organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1160

5,5′-Dimeth­­oxy-2,2′-[(pentane-1,5-diyl­di­oxy)bis­­(nitrilo­methyl­­idyne)]diphenol

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 17 April 2009; accepted 22 April 2009; online 30 April 2009)

The mol­ecule of the title compound, C21H26N2O6, which lies across a crystallographic inversion centre, crystallizes with two unique half-molecules in the symmetric unit and adopts a linear configuration and the imino group is coplanar with the aromatic ring, making a dihedral angle of 3.26 (3)°. Strong intra­molecular O—H⋯N and weak inter­molecular O—H⋯O and C—H⋯O hydrogen bonds and weak inter­molecular ππ stacking inter­actions [centroid–centroid distance = 4.419 (2) Å]establish an infinite three-dimensional supra­molecular structure.

Related literature

For the properties and uses of salen-type compounds, see: Lacroix (2001[Lacroix, P. G. (2001). Eur. J. Inorg. Chem. pp. 339-348.]); Nishijo et al. (2006[Nishijo, J., Okabe, C., Oishi, O. & Nishi, N. (2006). Carbon, 44, 2943-2949.]); Onda et al. (2007[Onda, A., Hara, S., Kajiyoshi, K. & Yanagisawa, K. (2007). Appl. Catal. A Gen. 321, 71-78.]); Sun et al. (2004[Sun, S. S., Stern, C. L., Nguyen, S. T. & Hupp, J. T. (2004). J. Am. Chem. Soc. 126, 6314-6326.]). For the structures of free salen-type compounds, see: Akine et al. (2005[Akine, S., Taniguchi, T., Dong, W. K., Masubuchi, S. & Nabeshima, T. (2005). J. Org. Chem. 70, 1704-1711.]). For related structures, see: Dong et al. (2008a[Dong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. & Ren, Z.-L. (2008a). Acta Cryst. E64, o1600-o1601.],b[Dong, W.-K., Lv, Z.-W., He, X.-N., Guan, Y.-H. & Tong, J.-F. (2008b). Acta Cryst. E64, o2059.], 2009[Dong, W. K., Sun, Y. X., Zhang, Y. P., Li, L., He, X. N. & Tang, X. L. (2009). Inorg. Chim. Acta, 362, 117-124.]).

[Scheme 1]

Experimental

Crystal data
  • C21H26N2O6

  • Mr = 402.44

  • Triclinic, [P \overline 1]

  • a = 7.3324 (15) Å

  • b = 7.6214 (17) Å

  • c = 20.372 (3) Å

  • α = 81.525 (1)°

  • β = 89.928 (2)°

  • γ = 67.870 (1)°

  • V = 1041.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.43 × 0.28 × 0.14 mm

Data collection
  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Goöttingen, Germany.]) Tmin = 0.961, Tmax = 0.987

  • 5481 measured reflections

  • 3618 independent reflections

  • 1641 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.124

  • S = 1.01

  • 3618 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1 0.82 1.90 2.610 (3) 144
O5—H5⋯N2 0.82 1.90 2.628 (3) 147
O3—H3⋯O3i 0.82 2.68 3.045 (3) 109
C2—H2A⋯O3ii 0.97 2.58 3.533 (4) 168
C19—H19⋯O5ii 0.93 2.44 3.300 (4) 154
Symmetry codes: (i) -x-1, -y+2, -z; (ii) x+1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Salen-type compound and its derivatives are among the most prevalent mixed-donor ligands in the field of modern coordination chemistry in which there has been growing interest, mainly because of their interesting and important properties, including optical features (Lacroix, 2001), catalytic activity in hydration of acrylonitrile (Onda et al., 2007) and magnetic properties (Nishijo et al., 2006). They can also be used as elemental building blocks for construction of supramolecular structures via intermolecular hydrogen bonding or short contact interaction (Sun et al., 2004). Many salen-type complexes have been structurally characterized, but only a relatively small number of free salen-type compounds have had their X-ray structures reported (Akine et al., 2005). In order to extent our work (Dong et al., 2008a) on structural characterization of salen-type bisoxime compounds, we reported the synthesis and structure of the title compound in this paper in Fig. 1.

The molecule of the title salen-type bisoxime compound lies across a crystallographic inversion centre and adopts a linear configuration with respect to the azomethine C=N bonds. The dihedral angle formed by the two benzene rings is 23.4 (2) °, and the imino group is coplanar with the aromatic ring. This structure is different from our previous work reported in which the molecules assume W-shaped configuration (Dong et al., 2008a) or E configuration (Dong et al., 2008b).

There are two strong intramolecular O—H···N hydrogen bonds involving the hydroxy group and oxime N atoms in each molecule. In the crystal structure, intermolecular C—H···O and O—H···O hydrogen bonds link the each molecule to three others, and weak intermolecular π-π stacking interaction between the neighbouring benzene rings (the inter-molecular plane-to-plane dihedral angle along b axis is 0.48 (4) °). Thus, an infinite three-dimensional supramolecular structure is established (Fig. 2).

Related literature top

For the properties and uses of salen-type compounds, see: Lacroix (2001); Nishijo et al. (2006); Onda et al. (2007); Sun et al. (2004). For the structures of free salen-type compounds, see: Akine et al. (2005). For related sturctures, see: Dong et al. (2008a,b, 2009).

Experimental top

5,5'-Dimethoxy-2,2'-[(pentane-1,5-diyldioxy)bis(nitrilomethylidyne)]diphenol was synthesized according to an analogous method reported earlier (Dong et al., 2009). To an ethanol solution (10 ml) of 4-methoxy-2-hydroxybenzaldehyde (304.3 mg, 2.00 mmol) was added an ethanol solution (6 ml) of 1,5-bis(aminooxy)pentane (134.2 mg, 1.00 mmol). The reaction mixture was stirred at 328 K for 5 h. The formed precipitate was separated by filtration, and washed successively with ethanol and ethanol-hexane (1:4), respectively. The product was dried under vacuum to yield 204.2 mg of the title compound. Yield, 51.8%. mp. 349–350 K. Anal. Calc. for C21H26N2O6: C, 62.67; H, 6.51; N, 9.96. Found: C, 62.79; H, 6.68; N, 6.83.

Colorless block-like single crystals suitable for X-ray diffraction studies were obtained after about two months by slow evaporation from an ethanol solution of the title compound.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), 0.93 Å (CH), O—H = 0.82 Å and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme [Symmetry codes: #1 - x + 1,-y + 1,-z + 1]. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the supramolecular structure of the title compound. Intra- and intermolecular hydrogen bonds are shown as dashed lines.
5,5'-Dimethoxy-2,2'-[(pentane-1,5-diyldioxy)bis(nitrilomethylidyne)]diphenol top
Crystal data top
C21H26N2O6Z = 2
Mr = 402.44F(000) = 428
Triclinic, P1Dx = 1.284 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3324 (15) ÅCell parameters from 974 reflections
b = 7.6214 (17) Åθ = 2.9–23.1°
c = 20.372 (3) ŵ = 0.09 mm1
α = 81.525 (1)°T = 298 K
β = 89.928 (2)°Block-like, colorless
γ = 67.870 (1)°0.43 × 0.28 × 0.14 mm
V = 1041.2 (3) Å3
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3618 independent reflections
Radiation source: fine-focus sealed tube1641 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.961, Tmax = 0.987k = 98
5481 measured reflectionsl = 2415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0371P)2]
where P = (Fo2 + 2Fc2)/3
3618 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C21H26N2O6γ = 67.870 (1)°
Mr = 402.44V = 1041.2 (3) Å3
Triclinic, P1Z = 2
a = 7.3324 (15) ÅMo Kα radiation
b = 7.6214 (17) ŵ = 0.09 mm1
c = 20.372 (3) ÅT = 298 K
α = 81.525 (1)°0.43 × 0.28 × 0.14 mm
β = 89.928 (2)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3618 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1641 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.987Rint = 0.028
5481 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.01Δρmax = 0.15 e Å3
3618 reflectionsΔρmin = 0.18 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1725 (3)0.8216 (3)0.07342 (10)0.0615 (6)
N20.8214 (3)0.4398 (3)0.28534 (10)0.0657 (6)
O10.0265 (3)0.7497 (3)0.05195 (8)0.0749 (6)
O20.7701 (3)0.4917 (3)0.21730 (8)0.0800 (6)
O30.5543 (2)0.9488 (3)0.06470 (8)0.0882 (7)
H30.44050.92490.05160.132*
O40.9588 (3)1.0916 (3)0.25645 (9)0.0917 (7)
O50.8015 (2)0.3232 (3)0.41215 (8)0.0891 (7)
H50.76100.36330.37320.134*
O61.3399 (3)0.2041 (3)0.55807 (9)0.0906 (7)
C10.0438 (4)0.7272 (4)0.01908 (12)0.0678 (8)
H1A0.01510.63870.03870.081*
H1B0.02350.84970.03390.081*
C20.2584 (4)0.6508 (4)0.03966 (11)0.0699 (8)
H2A0.31560.73760.01730.084*
H2B0.32200.52790.02480.084*
C30.3029 (4)0.6250 (4)0.11341 (11)0.0651 (8)
H3A0.25700.52910.13570.078*
H3B0.23050.74490.12920.078*
C40.5200 (4)0.5643 (4)0.13208 (12)0.0662 (8)
H4A0.59300.44650.11510.079*
H4B0.56510.66210.11090.079*
C50.5645 (4)0.5332 (4)0.20517 (12)0.0692 (8)
H5A0.48610.64730.22330.083*
H5B0.53220.42720.22660.083*
C60.1984 (4)0.8436 (4)0.13669 (12)0.0607 (7)
H60.08990.81470.16280.073*
C70.3954 (4)0.9133 (4)0.16794 (12)0.0528 (7)
C80.5646 (4)0.9604 (4)0.13165 (12)0.0599 (8)
C90.7468 (4)1.0168 (4)0.16277 (13)0.0729 (9)
H90.85741.04450.13770.087*
C100.7693 (4)1.0334 (4)0.23081 (14)0.0633 (8)
C110.6068 (4)0.9916 (4)0.26870 (13)0.0691 (8)
H110.62011.00200.31470.083*
C120.4233 (4)0.9337 (4)0.23622 (12)0.0661 (8)
H120.31320.90710.26150.079*
C130.9911 (4)1.1077 (4)0.32617 (14)0.0919 (11)
H13A0.93391.19230.34890.138*
H13B1.13031.15820.33760.138*
H13C0.93100.98340.33920.138*
C140.9944 (4)0.4320 (4)0.29886 (13)0.0642 (8)
H141.06490.46600.26470.077*
C151.0837 (4)0.3722 (4)0.36552 (12)0.0534 (7)
C160.9873 (4)0.3203 (4)0.42012 (13)0.0611 (8)
C171.0779 (4)0.2636 (4)0.48276 (13)0.0727 (9)
H171.01240.22800.51820.087*
C181.2649 (4)0.2590 (4)0.49373 (13)0.0627 (8)
C191.3648 (4)0.3074 (4)0.44140 (13)0.0669 (8)
H191.49220.30230.44830.080*
C201.2727 (4)0.3637 (4)0.37860 (13)0.0670 (8)
H201.34020.39750.34340.080*
C211.5276 (4)0.2114 (4)0.57277 (13)0.0959 (11)
H21A1.62820.11710.55240.144*
H21B1.55520.18530.62000.144*
H21C1.52510.33660.55580.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0551 (15)0.0683 (17)0.0543 (15)0.0171 (13)0.0062 (11)0.0058 (12)
N20.0634 (16)0.0769 (18)0.0557 (15)0.0256 (14)0.0110 (12)0.0096 (12)
O10.0562 (12)0.1062 (17)0.0539 (12)0.0218 (11)0.0072 (9)0.0116 (10)
O20.0725 (14)0.1078 (18)0.0599 (12)0.0379 (12)0.0111 (10)0.0041 (11)
O30.0699 (13)0.140 (2)0.0495 (12)0.0358 (13)0.0041 (10)0.0105 (11)
O40.0660 (14)0.128 (2)0.0742 (14)0.0307 (13)0.0134 (11)0.0099 (12)
O50.0537 (12)0.150 (2)0.0738 (13)0.0519 (13)0.0011 (9)0.0124 (12)
O60.0790 (15)0.132 (2)0.0708 (14)0.0603 (14)0.0180 (11)0.0084 (12)
C10.0641 (19)0.078 (2)0.0539 (18)0.0198 (17)0.0075 (14)0.0074 (15)
C20.0615 (19)0.083 (2)0.0596 (18)0.0226 (17)0.0068 (14)0.0071 (15)
C30.0636 (19)0.066 (2)0.0589 (18)0.0185 (16)0.0073 (14)0.0055 (14)
C40.068 (2)0.065 (2)0.0620 (18)0.0220 (16)0.0093 (14)0.0086 (14)
C50.064 (2)0.072 (2)0.0655 (19)0.0217 (17)0.0124 (15)0.0053 (15)
C60.0586 (18)0.069 (2)0.0511 (17)0.0209 (16)0.0053 (14)0.0088 (14)
C70.0553 (18)0.0558 (19)0.0467 (16)0.0212 (15)0.0018 (14)0.0061 (13)
C80.0620 (19)0.072 (2)0.0433 (17)0.0251 (16)0.0005 (14)0.0045 (14)
C90.0581 (19)0.104 (3)0.0542 (19)0.0273 (18)0.0038 (14)0.0135 (16)
C100.0546 (19)0.068 (2)0.063 (2)0.0212 (16)0.0073 (16)0.0059 (15)
C110.073 (2)0.082 (2)0.0518 (18)0.0293 (18)0.0038 (16)0.0088 (15)
C120.0633 (19)0.083 (2)0.0512 (18)0.0259 (17)0.0038 (14)0.0120 (15)
C130.089 (2)0.100 (3)0.080 (2)0.029 (2)0.0296 (18)0.0106 (19)
C140.0625 (19)0.070 (2)0.0630 (19)0.0279 (17)0.0019 (15)0.0109 (15)
C150.0495 (17)0.0574 (19)0.0555 (17)0.0213 (14)0.0037 (13)0.0139 (13)
C160.0417 (16)0.079 (2)0.0681 (19)0.0269 (15)0.0022 (14)0.0186 (15)
C170.0602 (19)0.108 (3)0.0597 (19)0.0455 (18)0.0014 (15)0.0068 (17)
C180.0563 (18)0.073 (2)0.0621 (19)0.0302 (16)0.0057 (15)0.0061 (15)
C190.0470 (17)0.083 (2)0.076 (2)0.0294 (16)0.0010 (15)0.0134 (16)
C200.0539 (18)0.085 (2)0.069 (2)0.0357 (17)0.0067 (14)0.0086 (16)
C210.075 (2)0.123 (3)0.097 (2)0.054 (2)0.0304 (18)0.003 (2)
Geometric parameters (Å, º) top
N1—C61.280 (2)C6—C71.449 (3)
N1—O11.396 (2)C6—H60.9300
N2—C141.276 (3)C7—C121.383 (3)
N2—O21.395 (2)C7—C81.398 (3)
O1—C11.432 (2)C8—C91.364 (3)
O2—C51.432 (3)C9—C101.378 (3)
O3—C81.354 (2)C9—H90.9300
O3—H30.8200C10—C111.379 (3)
O4—C101.367 (3)C11—C121.382 (3)
O4—C131.420 (3)C11—H110.9300
O5—C161.363 (2)C12—H120.9300
O5—H50.8200C13—H13A0.9600
O6—C181.365 (3)C13—H13B0.9600
O6—C211.431 (3)C13—H13C0.9600
C1—C21.493 (3)C14—C151.441 (3)
C1—H1A0.9700C14—H140.9300
C1—H1B0.9700C15—C201.387 (3)
C2—C31.506 (3)C15—C161.405 (3)
C2—H2A0.9700C16—C171.371 (3)
C2—H2B0.9700C17—C181.376 (3)
C3—C41.513 (3)C17—H170.9300
C3—H3A0.9700C18—C191.377 (3)
C3—H3B0.9700C19—C201.378 (3)
C4—C51.490 (3)C19—H190.9300
C4—H4A0.9700C20—H200.9300
C4—H4B0.9700C21—H21A0.9600
C5—H5A0.9700C21—H21B0.9600
C5—H5B0.9700C21—H21C0.9600
C6—N1—O1112.7 (2)C9—C8—C7120.7 (2)
C14—N2—O2111.7 (2)C8—C9—C10120.9 (3)
N1—O1—C1109.48 (18)C8—C9—H9119.5
N2—O2—C5110.15 (19)C10—C9—H9119.5
C8—O3—H3109.5O4—C10—C9115.7 (3)
C10—O4—C13118.4 (2)O4—C10—C11124.0 (3)
C16—O5—H5109.5C9—C10—C11120.3 (2)
C18—O6—C21117.9 (2)C10—C11—C12117.9 (2)
O1—C1—C2107.6 (2)C10—C11—H11121.1
O1—C1—H1A110.2C12—C11—H11121.1
C2—C1—H1A110.2C11—C12—C7123.3 (3)
O1—C1—H1B110.2C11—C12—H12118.4
C2—C1—H1B110.2C7—C12—H12118.4
H1A—C1—H1B108.5O4—C13—H13A109.5
C1—C2—C3114.5 (2)O4—C13—H13B109.5
C1—C2—H2A108.6H13A—C13—H13B109.5
C3—C2—H2A108.6O4—C13—H13C109.5
C1—C2—H2B108.6H13A—C13—H13C109.5
C3—C2—H2B108.6H13B—C13—H13C109.5
H2A—C2—H2B107.6N2—C14—C15121.9 (2)
C2—C3—C4113.2 (2)N2—C14—H14119.1
C2—C3—H3A108.9C15—C14—H14119.1
C4—C3—H3A108.9C20—C15—C16116.6 (2)
C2—C3—H3B108.9C20—C15—C14120.6 (2)
C4—C3—H3B108.9C16—C15—C14122.8 (2)
H3A—C3—H3B107.8O5—C16—C17118.2 (2)
C5—C4—C3113.1 (2)O5—C16—C15120.9 (2)
C5—C4—H4A109.0C17—C16—C15121.0 (2)
C3—C4—H4A109.0C16—C17—C18120.6 (2)
C5—C4—H4B109.0C16—C17—H17119.7
C3—C4—H4B109.0C18—C17—H17119.7
H4A—C4—H4B107.8O6—C18—C17115.9 (2)
O2—C5—C4108.8 (2)O6—C18—C19124.0 (2)
O2—C5—H5A109.9C17—C18—C19120.1 (2)
C4—C5—H5A109.9C18—C19—C20118.8 (2)
O2—C5—H5B109.9C18—C19—H19120.6
C4—C5—H5B109.9C20—C19—H19120.6
H5A—C5—H5B108.3C19—C20—C15122.9 (2)
N1—C6—C7120.5 (2)C19—C20—H20118.6
N1—C6—H6119.8C15—C20—H20118.6
C7—C6—H6119.8O6—C21—H21A109.5
C12—C7—C8116.8 (2)O6—C21—H21B109.5
C12—C7—C6120.5 (2)H21A—C21—H21B109.5
C8—C7—C6122.6 (2)O6—C21—H21C109.5
O3—C8—C9117.5 (2)H21A—C21—H21C109.5
O3—C8—C7121.7 (2)H21B—C21—H21C109.5
C6—N1—O1—C1179.4 (2)C9—C10—C11—C120.1 (4)
C14—N2—O2—C5169.4 (2)C10—C11—C12—C71.0 (4)
N1—O1—C1—C2179.9 (2)C8—C7—C12—C112.0 (4)
O1—C1—C2—C3177.9 (2)C6—C7—C12—C11177.2 (3)
C1—C2—C3—C4174.9 (2)O2—N2—C14—C15176.9 (2)
C2—C3—C4—C5178.3 (2)N2—C14—C15—C20179.5 (3)
N2—O2—C5—C4173.06 (19)N2—C14—C15—C160.6 (4)
C3—C4—C5—O2175.4 (2)C20—C15—C16—O5179.7 (2)
O1—N1—C6—C7178.8 (2)C14—C15—C16—O50.4 (4)
N1—C6—C7—C12178.8 (2)C20—C15—C16—C170.3 (4)
N1—C6—C7—C80.4 (4)C14—C15—C16—C17179.8 (2)
C12—C7—C8—O3178.9 (2)O5—C16—C17—C18179.6 (3)
C6—C7—C8—O31.9 (4)C15—C16—C17—C180.9 (4)
C12—C7—C8—C92.3 (4)C21—O6—C18—C17175.2 (3)
C6—C7—C8—C9176.9 (2)C21—O6—C18—C195.0 (4)
O3—C8—C9—C10179.5 (2)C16—C17—C18—O6178.8 (2)
C7—C8—C9—C101.6 (4)C16—C17—C18—C191.4 (4)
C13—O4—C10—C9178.8 (2)O6—C18—C19—C20179.0 (2)
C13—O4—C10—C110.9 (4)C17—C18—C19—C201.2 (4)
C8—C9—C10—O4179.8 (3)C18—C19—C20—C150.6 (4)
C8—C9—C10—C110.5 (4)C16—C15—C20—C190.1 (4)
O4—C10—C11—C12179.8 (2)C14—C15—C20—C19180.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.821.902.610 (3)144
O5—H5···N20.821.902.628 (3)147
O3—H3···O3i0.822.683.045 (3)109
C2—H2A···O3ii0.972.583.533 (4)168
C19—H19···O5ii0.932.443.300 (4)154
Symmetry codes: (i) x1, y+2, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H26N2O6
Mr402.44
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.3324 (15), 7.6214 (17), 20.372 (3)
α, β, γ (°)81.525 (1), 89.928 (2), 67.870 (1)
V3)1041.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.28 × 0.14
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.961, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
5481, 3618, 1641
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.124, 1.01
No. of reflections3618
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.8201.9002.610 (3)144.22
O5—H5···N20.8201.9042.628 (3)146.67
O3—H3···O3i0.8202.6813.045 (3)108.76
C2—H2A···O3ii0.9702.5793.533 (4)167.85
C19—H19···O5ii0.9302.4383.300 (4)154.02
Symmetry codes: (i) x1, y+2, z; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0604–01) and the `Qing Lan' Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03–01 A), which are gratefully acknowledged.

References

First citationAkine, S., Taniguchi, T., Dong, W. K., Masubuchi, S. & Nabeshima, T. (2005). J. Org. Chem. 70, 1704–1711.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. & Ren, Z.-L. (2008a). Acta Cryst. E64, o1600–o1601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., Lv, Z.-W., He, X.-N., Guan, Y.-H. & Tong, J.-F. (2008b). Acta Cryst. E64, o2059.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W. K., Sun, Y. X., Zhang, Y. P., Li, L., He, X. N. & Tang, X. L. (2009). Inorg. Chim. Acta, 362, 117–124.  Web of Science CSD CrossRef CAS Google Scholar
First citationLacroix, P. G. (2001). Eur. J. Inorg. Chem. pp. 339–348.  CrossRef Google Scholar
First citationNishijo, J., Okabe, C., Oishi, O. & Nishi, N. (2006). Carbon, 44, 2943–2949.  Web of Science CrossRef CAS Google Scholar
First citationOnda, A., Hara, S., Kajiyoshi, K. & Yanagisawa, K. (2007). Appl. Catal. A Gen. 321, 71–78.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Goöttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSun, S. S., Stern, C. L., Nguyen, S. T. & Hupp, J. T. (2004). J. Am. Chem. Soc. 126, 6314–6326.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1160
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds