organic compounds
5-(2-Methylphenyl)-1,3,4-thiadiazol-2-amine
aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn
The 9H9N3S, contains two crystallographically independent molecules, in which the thiadiazole and tolyl rings are oriented at dihedral angles of 32.25 (3) and 74.50 (3)°. An intramolecular C—H⋯S interaction results in the formation of a five-membered ring. In the intermolecular N—H⋯N hydrogen bonds link the molecules into chains along the a axis. A π–π contact between the thiadiazole rings [centroid–centroid distance = 3.910 (3) Å] may further stabilize the structure. There is also a weak C—H⋯π interaction.
of the title compound, CRelated literature
For the biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999). For a related structure, see: Han et al. (2007). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software ; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809011234/hk2633sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809011234/hk2633Isup2.hkl
For the preparation of the title compound, 3-methyl-benzoic acid (5 mmol) and thiosemicarbazide (5 mmol) were added in toluene (50 ml), and kept in the oil bath at 363 K for 6 h. After cooling, the crude product precipitated and was filted. Crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone solution.
H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. | |
Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. |
C9H9N3S | F(000) = 400 |
Mr = 191.26 | Dx = 1.363 Mg m−3 |
Monoclinic, P21 | Melting point: 541 K |
Hall symbol: P 2yb | Mo Kα radiation, λ = 0.71073 Å |
a = 10.792 (2) Å | Cell parameters from 25 reflections |
b = 7.3400 (15) Å | θ = 10–13° |
c = 11.831 (2) Å | µ = 0.30 mm−1 |
β = 96.15 (3)° | T = 294 K |
V = 931.8 (3) Å3 | Block, colorless |
Z = 4 | 0.20 × 0.10 × 0.10 mm |
Enraf–Nonius CAD-4 diffractometer | 1620 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 27.0°, θmin = 1.7° |
ω/2θ scans | h = −13→13 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→9 |
Tmin = 0.942, Tmax = 0.971 | l = 0→15 |
2190 measured reflections | 3 standard reflections every 120 min |
2190 independent reflections | intensity decay: 1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.162 | w = 1/[σ2(Fo2) + (0.1P)2 + 0.06P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
2190 reflections | Δρmax = 0.29 e Å−3 |
237 parameters | Δρmin = −0.27 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 113 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.04 (18) |
C9H9N3S | V = 931.8 (3) Å3 |
Mr = 191.26 | Z = 4 |
Monoclinic, P21 | Mo Kα radiation |
a = 10.792 (2) Å | µ = 0.30 mm−1 |
b = 7.3400 (15) Å | T = 294 K |
c = 11.831 (2) Å | 0.20 × 0.10 × 0.10 mm |
β = 96.15 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1620 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.000 |
Tmin = 0.942, Tmax = 0.971 | 3 standard reflections every 120 min |
2190 measured reflections | intensity decay: 1% |
2190 independent reflections |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.162 | Δρmax = 0.29 e Å−3 |
S = 1.00 | Δρmin = −0.27 e Å−3 |
2190 reflections | Absolute structure: Flack (1983), 113 Friedel pairs |
237 parameters | Absolute structure parameter: 0.04 (18) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1A | 0.87687 (12) | 0.61482 (19) | 0.83012 (11) | 0.0525 (4) | |
N1A | 0.6530 (4) | 0.6359 (8) | 0.8777 (4) | 0.0504 (12) | |
N2A | 0.7123 (4) | 0.7860 (7) | 0.9302 (4) | 0.0506 (12) | |
N3A | 0.9083 (4) | 0.9167 (8) | 0.9573 (4) | 0.0572 (13) | |
H3A | 0.8827 | 1.0019 | 0.9990 | 0.069* | |
H3B | 0.9850 | 0.9135 | 0.9439 | 0.069* | |
C1A | 0.4713 (6) | 0.4830 (15) | 0.6920 (7) | 0.102 (3) | |
H1B | 0.4032 | 0.4467 | 0.6378 | 0.153* | |
H1C | 0.5046 | 0.5967 | 0.6688 | 0.153* | |
H1D | 0.4422 | 0.4970 | 0.7654 | 0.153* | |
C2A | 0.5735 (6) | 0.3366 (11) | 0.6984 (5) | 0.0719 (19) | |
C3A | 0.5524 (9) | 0.1754 (12) | 0.6397 (6) | 0.089 (3) | |
H3C | 0.4748 | 0.1541 | 0.5997 | 0.107* | |
C4A | 0.6461 (11) | 0.0427 (13) | 0.6393 (7) | 0.101 (3) | |
H4A | 0.6297 | −0.0665 | 0.6008 | 0.121* | |
C5A | 0.7622 (10) | 0.0745 (13) | 0.6961 (6) | 0.099 (3) | |
H5A | 0.8256 | −0.0109 | 0.6943 | 0.118* | |
C6A | 0.7826 (8) | 0.2317 (11) | 0.7545 (5) | 0.078 (2) | |
H6A | 0.8605 | 0.2506 | 0.7943 | 0.094* | |
C7A | 0.6914 (6) | 0.3683 (10) | 0.7579 (4) | 0.0584 (15) | |
C8A | 0.7246 (5) | 0.5356 (9) | 0.8216 (4) | 0.0498 (14) | |
C9A | 0.8294 (5) | 0.7902 (9) | 0.9137 (4) | 0.0480 (13) | |
S1B | 0.37988 (11) | 0.8934 (2) | 0.83030 (11) | 0.0573 (5) | |
N1B | 0.1506 (4) | 0.8716 (9) | 0.8594 (4) | 0.0568 (13) | |
N2B | 0.2089 (4) | 0.7424 (9) | 0.9293 (4) | 0.0584 (13) | |
N3B | 0.4089 (4) | 0.6193 (10) | 0.9831 (4) | 0.0746 (18) | |
H6B | 0.3816 | 0.5427 | 1.0295 | 0.090* | |
H6C | 0.4870 | 0.6226 | 0.9745 | 0.090* | |
C1B | 0.2175 (8) | 0.8875 (11) | 0.5560 (5) | 0.082 (2) | |
H10A | 0.2077 | 0.8889 | 0.4744 | 0.124* | |
H10B | 0.1631 | 0.7973 | 0.5827 | 0.124* | |
H10C | 0.3023 | 0.8586 | 0.5829 | 0.124* | |
C2B | 0.1846 (5) | 1.0742 (9) | 0.6006 (4) | 0.0532 (13) | |
C3B | 0.1501 (6) | 1.2157 (11) | 0.5268 (5) | 0.0688 (17) | |
H12A | 0.1477 | 1.1966 | 0.4489 | 0.083* | |
C4B | 0.1192 (5) | 1.3853 (10) | 0.5666 (5) | 0.0660 (16) | |
H13A | 0.0960 | 1.4783 | 0.5152 | 0.079* | |
C5B | 0.1226 (6) | 1.4175 (13) | 0.6825 (6) | 0.076 (2) | |
H14A | 0.1014 | 1.5312 | 0.7093 | 0.092* | |
C6B | 0.1574 (6) | 1.2795 (9) | 0.7564 (5) | 0.0616 (16) | |
H15A | 0.1616 | 1.3012 | 0.8342 | 0.074* | |
C7B | 0.1866 (4) | 1.1078 (9) | 0.7184 (4) | 0.0466 (12) | |
C8B | 0.2252 (5) | 0.9641 (9) | 0.8013 (4) | 0.0469 (13) | |
C9B | 0.3289 (5) | 0.7347 (9) | 0.9235 (4) | 0.0496 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1A | 0.0373 (7) | 0.0732 (9) | 0.0484 (7) | 0.0080 (7) | 0.0115 (5) | −0.0080 (7) |
N1A | 0.040 (2) | 0.066 (3) | 0.048 (2) | −0.007 (2) | 0.0155 (18) | −0.010 (2) |
N2A | 0.038 (2) | 0.065 (3) | 0.051 (3) | −0.005 (2) | 0.012 (2) | −0.018 (2) |
N3A | 0.039 (2) | 0.075 (3) | 0.060 (3) | 0.002 (3) | 0.014 (2) | −0.021 (3) |
C1A | 0.057 (4) | 0.148 (8) | 0.098 (5) | −0.003 (5) | −0.004 (4) | −0.041 (6) |
C2A | 0.063 (4) | 0.097 (5) | 0.060 (3) | −0.016 (4) | 0.022 (3) | −0.019 (4) |
C3A | 0.106 (6) | 0.094 (6) | 0.072 (5) | −0.041 (5) | 0.031 (4) | −0.025 (4) |
C4A | 0.165 (9) | 0.081 (5) | 0.062 (4) | −0.044 (6) | 0.042 (6) | −0.003 (4) |
C5A | 0.159 (9) | 0.086 (5) | 0.051 (4) | 0.022 (6) | 0.016 (5) | 0.003 (4) |
C6A | 0.104 (5) | 0.083 (5) | 0.048 (3) | 0.013 (4) | 0.008 (3) | 0.007 (4) |
C7A | 0.061 (3) | 0.076 (4) | 0.039 (3) | −0.005 (3) | 0.015 (2) | 0.006 (3) |
C8A | 0.039 (3) | 0.078 (4) | 0.032 (2) | −0.006 (3) | 0.002 (2) | 0.001 (3) |
C9A | 0.039 (3) | 0.069 (3) | 0.036 (2) | 0.003 (3) | 0.007 (2) | −0.001 (3) |
S1B | 0.0337 (7) | 0.0842 (11) | 0.0549 (8) | −0.0021 (8) | 0.0086 (6) | 0.0203 (9) |
N1B | 0.038 (2) | 0.086 (4) | 0.048 (2) | 0.002 (3) | 0.0128 (18) | 0.018 (3) |
N2B | 0.036 (2) | 0.089 (4) | 0.053 (3) | 0.000 (3) | 0.017 (2) | 0.013 (3) |
N3B | 0.035 (2) | 0.115 (5) | 0.075 (3) | 0.013 (3) | 0.012 (2) | 0.047 (4) |
C1B | 0.114 (6) | 0.085 (5) | 0.047 (3) | −0.002 (5) | 0.004 (3) | −0.023 (4) |
C2B | 0.053 (3) | 0.066 (3) | 0.040 (2) | −0.011 (3) | 0.002 (2) | −0.005 (3) |
C3B | 0.073 (4) | 0.092 (5) | 0.041 (3) | −0.014 (4) | 0.002 (3) | 0.005 (3) |
C4B | 0.053 (3) | 0.081 (4) | 0.065 (4) | 0.005 (3) | 0.009 (3) | 0.021 (4) |
C5B | 0.071 (4) | 0.091 (5) | 0.071 (4) | 0.005 (4) | 0.029 (3) | 0.000 (4) |
C6B | 0.064 (4) | 0.072 (4) | 0.052 (3) | 0.014 (3) | 0.023 (3) | 0.000 (3) |
C7B | 0.037 (2) | 0.062 (3) | 0.041 (3) | −0.008 (3) | 0.006 (2) | 0.005 (3) |
C8B | 0.037 (3) | 0.066 (3) | 0.039 (3) | −0.006 (3) | 0.010 (2) | −0.001 (3) |
C9B | 0.037 (3) | 0.073 (4) | 0.040 (3) | −0.002 (3) | 0.012 (2) | 0.010 (3) |
S1A—C9A | 1.734 (6) | S1B—C9B | 1.733 (6) |
S1A—C8A | 1.736 (5) | S1B—C8B | 1.747 (5) |
N1A—C8A | 1.300 (7) | N1B—C8B | 1.304 (7) |
N1A—N2A | 1.387 (7) | N1B—N2B | 1.366 (8) |
N2A—C9A | 1.299 (6) | N2B—C9B | 1.306 (6) |
N3A—C9A | 1.326 (7) | N3B—C9B | 1.352 (8) |
N3A—H3A | 0.8600 | N3B—H6B | 0.8600 |
N3A—H3B | 0.8600 | N3B—H6C | 0.8600 |
C1A—C2A | 1.536 (11) | C1B—C2B | 1.524 (9) |
C1A—H1B | 0.9600 | C1B—H10A | 0.9600 |
C1A—H1C | 0.9600 | C1B—H10B | 0.9600 |
C1A—H1D | 0.9600 | C1B—H10C | 0.9600 |
C2A—C3A | 1.379 (10) | C2B—C3B | 1.382 (9) |
C2A—C7A | 1.406 (9) | C2B—C7B | 1.413 (7) |
C3A—C4A | 1.404 (13) | C3B—C4B | 1.384 (10) |
C3A—H3C | 0.9300 | C3B—H12A | 0.9300 |
C4A—C5A | 1.377 (12) | C4B—C5B | 1.388 (9) |
C4A—H4A | 0.9300 | C4B—H13A | 0.9300 |
C5A—C6A | 1.351 (12) | C5B—C6B | 1.365 (10) |
C5A—H5A | 0.9300 | C5B—H14A | 0.9300 |
C6A—C7A | 1.408 (10) | C6B—C7B | 1.386 (8) |
C6A—H6A | 0.9300 | C6B—H15A | 0.9300 |
C7A—C8A | 1.465 (9) | C7B—C8B | 1.470 (8) |
C9A—S1A—C8A | 86.9 (3) | C9B—S1B—C8B | 87.9 (3) |
C8A—N1A—N2A | 114.1 (4) | C8B—N1B—N2B | 114.2 (4) |
C9A—N2A—N1A | 111.2 (5) | C9B—N2B—N1B | 113.2 (5) |
C9A—N3A—H3A | 120.0 | C9B—N3B—H6B | 120.0 |
C9A—N3A—H3B | 120.0 | C9B—N3B—H6C | 120.0 |
H3A—N3A—H3B | 120.0 | H6B—N3B—H6C | 120.0 |
C2A—C1A—H1B | 109.5 | C2B—C1B—H10A | 109.5 |
C2A—C1A—H1C | 109.5 | C2B—C1B—H10B | 109.5 |
H1B—C1A—H1C | 109.5 | H10A—C1B—H10B | 109.5 |
C2A—C1A—H1D | 109.5 | C2B—C1B—H10C | 109.5 |
H1B—C1A—H1D | 109.5 | H10A—C1B—H10C | 109.5 |
H1C—C1A—H1D | 109.5 | H10B—C1B—H10C | 109.5 |
C3A—C2A—C7A | 119.1 (8) | C3B—C2B—C7B | 117.8 (6) |
C3A—C2A—C1A | 119.8 (7) | C3B—C2B—C1B | 121.0 (5) |
C7A—C2A—C1A | 121.0 (6) | C7B—C2B—C1B | 121.2 (5) |
C2A—C3A—C4A | 121.1 (8) | C2B—C3B—C4B | 121.3 (6) |
C2A—C3A—H3C | 119.5 | C2B—C3B—H12A | 119.3 |
C4A—C3A—H3C | 119.5 | C4B—C3B—H12A | 119.3 |
C5A—C4A—C3A | 119.9 (8) | C3B—C4B—C5B | 120.5 (7) |
C5A—C4A—H4A | 120.0 | C3B—C4B—H13A | 119.8 |
C3A—C4A—H4A | 120.0 | C5B—C4B—H13A | 119.8 |
C6A—C5A—C4A | 119.0 (9) | C6B—C5B—C4B | 118.9 (7) |
C6A—C5A—H5A | 120.5 | C6B—C5B—H14A | 120.5 |
C4A—C5A—H5A | 120.5 | C4B—C5B—H14A | 120.5 |
C5A—C6A—C7A | 123.2 (8) | C5B—C6B—C7B | 121.5 (5) |
C5A—C6A—H6A | 118.4 | C5B—C6B—H15A | 119.2 |
C7A—C6A—H6A | 118.4 | C7B—C6B—H15A | 119.2 |
C2A—C7A—C6A | 117.7 (7) | C6B—C7B—C2B | 119.9 (5) |
C2A—C7A—C8A | 123.6 (6) | C6B—C7B—C8B | 119.6 (5) |
C6A—C7A—C8A | 118.6 (6) | C2B—C7B—C8B | 120.4 (6) |
N1A—C8A—C7A | 127.7 (5) | N1B—C8B—C7B | 125.4 (5) |
N1A—C8A—S1A | 113.0 (5) | N1B—C8B—S1B | 111.9 (4) |
C7A—C8A—S1A | 119.2 (4) | C7B—C8B—S1B | 122.7 (4) |
N2A—C9A—N3A | 123.5 (5) | N2B—C9B—N3B | 125.5 (5) |
N2A—C9A—S1A | 114.8 (5) | N2B—C9B—S1B | 112.9 (4) |
N3A—C9A—S1A | 121.7 (4) | N3B—C9B—S1B | 121.6 (4) |
C8A—N1A—N2A—C9A | −1.8 (7) | C8B—N1B—N2B—C9B | −0.8 (8) |
C7A—C2A—C3A—C4A | 0.4 (10) | C7B—C2B—C3B—C4B | 0.3 (9) |
C1A—C2A—C3A—C4A | 176.9 (7) | C1B—C2B—C3B—C4B | 179.5 (6) |
C2A—C3A—C4A—C5A | −1.5 (11) | C2B—C3B—C4B—C5B | 0.3 (10) |
C3A—C4A—C5A—C6A | 2.1 (11) | C3B—C4B—C5B—C6B | 0.3 (10) |
C4A—C5A—C6A—C7A | −1.8 (11) | C4B—C5B—C6B—C7B | −1.4 (10) |
C3A—C2A—C7A—C6A | −0.1 (9) | C5B—C6B—C7B—C2B | 2.0 (9) |
C1A—C2A—C7A—C6A | −176.4 (6) | C5B—C6B—C7B—C8B | 179.2 (5) |
C3A—C2A—C7A—C8A | 179.1 (6) | C3B—C2B—C7B—C6B | −1.5 (8) |
C1A—C2A—C7A—C8A | 2.7 (9) | C1B—C2B—C7B—C6B | 179.4 (6) |
C5A—C6A—C7A—C2A | 0.8 (10) | C3B—C2B—C7B—C8B | −178.6 (5) |
C5A—C6A—C7A—C8A | −178.4 (6) | C1B—C2B—C7B—C8B | 2.2 (8) |
N2A—N1A—C8A—C7A | 179.5 (5) | N2B—N1B—C8B—C7B | 178.6 (6) |
N2A—N1A—C8A—S1A | 1.3 (6) | N2B—N1B—C8B—S1B | 0.3 (7) |
C2A—C7A—C8A—N1A | 34.2 (9) | C6B—C7B—C8B—N1B | 77.1 (8) |
C6A—C7A—C8A—N1A | −146.6 (6) | C2B—C7B—C8B—N1B | −105.7 (7) |
C2A—C7A—C8A—S1A | −147.7 (5) | C6B—C7B—C8B—S1B | −104.7 (6) |
C6A—C7A—C8A—S1A | 31.4 (7) | C2B—C7B—C8B—S1B | 72.5 (7) |
C9A—S1A—C8A—N1A | −0.4 (5) | C9B—S1B—C8B—N1B | 0.2 (5) |
C9A—S1A—C8A—C7A | −178.7 (5) | C9B—S1B—C8B—C7B | −178.2 (5) |
N1A—N2A—C9A—N3A | −178.1 (5) | N1B—N2B—C9B—N3B | −179.8 (6) |
N1A—N2A—C9A—S1A | 1.4 (6) | N1B—N2B—C9B—S1B | 1.0 (7) |
C8A—S1A—C9A—N2A | −0.6 (5) | C8B—S1B—C9B—N2B | −0.7 (5) |
C8A—S1A—C9A—N3A | 178.9 (5) | C8B—S1B—C9B—N3B | −179.9 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3A—H3A···N2Bi | 0.86 | 2.23 | 3.079 (8) | 167 |
N3A—H3B···N1Bii | 0.86 | 2.16 | 2.990 (6) | 162 |
N3B—H6B···N2Aiii | 0.86 | 2.22 | 3.006 (8) | 153 |
N3B—H6C···N1A | 0.86 | 2.23 | 3.035 (6) | 156 |
C6A—H6A···S1A | 0.93 | 2.71 | 3.090 (8) | 105 |
C1B—H10A···Cg3iv | 0.96 | 2.89 | 3.623 (3) | 134 |
Symmetry codes: (i) −x+1, y+1/2, −z+2; (ii) x+1, y, z; (iii) −x+1, y−1/2, −z+2; (iv) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C9H9N3S |
Mr | 191.26 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 294 |
a, b, c (Å) | 10.792 (2), 7.3400 (15), 11.831 (2) |
β (°) | 96.15 (3) |
V (Å3) | 931.8 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.20 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.942, 0.971 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2190, 2190, 1620 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.638 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.162, 1.00 |
No. of reflections | 2190 |
No. of parameters | 237 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.27 |
Absolute structure | Flack (1983), 113 Friedel pairs |
Absolute structure parameter | 0.04 (18) |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N3A—H3A···N2Bi | 0.86 | 2.23 | 3.079 (8) | 167 |
N3A—H3B···N1Bii | 0.86 | 2.16 | 2.990 (6) | 162 |
N3B—H6B···N2Aiii | 0.86 | 2.22 | 3.006 (8) | 153 |
N3B—H6C···N1A | 0.86 | 2.23 | 3.035 (6) | 156 |
C6A—H6A···S1A | 0.93 | 2.71 | 3.090 (8) | 105 |
C1B—H10A···Cg3iv | 0.96 | 2.89 | 3.623 (3) | 134 |
Symmetry codes: (i) −x+1, y+1/2, −z+2; (ii) x+1, y, z; (iii) −x+1, y−1/2, −z+2; (iv) x, y−1, z. |
Acknowledgements
The authors thank Professor Hua-qin Wang of the Analysis Centre, Nanjing University, for carrying out the X-ray crystallographic analysis.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Han, F., Wan, R., Wu, W.-Y., Zhang, J.-J. & Wang, J.-T. (2007). Acta Cryst. E63, o717–o718. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201. CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996; Wang et al., 1999). These compounds are known to exhibit diverse biological effects, such as insecticidal and fungicidal activities (Wang et al., 1999). We are focused our synthetic and structural studies on 1,3,4 -thiadiazole derivatives and we have published the structure of 5-m -tolyl-1,3,4-thiadiazol-2-ylamine (Han et al., 2007). We report herein the crystal structure of the title compound.
The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1), in which the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. Rings A (C2A-C7A), B (S1A/N1A/N2A/C8A/C9A) and C (C2B-C7B), D (S1B/N1B/N2B/C8B/C9B) are, of course, planar, and they are oriented at dihedral angles of A/B = 32.25 (3) and C/D = 74.50 (3) °. The intramolecular C-H···S interaction (Table 1) results in the formation of a five-membered ring E (S1A/C6A-C8A/H6A) adopting envelope conformation with S1A atom displaced by 0.813 (3) Å from the plane of the other ring atoms.
In the crystal structure, intra- and intermolecular N-H···N hydrogen bonds (Table 1) link the molecules into chains along the a axis (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contact between the thiadiazole rings, Cg1—Cg2i [symmetry code: (i) x, 1 + y, -1 + z, where Cg1 and Cg2 are centroids of the rings B (S1A/N1A/N2A/C8A/C9A) and D (S1B/N1B/N2B/C8B/C9B), respectively] may further stabilize the structure, with centroid-centroid distance of 3.910 (3) Å. There also exists a weak C—H···π interaction (Table 1).