organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1161

(E)-3-[4-(Di­methyl­amino)phen­yl]-1-(2-pyrid­yl)prop-2-en-1-one

aCollege of Chemical Engineering, Northest Dianli University, 132012 Jilin, People's Republic of China
*Correspondence e-mail: Songzhulin@hotmail.com

(Received 7 April 2009; accepted 23 April 2009; online 30 April 2009)

In the title mol­ecule, C16H16N2O, the pyridine ring and non-H atoms of the =CH—C(=O)— unit are coplaner, the largest deviation being 0.045 (2) Å for the O atom. The dihedral angle between this plane and the benzene ring is 2.79 (2)°. The mol­ecular structure is stabilized by inter­molecular C—H⋯π and inter­actions.

Related literature

For a related structure, see: Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Narayana, B., Mayekar, A. N. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3546.]). For the phamacological activity of chalcones, see: Zhao et al. (2007[Zhao, P. L., Liu, C. L., Huang, W., Wang, Y. Z. & Yang, G. F. (2007). J. Agric. Food Chem. 55, 5697-5700.]); Fichou et al. (1988[Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 27, 429-430.]). For the blue-light transmittance of chalcone derivatives, see: Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54-59.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O

  • Mr = 252.31

  • Monoclinic, P 21 /c

  • a = 8.1553 (4) Å

  • b = 17.4543 (12) Å

  • c = 12.1087 (5) Å

  • β = 125.032 (5)°

  • V = 1411.35 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 7572 measured reflections

  • 2619 independent reflections

  • 1608 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.130

  • S = 1.02

  • 2619 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10ACg1i 0.93 2.90 3.662 139
C15—H15BCg2ii 0.96 3.20 3.870 128
C16—H16BCg1iii 0.96 3.17 3.908 135
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (ii) -x+1, -y, -z; (iii) x-1, y, z-1. Cg1 and Cg2 are the centroids of the pyridine and phenyl rings, respectively.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As an intermediate in the biosynthetic pathway of flavonoids, isoflavonoids, and aurone, chalcones have been shown to display a diverse array of phamacological activities, among which are antifungal, antibacterial, antiprotozoal, anti-inflammatory, antitumor, antimalarial, and anti-HIV activities (Zhao et al., 2007; Fichou et al., 1988; Butcher et al., 2007). In addition, chalcone derivatives are noticeable materials for their excellent blue light transmittance and good crystallizability (Sarojini et al., 2006). In order to research this kind of complex, we synthesis the title compound (I) and report its crystal structure (Fig. 1).

In the title molecule, C16H16N2O, the pyridine ring and the atoms C6,C7,O1 are coplaner (p1), with the largest deviation of 0.045Å for O1. The dihedral angle between p1 and phenyl ring is 2.79 (2)°.

It is interesting to note that the molecular structure is stabilized by intermolecular C—H···π interactions and C—H···N intramolecular interactions (Table 1) [Cg(1) and Cg(2) refer to pyridine and phenyl ring, respectively].

Related literature top

For a related structure, see: Butcher et al. (2007). For the phamacological activity of chalcones, see: Zhao et al. (2007); Fichou et al. (1988). For the blue-light transmittance of chalcone derivatives, see: Sarojini et al. (2006). Cg1 and Cg2 are the centroids of the pyridine and phenyl rings, respectively.

Experimental top

5 ml of 10% KOH solution was added to solution of 2-acetylpyridine (1.21 g, 0.01 mol) and 4-(dimethylamino)benzaldehyde (1.49 g, 0.01 mol) in 30 ml ethanol. The solution was stirred for 10 h and filtered. The product obtained was crystallized from acetone/toluene (1:1).

