organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(2-Methyl­phen­yl)-1,3,4-thia­diazol-2-amine

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 26 February 2009; accepted 26 March 2009; online 2 April 2009)

The asymmetric unit of the title compound, C9H9N3S, contains two crystallographically independent mol­ecules, in which the thia­diazole and tolyl rings are oriented at dihedral angles of 32.25 (3) and 74.50 (3)°. An intra­molecular C—H⋯S inter­action results in the formation of a five-membered ring. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into chains along the a axis. A ππ contact between the thia­diazole rings [centroid–centroid distance = 3.910 (3) Å] may further stabilize the structure. There is also a weak C—H⋯π inter­action.

Related literature

For the biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.]); Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.]). For a related structure, see: Han et al. (2007[Han, F., Wan, R., Wu, W.-Y., Zhang, J.-J. & Wang, J.-T. (2007). Acta Cryst. E63, o717-o718.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N3S

  • Mr = 191.26

  • Monoclinic, P 21

  • a = 10.792 (2) Å

  • b = 7.3400 (15) Å

  • c = 11.831 (2) Å

  • β = 96.15 (3)°

  • V = 931.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 294 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.942, Tmax = 0.971

  • 2190 measured reflections

  • 2190 independent reflections

  • 1620 reflections with I > 2σ(I)

  • Rint = 0.0000

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.162

  • S = 1.00

  • 2190 reflections

  • 237 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 113 Friedel pairs

  • Flack parameter: 0.04 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H3A⋯N2Bi 0.86 2.23 3.079 (8) 167
N3A—H3B⋯N1Bii 0.86 2.16 2.990 (6) 162
N3B—H6B⋯N2Aiii 0.86 2.22 3.006 (8) 153
N3B—H6C⋯N1A 0.86 2.23 3.035 (6) 156
C6A—H6A⋯S1A 0.93 2.71 3.090 (8) 105
C1B—H10ACg3iv 0.96 2.89 3.623 (3) 134
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+2]; (ii) x+1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+2]; (iv) x, y-1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software ; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996; Wang et al., 1999). These compounds are known to exhibit diverse biological effects, such as insecticidal and fungicidal activities (Wang et al., 1999). We are focused our synthetic and structural studies on 1,3,4 -thiadiazole derivatives and we have published the structure of 5-m -tolyl-1,3,4-thiadiazol-2-ylamine (Han et al., 2007). We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1), in which the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. Rings A (C2A-C7A), B (S1A/N1A/N2A/C8A/C9A) and C (C2B-C7B), D (S1B/N1B/N2B/C8B/C9B) are, of course, planar, and they are oriented at dihedral angles of A/B = 32.25 (3) and C/D = 74.50 (3) °. The intramolecular C-H···S interaction (Table 1) results in the formation of a five-membered ring E (S1A/C6A-C8A/H6A) adopting envelope conformation with S1A atom displaced by 0.813 (3) Å from the plane of the other ring atoms.

In the crystal structure, intra- and intermolecular N-H···N hydrogen bonds (Table 1) link the molecules into chains along the a axis (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contact between the thiadiazole rings, Cg1—Cg2i [symmetry code: (i) x, 1 + y, -1 + z, where Cg1 and Cg2 are centroids of the rings B (S1A/N1A/N2A/C8A/C9A) and D (S1B/N1B/N2B/C8B/C9B), respectively] may further stabilize the structure, with centroid-centroid distance of 3.910 (3) Å. There also exists a weak C—H···π interaction (Table 1).

Related literature top

For general background, see: Nakagawa et al. (1996); Wang et al. (1999). For a related structure, see: Han et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 3-methyl-benzoic acid (5 mmol) and thiosemicarbazide (5 mmol) were added in toluene (50 ml), and kept in the oil bath at 363 K for 6 h. After cooling, the crude product precipitated and was filted. Crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
5-(2-Methylphenyl)-1,3,4-thiadiazol-2-amine top
Crystal data top
C9H9N3SF(000) = 400
Mr = 191.26Dx = 1.363 Mg m3
Monoclinic, P21Melting point: 541 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 10.792 (2) ÅCell parameters from 25 reflections
b = 7.3400 (15) Åθ = 10–13°
c = 11.831 (2) ŵ = 0.30 mm1
β = 96.15 (3)°T = 294 K
V = 931.8 (3) Å3Block, colorless
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1620 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 27.0°, θmin = 1.7°
ω/2θ scansh = 1313
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.942, Tmax = 0.971l = 015
2190 measured reflections3 standard reflections every 120 min
2190 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.1P)2 + 0.06P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2190 reflectionsΔρmax = 0.29 e Å3
237 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Flack (1983), 113 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (18)
Crystal data top
C9H9N3SV = 931.8 (3) Å3
Mr = 191.26Z = 4
Monoclinic, P21Mo Kα radiation
a = 10.792 (2) ŵ = 0.30 mm1
b = 7.3400 (15) ÅT = 294 K
c = 11.831 (2) Å0.20 × 0.10 × 0.10 mm
β = 96.15 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1620 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.942, Tmax = 0.9713 standard reflections every 120 min
2190 measured reflections intensity decay: 1%
2190 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.162Δρmax = 0.29 e Å3
S = 1.00Δρmin = 0.27 e Å3
2190 reflectionsAbsolute structure: Flack (1983), 113 Friedel pairs
237 parametersAbsolute structure parameter: 0.04 (18)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.87687 (12)0.61482 (19)0.83012 (11)0.0525 (4)
N1A0.6530 (4)0.6359 (8)0.8777 (4)0.0504 (12)
N2A0.7123 (4)0.7860 (7)0.9302 (4)0.0506 (12)
N3A0.9083 (4)0.9167 (8)0.9573 (4)0.0572 (13)
H3A0.88271.00190.99900.069*
H3B0.98500.91350.94390.069*
C1A0.4713 (6)0.4830 (15)0.6920 (7)0.102 (3)
H1B0.40320.44670.63780.153*
H1C0.50460.59670.66880.153*
H1D0.44220.49700.76540.153*
C2A0.5735 (6)0.3366 (11)0.6984 (5)0.0719 (19)
C3A0.5524 (9)0.1754 (12)0.6397 (6)0.089 (3)
H3C0.47480.15410.59970.107*
C4A0.6461 (11)0.0427 (13)0.6393 (7)0.101 (3)
H4A0.62970.06650.60080.121*
C5A0.7622 (10)0.0745 (13)0.6961 (6)0.099 (3)
H5A0.82560.01090.69430.118*
C6A0.7826 (8)0.2317 (11)0.7545 (5)0.078 (2)
H6A0.86050.25060.79430.094*
C7A0.6914 (6)0.3683 (10)0.7579 (4)0.0584 (15)
C8A0.7246 (5)0.5356 (9)0.8216 (4)0.0498 (14)
C9A0.8294 (5)0.7902 (9)0.9137 (4)0.0480 (13)
S1B0.37988 (11)0.8934 (2)0.83030 (11)0.0573 (5)
N1B0.1506 (4)0.8716 (9)0.8594 (4)0.0568 (13)
N2B0.2089 (4)0.7424 (9)0.9293 (4)0.0584 (13)
N3B0.4089 (4)0.6193 (10)0.9831 (4)0.0746 (18)
H6B0.38160.54271.02950.090*
H6C0.48700.62260.97450.090*
C1B0.2175 (8)0.8875 (11)0.5560 (5)0.082 (2)
H10A0.20770.88890.47440.124*
H10B0.16310.79730.58270.124*
H10C0.30230.85860.58290.124*
C2B0.1846 (5)1.0742 (9)0.6006 (4)0.0532 (13)
C3B0.1501 (6)1.2157 (11)0.5268 (5)0.0688 (17)
H12A0.14771.19660.44890.083*
C4B0.1192 (5)1.3853 (10)0.5666 (5)0.0660 (16)
H13A0.09601.47830.51520.079*
C5B0.1226 (6)1.4175 (13)0.6825 (6)0.076 (2)
H14A0.10141.53120.70930.092*
C6B0.1574 (6)1.2795 (9)0.7564 (5)0.0616 (16)
H15A0.16161.30120.83420.074*
C7B0.1866 (4)1.1078 (9)0.7184 (4)0.0466 (12)
C8B0.2252 (5)0.9641 (9)0.8013 (4)0.0469 (13)
C9B0.3289 (5)0.7347 (9)0.9235 (4)0.0496 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0373 (7)0.0732 (9)0.0484 (7)0.0080 (7)0.0115 (5)0.0080 (7)
N1A0.040 (2)0.066 (3)0.048 (2)0.007 (2)0.0155 (18)0.010 (2)
N2A0.038 (2)0.065 (3)0.051 (3)0.005 (2)0.012 (2)0.018 (2)
N3A0.039 (2)0.075 (3)0.060 (3)0.002 (3)0.014 (2)0.021 (3)
C1A0.057 (4)0.148 (8)0.098 (5)0.003 (5)0.004 (4)0.041 (6)
C2A0.063 (4)0.097 (5)0.060 (3)0.016 (4)0.022 (3)0.019 (4)
C3A0.106 (6)0.094 (6)0.072 (5)0.041 (5)0.031 (4)0.025 (4)
C4A0.165 (9)0.081 (5)0.062 (4)0.044 (6)0.042 (6)0.003 (4)
C5A0.159 (9)0.086 (5)0.051 (4)0.022 (6)0.016 (5)0.003 (4)
C6A0.104 (5)0.083 (5)0.048 (3)0.013 (4)0.008 (3)0.007 (4)
C7A0.061 (3)0.076 (4)0.039 (3)0.005 (3)0.015 (2)0.006 (3)
C8A0.039 (3)0.078 (4)0.032 (2)0.006 (3)0.002 (2)0.001 (3)
C9A0.039 (3)0.069 (3)0.036 (2)0.003 (3)0.007 (2)0.001 (3)
S1B0.0337 (7)0.0842 (11)0.0549 (8)0.0021 (8)0.0086 (6)0.0203 (9)
N1B0.038 (2)0.086 (4)0.048 (2)0.002 (3)0.0128 (18)0.018 (3)
N2B0.036 (2)0.089 (4)0.053 (3)0.000 (3)0.017 (2)0.013 (3)
N3B0.035 (2)0.115 (5)0.075 (3)0.013 (3)0.012 (2)0.047 (4)
C1B0.114 (6)0.085 (5)0.047 (3)0.002 (5)0.004 (3)0.023 (4)
C2B0.053 (3)0.066 (3)0.040 (2)0.011 (3)0.002 (2)0.005 (3)
C3B0.073 (4)0.092 (5)0.041 (3)0.014 (4)0.002 (3)0.005 (3)
C4B0.053 (3)0.081 (4)0.065 (4)0.005 (3)0.009 (3)0.021 (4)
C5B0.071 (4)0.091 (5)0.071 (4)0.005 (4)0.029 (3)0.000 (4)
C6B0.064 (4)0.072 (4)0.052 (3)0.014 (3)0.023 (3)0.000 (3)
C7B0.037 (2)0.062 (3)0.041 (3)0.008 (3)0.006 (2)0.005 (3)
C8B0.037 (3)0.066 (3)0.039 (3)0.006 (3)0.010 (2)0.001 (3)
C9B0.037 (3)0.073 (4)0.040 (3)0.002 (3)0.012 (2)0.010 (3)
Geometric parameters (Å, º) top
S1A—C9A1.734 (6)S1B—C9B1.733 (6)
S1A—C8A1.736 (5)S1B—C8B1.747 (5)
N1A—C8A1.300 (7)N1B—C8B1.304 (7)
N1A—N2A1.387 (7)N1B—N2B1.366 (8)
N2A—C9A1.299 (6)N2B—C9B1.306 (6)
N3A—C9A1.326 (7)N3B—C9B1.352 (8)
N3A—H3A0.8600N3B—H6B0.8600
N3A—H3B0.8600N3B—H6C0.8600
C1A—C2A1.536 (11)C1B—C2B1.524 (9)
C1A—H1B0.9600C1B—H10A0.9600
C1A—H1C0.9600C1B—H10B0.9600
C1A—H1D0.9600C1B—H10C0.9600
C2A—C3A1.379 (10)C2B—C3B1.382 (9)
C2A—C7A1.406 (9)C2B—C7B1.413 (7)
C3A—C4A1.404 (13)C3B—C4B1.384 (10)
C3A—H3C0.9300C3B—H12A0.9300
C4A—C5A1.377 (12)C4B—C5B1.388 (9)
C4A—H4A0.9300C4B—H13A0.9300
C5A—C6A1.351 (12)C5B—C6B1.365 (10)
C5A—H5A0.9300C5B—H14A0.9300
C6A—C7A1.408 (10)C6B—C7B1.386 (8)
C6A—H6A0.9300C6B—H15A0.9300
C7A—C8A1.465 (9)C7B—C8B1.470 (8)
C9A—S1A—C8A86.9 (3)C9B—S1B—C8B87.9 (3)
C8A—N1A—N2A114.1 (4)C8B—N1B—N2B114.2 (4)
C9A—N2A—N1A111.2 (5)C9B—N2B—N1B113.2 (5)
C9A—N3A—H3A120.0C9B—N3B—H6B120.0
C9A—N3A—H3B120.0C9B—N3B—H6C120.0
H3A—N3A—H3B120.0H6B—N3B—H6C120.0
C2A—C1A—H1B109.5C2B—C1B—H10A109.5
C2A—C1A—H1C109.5C2B—C1B—H10B109.5
H1B—C1A—H1C109.5H10A—C1B—H10B109.5
C2A—C1A—H1D109.5C2B—C1B—H10C109.5
H1B—C1A—H1D109.5H10A—C1B—H10C109.5
H1C—C1A—H1D109.5H10B—C1B—H10C109.5
C3A—C2A—C7A119.1 (8)C3B—C2B—C7B117.8 (6)
C3A—C2A—C1A119.8 (7)C3B—C2B—C1B121.0 (5)
C7A—C2A—C1A121.0 (6)C7B—C2B—C1B121.2 (5)
C2A—C3A—C4A121.1 (8)C2B—C3B—C4B121.3 (6)
C2A—C3A—H3C119.5C2B—C3B—H12A119.3
C4A—C3A—H3C119.5C4B—C3B—H12A119.3
C5A—C4A—C3A119.9 (8)C3B—C4B—C5B120.5 (7)
C5A—C4A—H4A120.0C3B—C4B—H13A119.8
C3A—C4A—H4A120.0C5B—C4B—H13A119.8
C6A—C5A—C4A119.0 (9)C6B—C5B—C4B118.9 (7)
C6A—C5A—H5A120.5C6B—C5B—H14A120.5
C4A—C5A—H5A120.5C4B—C5B—H14A120.5
C5A—C6A—C7A123.2 (8)C5B—C6B—C7B121.5 (5)
C5A—C6A—H6A118.4C5B—C6B—H15A119.2
C7A—C6A—H6A118.4C7B—C6B—H15A119.2
C2A—C7A—C6A117.7 (7)C6B—C7B—C2B119.9 (5)
C2A—C7A—C8A123.6 (6)C6B—C7B—C8B119.6 (5)
C6A—C7A—C8A118.6 (6)C2B—C7B—C8B120.4 (6)
N1A—C8A—C7A127.7 (5)N1B—C8B—C7B125.4 (5)
N1A—C8A—S1A113.0 (5)N1B—C8B—S1B111.9 (4)
C7A—C8A—S1A119.2 (4)C7B—C8B—S1B122.7 (4)
N2A—C9A—N3A123.5 (5)N2B—C9B—N3B125.5 (5)
N2A—C9A—S1A114.8 (5)N2B—C9B—S1B112.9 (4)
N3A—C9A—S1A121.7 (4)N3B—C9B—S1B121.6 (4)
C8A—N1A—N2A—C9A1.8 (7)C8B—N1B—N2B—C9B0.8 (8)
C7A—C2A—C3A—C4A0.4 (10)C7B—C2B—C3B—C4B0.3 (9)
C1A—C2A—C3A—C4A176.9 (7)C1B—C2B—C3B—C4B179.5 (6)
C2A—C3A—C4A—C5A1.5 (11)C2B—C3B—C4B—C5B0.3 (10)
C3A—C4A—C5A—C6A2.1 (11)C3B—C4B—C5B—C6B0.3 (10)
C4A—C5A—C6A—C7A1.8 (11)C4B—C5B—C6B—C7B1.4 (10)
C3A—C2A—C7A—C6A0.1 (9)C5B—C6B—C7B—C2B2.0 (9)
C1A—C2A—C7A—C6A176.4 (6)C5B—C6B—C7B—C8B179.2 (5)
C3A—C2A—C7A—C8A179.1 (6)C3B—C2B—C7B—C6B1.5 (8)
C1A—C2A—C7A—C8A2.7 (9)C1B—C2B—C7B—C6B179.4 (6)
C5A—C6A—C7A—C2A0.8 (10)C3B—C2B—C7B—C8B178.6 (5)
C5A—C6A—C7A—C8A178.4 (6)C1B—C2B—C7B—C8B2.2 (8)
N2A—N1A—C8A—C7A179.5 (5)N2B—N1B—C8B—C7B178.6 (6)
N2A—N1A—C8A—S1A1.3 (6)N2B—N1B—C8B—S1B0.3 (7)
C2A—C7A—C8A—N1A34.2 (9)C6B—C7B—C8B—N1B77.1 (8)
C6A—C7A—C8A—N1A146.6 (6)C2B—C7B—C8B—N1B105.7 (7)
C2A—C7A—C8A—S1A147.7 (5)C6B—C7B—C8B—S1B104.7 (6)
C6A—C7A—C8A—S1A31.4 (7)C2B—C7B—C8B—S1B72.5 (7)
C9A—S1A—C8A—N1A0.4 (5)C9B—S1B—C8B—N1B0.2 (5)
C9A—S1A—C8A—C7A178.7 (5)C9B—S1B—C8B—C7B178.2 (5)
N1A—N2A—C9A—N3A178.1 (5)N1B—N2B—C9B—N3B179.8 (6)
N1A—N2A—C9A—S1A1.4 (6)N1B—N2B—C9B—S1B1.0 (7)
C8A—S1A—C9A—N2A0.6 (5)C8B—S1B—C9B—N2B0.7 (5)
C8A—S1A—C9A—N3A178.9 (5)C8B—S1B—C9B—N3B179.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H3A···N2Bi0.862.233.079 (8)167
N3A—H3B···N1Bii0.862.162.990 (6)162
N3B—H6B···N2Aiii0.862.223.006 (8)153
N3B—H6C···N1A0.862.233.035 (6)156
C6A—H6A···S1A0.932.713.090 (8)105
C1B—H10A···Cg3iv0.962.893.623 (3)134
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x+1, y, z; (iii) x+1, y1/2, z+2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC9H9N3S
Mr191.26
Crystal system, space groupMonoclinic, P21
Temperature (K)294
a, b, c (Å)10.792 (2), 7.3400 (15), 11.831 (2)
β (°) 96.15 (3)
V3)931.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.942, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
2190, 2190, 1620
Rint0.000
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.162, 1.00
No. of reflections2190
No. of parameters237
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.27
Absolute structureFlack (1983), 113 Friedel pairs
Absolute structure parameter0.04 (18)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H3A···N2Bi0.862.233.079 (8)167
N3A—H3B···N1Bii0.862.162.990 (6)162
N3B—H6B···N2Aiii0.862.223.006 (8)153
N3B—H6C···N1A0.862.233.035 (6)156
C6A—H6A···S1A0.932.713.090 (8)105
C1B—H10A···Cg3iv0.962.893.623 (3)134
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x+1, y, z; (iii) x+1, y1/2, z+2; (iv) x, y1, z.
 

Acknowledgements

The authors thank Professor Hua-qin Wang of the Analysis Centre, Nanjing University, for carrying out the X-ray crystallographic analysis.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHan, F., Wan, R., Wu, W.-Y., Zhang, J.-J. & Wang, J.-T. (2007). Acta Cryst. E63, o717–o718.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds