 121.2 (7) |
C2—S3—C3 | 94.4 (3) | C6—C5—C7 | 118.1 (7) |
C4—S4—C3 | 94.3 (4) | C5—C6—H6A | 109.5 |
S5—C1—S1 | 123.5 (5) | C5—C6—H6B | 109.5 |
S5—C1—S2 | 122.1 (5) | H6A—C6—H6B | 109.5 |
S1—C1—S2 | 114.4 (4) | C5—C6—H6C | 109.5 |
C4—C2—S3 | 119.7 (6) | H6A—C6—H6C | 109.5 |
C4—C2—S1 | 115.0 (6) | H6B—C6—H6C | 109.5 |
S3—C2—S1 | 125.3 (5) | C5—C7—H7A | 109.5 |
C5—C3—S3 | 123.3 (6) | C5—C7—H7B | 109.5 |
C5—C3—S4 | 122.0 (6) | H7A—C7—H7B | 109.5 |
S3—C3—S4 | 114.6 (4) | C5—C7—H7C | 109.5 |
C2—C4—S2 | 118.9 (6) | H7A—C7—H7C | 109.5 |
C2—C4—S4 | 117.0 (6) | H7B—C7—H7C | 109.5 |
S2—C4—S4 | 124.1 (5) | ||
C2—S1—C1—S5 | 180.0 (5) | S3—C2—C4—S2 | −179.5 (4) |
C2—S1—C1—S2 | −0.9 (5) | S1—C2—C4—S2 | −0.4 (8) |
C4—S2—C1—S5 | 179.9 (5) | S3—C2—C4—S4 | −0.3 (8) |
C4—S2—C1—S1 | 0.8 (5) | S1—C2—C4—S4 | 178.8 (3) |
C3—S3—C2—C4 | 0.3 (6) | C1—S2—C4—C2 | −0.2 (6) |
C3—S3—C2—S1 | −178.7 (5) | C1—S2—C4—S4 | −179.3 (5) |
C1—S1—C2—C4 | 0.8 (6) | C3—S4—C4—C2 | 0.1 (6) |
C1—S1—C2—S3 | 179.8 (5) | C3—S4—C4—S2 | 179.2 (4) |
C2—S3—C3—C5 | 179.6 (7) | S3—C3—C5—C6 | −0.2 (10) |
C2—S3—C3—S4 | −0.2 (4) | S4—C3—C5—C6 | 179.7 (5) |
C4—S4—C3—C5 | −179.8 (7) | S3—C3—C5—C7 | −179.5 (5) |
C4—S4—C3—S3 | 0.1 (4) | S4—C3—C5—C7 | 0.3 (10) |
Symmetry codes: (i) −x, −y+3, −z; (ii) −x, −y+3, −z−1. |
Experimental details
Crystal data | |
Chemical formula | C7H6S5 |
Mr | 250.47 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 291 |
a, b, c (Å) | 7.082 (6), 7.126 (6), 10.534 (10) |
α, β, γ (°) | 86.12 (3), 84.77 (3), 71.95 (2) |
V (Å3) | 502.9 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.09 |
Crystal size (mm) | 0.09 × 0.02 × 0.01 |
Data collection | |
Diffractometer | Rigaku/MSC Mercury CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4550, 2643, 785 |
Rint | 0.117 |
(sin θ/λ)max (Å−1) | 0.727 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.072, 0.246, 0.84 |
No. of reflections | 2643 |
No. of parameters | 112 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.46, −0.50 |
Computer programs: CrystalClear (Rigaku/MSC, 2006), TEXSAN (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).
Acknowledgements
The authors thank the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Beck, J., Daniels, J., Roloff, A. & Wagner, W. (2006). Dalton Trans. pp. 1174–1180. Web of Science CSD CrossRef Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bryce, M. R., Finn, T., Moore, A. J. & Batsanov, A. S. (2000). Eur. J. Org. Chem. pp. 51–60. CrossRef Google Scholar
Hock, J., Gompper, R. & Polborn, K. (2002). Private communication (refcode VADDIO). CCDC, Cambridge, England. Google Scholar
Ishiguro, T., Yamaji, K. & Saito, G. (1998). Organic Superconductors, edited by P. Fulde, Springer Series Solid-State Science, Vol. 88. Berlin, Heidelberg: Springer. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Misaki, Y., Nishikawa, H., Kawakami, K., Uehara, T. & Yamabe, T. (1992). Tetrahedron Lett. 33, 4321–4324. CrossRef CAS Web of Science Google Scholar
Rigaku/MSC (2004). TEXSAN. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Williams, J. M., Ferraro, J. R., Thorn, R. J., Carlson, K. D., Geiser, U., Wang, H. H., Kini, A. M. & Whangbo, M. H. (1992). Organic Superconductors. Englewood Cliffs, NJ: Prentice Hall. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Molecules containing an 5-ylidene-[1,3]dithiolo[4,5-d][1,3]dithiole-2-thione framework are important synthetic precursors of multi-dimensional organic superconductors and conductors. Intermolecular S···S interactions involving peripheral sulfir atoms may increase the dimensionality in solid states and suppress metal-insulator transitions (Williams et al., 1992; Ishiguro et al., 1998). A search for the molecular framework in the Cambridge Structural Database (Version 5.30; Allen, 2002) gave only three examples (Bryce et al., 2000; Hock et al., 2002; Beck et al., 2006). Thus, we report here the molecular and crystal structures of the title compound (I).
The compound (I) crystallizes in the P1 space group with one molecule in the asymmetric unit. The molecular structure is shown in Fig. 1. The bond lengths are within the normal ranges (Allen et al., 1987). The molecular framework is planar with an r.m.s. deviation of 0.012 Å from the least-squares plane. In the crystal structure, the molecules are linked via short intermolecular S···S interactions [3.581 (4) for S1—S1(-x, -y + 3, -z) and 3.501 (5) Å for S5—S5(-x, -y + 3, -z - 1)] to construct a zigzag molecular tape network along the c axis (Fig. 2). The S···S interactions are 0.5–2.8% shorter than the sum of the corresponding van der Waals radii (Bondi, 1964). The molecules also form a π-stacking along the a axis with an interplanar distance of 3.54 (1) Å.