Refinement top

All H atoms were placed in calculated positions, with C—H=0.93–0.96 Å, and included in the final cycles of refinement using a riding model, with Uiso(H)=1.2–1.5 times Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the c axis.
(E)-3-[4-(Dimethylamino)phenyl]-1-(2-pyridyl)prop-2-en-1-one top
Crystal data top
C16H16N2OF(000) = 536
Mr = 252.31Dx = 1.187 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2y bcCell parameters from 1586 reflections
a = 8.1553 (4) Åθ = 2.0–25.4°
b = 17.4543 (12) ŵ = 0.08 mm1
c = 12.1087 (5) ÅT = 295 K
β = 125.032 (5)°Block, red
V = 1411.35 (16) Å30.25 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1608 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.5°, θmin = 2.3°
ϕ and ω scansh = 69
7572 measured reflectionsk = 2120
2619 independent reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.054P)2 + 0.1706P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2619 reflectionsΔρmax = 0.13 e Å3
175 parametersΔρmin = 0.10 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (3)
Crystal data top
C16H16N2OV = 1411.35 (16) Å3
Mr = 252.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1553 (4) ŵ = 0.08 mm1
b = 17.4543 (12) ÅT = 295 K
c = 12.1087 (5) Å0.25 × 0.20 × 0.18 mm
β = 125.032 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1608 reflections with I > 2σ(I)
7572 measured reflectionsRint = 0.026
2619 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.02Δρmax = 0.13 e Å3
2619 reflectionsΔρmin = 0.10 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3917 (2)0.59831 (8)0.12014 (13)0.0974 (5)
N10.1005 (2)0.75477 (9)0.13939 (15)0.0741 (4)
N20.7635 (3)0.56873 (11)0.70210 (17)0.0942 (6)
C10.0344 (3)0.80574 (12)0.2313 (2)0.0888 (6)
H1A0.08320.84250.20150.107*
C20.1059 (3)0.80743 (13)0.3672 (2)0.0873 (6)
H2A0.19930.84380.42560.105*
C30.0344 (3)0.75393 (13)0.41174 (19)0.0831 (6)
H3A0.07780.75320.50150.100*
C40.1047 (3)0.70057 (11)0.32047 (18)0.0717 (5)
H4A0.15520.66370.34890.086*
C50.1685 (2)0.70242 (9)0.18518 (17)0.0606 (4)
C60.3188 (3)0.64457 (10)0.08317 (17)0.0665 (5)
C70.3733 (3)0.64595 (10)0.05562 (17)0.0662 (5)
H7A0.31990.68440.07930.079*
C80.4975 (3)0.59389 (9)0.15074 (17)0.0644 (5)
H8A0.54680.55630.12270.077*
C90.5646 (2)0.58887 (9)0.29150 (16)0.0598 (4)
C100.4985 (3)0.63890 (10)0.34847 (18)0.0723 (5)
H10A0.40980.67790.29550.087*
C110.5612 (3)0.63226 (11)0.48151 (19)0.0784 (6)
H11A0.51210.66660.51460.094*
C120.6978 (3)0.57483 (11)0.56871 (18)0.0704 (5)
C130.7654 (3)0.52452 (11)0.51256 (18)0.0728 (5)
H13A0.85540.48590.56560.087*
C140.6996 (3)0.53165 (10)0.37868 (18)0.0680 (5)
H14A0.74700.49700.34490.082*
C150.9044 (4)0.50919 (15)0.7917 (2)0.1197 (9)
H15A1.02360.51210.79370.180*
H15B0.84370.45970.75910.180*
H15C0.93810.51670.88110.180*
C160.6813 (4)0.61785 (15)0.7560 (2)0.1247 (10)
H16A0.53840.61200.70310.187*
H16B0.71400.67030.75280.187*
H16C0.73710.60370.84780.187*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1348 (12)0.0967 (10)0.0907 (10)0.0326 (9)0.0822 (10)0.0081 (8)
N10.0852 (11)0.0825 (10)0.0739 (10)0.0124 (9)0.0569 (9)0.0096 (8)
N20.1095 (14)0.1125 (14)0.0666 (11)0.0230 (11)0.0540 (10)0.0111 (10)
C10.1010 (15)0.0973 (15)0.0916 (14)0.0264 (13)0.0690 (13)0.0204 (12)
C20.0818 (14)0.1094 (16)0.0779 (13)0.0158 (12)0.0500 (12)0.0254 (12)
C30.0809 (13)0.1099 (16)0.0624 (11)0.0060 (12)0.0433 (11)0.0071 (11)
C40.0804 (13)0.0803 (12)0.0680 (12)0.0099 (10)0.0506 (10)0.0070 (10)
C50.0655 (10)0.0652 (10)0.0655 (10)0.0091 (9)0.0459 (9)0.0026 (8)
C60.0782 (12)0.0663 (10)0.0724 (11)0.0016 (9)0.0534 (10)0.0032 (9)
C70.0756 (11)0.0681 (11)0.0684 (11)0.0040 (9)0.0491 (10)0.0014 (9)
C80.0711 (11)0.0635 (10)0.0718 (11)0.0008 (9)0.0488 (10)0.0052 (9)
C90.0618 (10)0.0621 (10)0.0624 (10)0.0032 (8)0.0398 (9)0.0043 (8)
C100.0753 (12)0.0755 (12)0.0694 (12)0.0078 (9)0.0434 (10)0.0048 (9)
C110.0841 (13)0.0875 (13)0.0743 (13)0.0014 (11)0.0517 (11)0.0168 (11)
C120.0712 (12)0.0834 (13)0.0610 (11)0.0225 (10)0.0404 (10)0.0124 (9)
C130.0752 (12)0.0774 (12)0.0690 (12)0.0005 (10)0.0431 (10)0.0051 (9)
C140.0734 (12)0.0678 (11)0.0743 (12)0.0026 (9)0.0492 (10)0.0012 (9)
C150.122 (2)0.150 (2)0.0671 (14)0.0307 (18)0.0424 (14)0.0099 (15)
C160.170 (2)0.141 (2)0.0992 (17)0.0506 (19)0.0988 (18)0.0452 (16)
Geometric parameters (Å, º) top
O1—C61.2293 (19)C8—C91.463 (2)
N1—C51.343 (2)C8—H8A0.9300
N1—C11.355 (2)C9—C101.398 (2)
N2—C121.383 (2)C9—C141.411 (2)
N2—C161.454 (3)C10—C111.387 (2)
N2—C151.465 (3)C10—H10A0.9300
C1—C21.396 (3)C11—C121.418 (3)
C1—H1A0.9300C11—H11A0.9300
C2—C31.365 (3)C12—C131.403 (2)
C2—H2A0.9300C13—C141.390 (2)
C3—C41.391 (3)C13—H13A0.9300
C3—H3A0.9300C14—H14A0.9300
C4—C51.406 (2)C15—H15A0.9600
C4—H4A0.9300C15—H15B0.9600
C5—C61.520 (2)C15—H15C0.9600
C6—C71.472 (2)C16—H16A0.9600
C7—C81.356 (2)C16—H16B0.9600
C7—H7A0.9300C16—H16C0.9600
C5—N1—C1116.17 (16)C10—C9—C8123.02 (16)
C12—N2—C16120.7 (2)C14—C9—C8121.56 (15)
C12—N2—C15122.19 (19)C11—C10—C9122.09 (17)
C16—N2—C15116.96 (19)C11—C10—H10A119.0
N1—C1—C2125.10 (19)C9—C10—H10A119.0
N1—C1—H1A117.4C10—C11—C12122.16 (17)
C2—C1—H1A117.4C10—C11—H11A118.9
C3—C2—C1117.86 (19)C12—C11—H11A118.9
C3—C2—H2A121.1N2—C12—C13121.42 (19)
C1—C2—H2A121.1N2—C12—C11122.41 (18)
C2—C3—C4118.83 (18)C13—C12—C11116.17 (16)
C2—C3—H3A120.6C14—C13—C12120.88 (18)
C4—C3—H3A120.6C14—C13—H13A119.6
C3—C4—C5119.88 (17)C12—C13—H13A119.6
C3—C4—H4A120.1C13—C14—C9123.30 (16)
C5—C4—H4A120.1C13—C14—H14A118.4
N1—C5—C4122.16 (17)C9—C14—H14A118.4
N1—C5—C6116.63 (15)N2—C15—H15A109.5
C4—C5—C6121.22 (15)N2—C15—H15B109.5
O1—C6—C7122.33 (17)H15A—C15—H15B109.5
O1—C6—C5118.26 (15)N2—C15—H15C109.5
C7—C6—C5119.41 (15)H15A—C15—H15C109.5
C8—C7—C6123.19 (16)H15B—C15—H15C109.5
C8—C7—H7A118.4N2—C16—H16A109.5
C6—C7—H7A118.4N2—C16—H16B109.5
C7—C8—C9128.81 (16)H16A—C16—H16B109.5
C7—C8—H8A115.6N2—C16—H16C109.5
C9—C8—H8A115.6H16A—C16—H16C109.5
C10—C9—C14115.41 (15)H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···N10.932.512.846 (2)102
C8—H8A···O10.932.552.873 (2)101
C10—H10A···Cg1i0.932.903.662140
C15—H15B···Cg2ii0.963.203.870128
C16—H16B···Cg1iii0.963.173.908135
Symmetry codes: (i) x, y1/2, z3/2; (ii) x+1, y, z; (iii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC16H16N2O
Mr252.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.1553 (4), 17.4543 (12), 12.1087 (5)
β (°) 125.032 (5)
V3)1411.35 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7572, 2619, 1608
Rint0.026
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.130, 1.02
No. of reflections2619
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.10

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···N10.93002.51002.846 (2)101.95
C8—H8A···O10.93002.55002.873 (2)100.77
C10—H10A···Cg1i0.93002.9043.662139.48
C15—H15B···Cg2ii0.96003.2023.870128.22
C16—H16B···Cg1iii0.96003.1733.908134.62
Symmetry codes: (i) x, y1/2, z3/2; (ii) x+1, y, z; (iii) x1, y, z1.
 

References

First citationButcher, R. J., Jasinski, J. P., Narayana, B., Mayekar, A. N. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 27, 429–430.  CrossRef Web of Science Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhao, P. L., Liu, C. L., Huang, W., Wang, Y. Z. & Yang, G. F. (2007). J. Agric. Food Chem. 55, 5697–5700.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1161
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds