metal-organic compounds
Dibromido(2,9-dimethyl-1,10-phenanthroline-κ2N,N′)mercury(II)
aSchool of Chemistry, Damghan University of Basic Sciences, Damghan, Iran, bDepartment of Chemistry, University of Zabol, Zabol, Iran, and cIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran
*Correspondence e-mail: alizadeh@dubs.ac.ir
In the molecule of the title compound, [HgBr2(C14H12N2)], the HgII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from a 2,9-dimethyl-1,10-phenanthroline ligand and by two Br atoms. In the weak intermolecular C—H⋯Br hydrogen bonds link the molecules into chains along the b axis. There are π–π contacts between the phenanthroline rings [centroid–centroid distances = 3.806 (4), 3.819 (4), 3.739 (3), 3.690 (3), 3.619 (4) and 3.674 (3) Å].
Related literature
For related structures, see: Ahmadi et al. (2008); Craig et al. (1974); Hughes et al. (1985); Kalateh, Ebadi et al. (2008); Kalateh, Norouzi et al. (2008); Perlepes et al. (1995); Tadayon Pour et al. (2008); Xie et al. (2004); Yousefi et al. (2009); Yousefi, Rashidi Vahid et al. (2008); Yousefi, Tadayon Pour et al. (2008). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809009994/hk2645sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809009994/hk2645Isup2.hkl
For the preparation of the title compound, (I), a solution of 2,9-dimethyl-1,10-phenanthroline (0.25 g, 1.20 mmol) in methanol (10 ml) was added to a solution of HgBr2 (0.43 g, 1.20 mmol) in methanol (20 ml) at room temperature. Crystals suitable for X-ray analysis were obtained by methanol diffusion to a colorless solution in DMSO and isolated after one week (yield; 0.51 g, 74.7%).
H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[HgBr2(C14H12N2)] | F(000) = 1040 |
Mr = 568.65 | Dx = 2.452 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1005 reflections |
a = 7.8587 (7) Å | θ = 2.2–29.2° |
b = 10.5556 (8) Å | µ = 15.17 mm−1 |
c = 18.7304 (13) Å | T = 298 K |
β = 97.517 (6)° | Block, colorless |
V = 1540.4 (2) Å3 | 0.49 × 0.44 × 0.26 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 4161 independent reflections |
Radiation source: fine-focus sealed tube | 3006 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.093 |
ϕ and ω scans | θmax = 29.2°, θmin = 2.2° |
Absorption correction: numerical Shape of crystal determined optically | h = −10→10 |
Tmin = 0.008, Tmax = 0.022 | k = −13→14 |
11121 measured reflections | l = −19→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.068 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.183 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0825P)2 + 6.5584P] where P = (Fo2 + 2Fc2)/3 |
4161 reflections | (Δ/σ)max = 0.007 |
172 parameters | Δρmax = 1.23 e Å−3 |
0 restraints | Δρmin = −2.40 e Å−3 |
[HgBr2(C14H12N2)] | V = 1540.4 (2) Å3 |
Mr = 568.65 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.8587 (7) Å | µ = 15.17 mm−1 |
b = 10.5556 (8) Å | T = 298 K |
c = 18.7304 (13) Å | 0.49 × 0.44 × 0.26 mm |
β = 97.517 (6)° |
Bruker SMART CCD area-detector diffractometer | 4161 independent reflections |
Absorption correction: numerical Shape of crystal determined optically | 3006 reflections with I > 2σ(I) |
Tmin = 0.008, Tmax = 0.022 | Rint = 0.093 |
11121 measured reflections |
R[F2 > 2σ(F2)] = 0.068 | 0 restraints |
wR(F2) = 0.183 | H-atom parameters constrained |
S = 1.12 | Δρmax = 1.23 e Å−3 |
4161 reflections | Δρmin = −2.40 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.21080 (7) | 0.79014 (4) | 0.39095 (3) | 0.05349 (18) | |
Br1 | −0.0605 (2) | 0.8266 (2) | 0.30622 (9) | 0.0836 (5) | |
Br2 | 0.4351 (2) | 0.95948 (12) | 0.39430 (9) | 0.0783 (5) | |
N1 | 0.3074 (11) | 0.5823 (8) | 0.3777 (5) | 0.0424 (18) | |
N2 | 0.1876 (11) | 0.6779 (8) | 0.4970 (5) | 0.0376 (17) | |
C1 | 0.376 (3) | 0.6301 (15) | 0.2566 (8) | 0.086 (5) | |
H1A | 0.4518 | 0.6985 | 0.2730 | 0.103* | |
H1B | 0.2641 | 0.6632 | 0.2400 | 0.103* | |
H1C | 0.4200 | 0.5866 | 0.2179 | 0.103* | |
C2 | 0.3645 (15) | 0.5411 (10) | 0.3164 (5) | 0.043 (2) | |
C3 | 0.4185 (17) | 0.4150 (11) | 0.3120 (7) | 0.056 (3) | |
H3 | 0.4595 | 0.3857 | 0.2706 | 0.067* | |
C4 | 0.4101 (14) | 0.3354 (11) | 0.3692 (7) | 0.052 (3) | |
H4 | 0.4445 | 0.2515 | 0.3659 | 0.062* | |
C5 | 0.3508 (12) | 0.3775 (9) | 0.4323 (6) | 0.040 (2) | |
C6 | 0.3390 (15) | 0.2991 (10) | 0.4931 (8) | 0.054 (3) | |
H6 | 0.3745 | 0.2151 | 0.4925 | 0.065* | |
C7 | 0.2778 (17) | 0.3444 (11) | 0.5512 (8) | 0.059 (3) | |
H7 | 0.2710 | 0.2909 | 0.5901 | 0.071* | |
C8 | 0.2221 (14) | 0.4732 (10) | 0.5553 (6) | 0.045 (2) | |
C9 | 0.1555 (16) | 0.5221 (12) | 0.6139 (6) | 0.052 (3) | |
H9 | 0.1428 | 0.4704 | 0.6531 | 0.063* | |
C10 | 0.1082 (17) | 0.6457 (15) | 0.6147 (7) | 0.060 (3) | |
H10 | 0.0646 | 0.6789 | 0.6546 | 0.072* | |
C11 | 0.1255 (15) | 0.7242 (11) | 0.5544 (6) | 0.049 (2) | |
C12 | 0.078 (2) | 0.8630 (13) | 0.5530 (8) | 0.068 (4) | |
H12A | −0.0089 | 0.8790 | 0.5129 | 0.081* | |
H12B | 0.1773 | 0.9133 | 0.5483 | 0.081* | |
H12C | 0.0340 | 0.8847 | 0.5970 | 0.081* | |
C13 | 0.2361 (12) | 0.5538 (9) | 0.4964 (5) | 0.0353 (18) | |
C14 | 0.2975 (11) | 0.5055 (9) | 0.4335 (6) | 0.038 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.0797 (3) | 0.0314 (2) | 0.0497 (3) | 0.00853 (18) | 0.0099 (2) | 0.00815 (17) |
Br1 | 0.0775 (9) | 0.1107 (13) | 0.0618 (9) | 0.0161 (9) | 0.0063 (7) | 0.0348 (9) |
Br2 | 0.1172 (12) | 0.0377 (6) | 0.0795 (10) | −0.0148 (7) | 0.0114 (9) | 0.0107 (6) |
N1 | 0.059 (5) | 0.029 (4) | 0.039 (4) | −0.004 (3) | 0.002 (4) | −0.004 (3) |
N2 | 0.046 (4) | 0.034 (4) | 0.033 (4) | 0.002 (3) | 0.005 (3) | 0.001 (3) |
C1 | 0.148 (16) | 0.056 (8) | 0.059 (9) | 0.013 (9) | 0.030 (10) | −0.006 (7) |
C2 | 0.062 (6) | 0.038 (5) | 0.029 (5) | 0.000 (4) | 0.003 (4) | −0.005 (4) |
C3 | 0.080 (8) | 0.040 (6) | 0.050 (6) | 0.001 (5) | 0.016 (6) | −0.015 (5) |
C4 | 0.046 (6) | 0.034 (5) | 0.074 (8) | 0.005 (4) | 0.004 (5) | −0.007 (5) |
C5 | 0.037 (5) | 0.031 (4) | 0.050 (6) | 0.002 (4) | −0.005 (4) | 0.001 (4) |
C6 | 0.055 (6) | 0.034 (5) | 0.071 (8) | 0.006 (4) | −0.001 (6) | 0.015 (5) |
C7 | 0.073 (8) | 0.036 (6) | 0.064 (8) | −0.006 (5) | −0.002 (6) | 0.023 (5) |
C8 | 0.050 (6) | 0.041 (5) | 0.041 (5) | −0.010 (4) | −0.002 (4) | 0.013 (4) |
C9 | 0.064 (7) | 0.052 (6) | 0.039 (6) | −0.008 (5) | 0.000 (5) | 0.007 (5) |
C10 | 0.059 (7) | 0.078 (9) | 0.045 (6) | −0.015 (6) | 0.020 (5) | −0.013 (6) |
C11 | 0.057 (6) | 0.045 (6) | 0.043 (6) | 0.001 (5) | 0.001 (5) | −0.002 (4) |
C12 | 0.102 (11) | 0.048 (7) | 0.055 (7) | 0.008 (7) | 0.014 (7) | −0.008 (6) |
C13 | 0.036 (4) | 0.032 (4) | 0.037 (5) | −0.003 (3) | −0.001 (4) | 0.006 (4) |
C14 | 0.031 (4) | 0.035 (4) | 0.045 (5) | −0.001 (3) | −0.005 (4) | 0.005 (4) |
Hg1—Br2 | 2.5053 (16) | C6—H6 | 0.9300 |
Hg1—Br1 | 2.5156 (17) | C7—C8 | 1.433 (16) |
N1—Hg1 | 2.345 (8) | C7—H7 | 0.9300 |
N2—Hg1 | 2.340 (8) | C8—C9 | 1.377 (17) |
C1—C2 | 1.474 (19) | C8—C13 | 1.409 (13) |
C1—H1A | 0.9600 | C9—C10 | 1.36 (2) |
C1—H1B | 0.9600 | C9—H9 | 0.9300 |
C1—H1C | 0.9600 | C10—C11 | 1.422 (18) |
C2—N1 | 1.359 (13) | C10—H10 | 0.9300 |
C2—C3 | 1.403 (15) | C11—N2 | 1.330 (14) |
C3—C4 | 1.370 (18) | C11—C12 | 1.512 (18) |
C3—H3 | 0.9300 | C12—H12A | 0.9600 |
C4—C5 | 1.400 (17) | C12—H12B | 0.9600 |
C4—H4 | 0.9300 | C12—H12C | 0.9600 |
C5—C14 | 1.416 (13) | C13—N2 | 1.365 (12) |
C5—C6 | 1.421 (16) | C13—C14 | 1.425 (15) |
C6—C7 | 1.33 (2) | C14—N1 | 1.333 (13) |
Br2—Hg1—Br1 | 116.23 (6) | C7—C6—C5 | 120.9 (10) |
N1—Hg1—Br1 | 109.6 (2) | C7—C6—H6 | 119.6 |
N1—Hg1—Br2 | 115.7 (2) | C5—C6—H6 | 119.6 |
N2—Hg1—Br1 | 117.3 (2) | C6—C7—C8 | 122.0 (11) |
N2—Hg1—Br2 | 118.2 (2) | C6—C7—H7 | 119.0 |
N2—Hg1—N1 | 71.2 (3) | C8—C7—H7 | 119.0 |
C14—N1—C2 | 121.8 (9) | C9—C8—C13 | 118.3 (10) |
C14—N1—Hg1 | 115.7 (7) | C9—C8—C7 | 123.4 (11) |
C2—N1—Hg1 | 122.5 (7) | C13—C8—C7 | 118.4 (11) |
C11—N2—C13 | 119.4 (9) | C10—C9—C8 | 120.2 (11) |
C11—N2—Hg1 | 125.3 (7) | C10—C9—H9 | 119.9 |
C13—N2—Hg1 | 115.2 (6) | C8—C9—H9 | 119.9 |
C2—C1—H1A | 109.5 | C9—C10—C11 | 119.8 (12) |
C2—C1—H1B | 109.5 | C9—C10—H10 | 120.1 |
H1A—C1—H1B | 109.5 | C11—C10—H10 | 120.1 |
C2—C1—H1C | 109.5 | N2—C11—C10 | 120.8 (11) |
H1A—C1—H1C | 109.5 | N2—C11—C12 | 117.3 (11) |
H1B—C1—H1C | 109.5 | C10—C11—C12 | 121.9 (11) |
N1—C2—C3 | 119.4 (10) | C11—C12—H12A | 109.5 |
N1—C2—C1 | 119.9 (10) | C11—C12—H12B | 109.5 |
C3—C2—C1 | 120.7 (11) | H12A—C12—H12B | 109.5 |
C4—C3—C2 | 119.3 (11) | C11—C12—H12C | 109.5 |
C4—C3—H3 | 120.3 | H12A—C12—H12C | 109.5 |
C2—C3—H3 | 120.3 | H12B—C12—H12C | 109.5 |
C3—C4—C5 | 121.5 (10) | N2—C13—C8 | 121.5 (10) |
C3—C4—H4 | 119.3 | N2—C13—C14 | 118.4 (8) |
C5—C4—H4 | 119.3 | C8—C13—C14 | 120.1 (9) |
C4—C5—C14 | 116.7 (10) | N1—C14—C5 | 121.3 (10) |
C4—C5—C6 | 123.8 (10) | N1—C14—C13 | 119.4 (9) |
C14—C5—C6 | 119.5 (10) | C5—C14—C13 | 119.2 (9) |
N1—C2—C3—C4 | 1.0 (18) | C13—C14—N1—C2 | −179.8 (9) |
C1—C2—C3—C4 | 178.4 (13) | C5—C14—N1—Hg1 | 179.7 (7) |
C2—C3—C4—C5 | −0.8 (19) | C13—C14—N1—Hg1 | −2.0 (11) |
C3—C4—C5—C14 | 1.0 (16) | C3—C2—N1—C14 | −1.6 (16) |
C3—C4—C5—C6 | 179.8 (11) | C1—C2—N1—C14 | −178.9 (12) |
C4—C5—C6—C7 | −178.5 (11) | C3—C2—N1—Hg1 | −179.2 (9) |
C14—C5—C6—C7 | 0.3 (17) | C1—C2—N1—Hg1 | 3.4 (16) |
C5—C6—C7—C8 | −0.3 (19) | C10—C11—N2—C13 | −0.4 (16) |
C6—C7—C8—C9 | 178.8 (12) | C12—C11—N2—C13 | 178.6 (10) |
C6—C7—C8—C13 | −1.1 (18) | C10—C11—N2—Hg1 | 176.5 (8) |
C13—C8—C9—C10 | −1.3 (17) | C12—C11—N2—Hg1 | −4.5 (15) |
C7—C8—C9—C10 | 178.8 (12) | C8—C13—N2—C11 | 0.0 (15) |
C8—C9—C10—C11 | 0.9 (19) | C14—C13—N2—C11 | 178.2 (9) |
C9—C10—C11—N2 | 0.0 (19) | C8—C13—N2—Hg1 | −177.2 (7) |
C9—C10—C11—C12 | −178.9 (12) | C14—C13—N2—Hg1 | 1.0 (11) |
C9—C8—C13—N2 | 0.9 (15) | C11—N2—Hg1—N1 | −178.4 (9) |
C7—C8—C13—N2 | −179.2 (10) | C13—N2—Hg1—N1 | −1.4 (6) |
C9—C8—C13—C14 | −177.3 (9) | C11—N2—Hg1—Br2 | 71.9 (9) |
C7—C8—C13—C14 | 2.6 (15) | C13—N2—Hg1—Br2 | −111.1 (6) |
C4—C5—C14—N1 | −1.6 (14) | C11—N2—Hg1—Br1 | −75.5 (9) |
C6—C5—C14—N1 | 179.6 (9) | C13—N2—Hg1—Br1 | 101.6 (6) |
C4—C5—C14—C13 | −179.9 (9) | C14—N1—Hg1—N2 | 1.7 (7) |
C6—C5—C14—C13 | 1.2 (14) | C2—N1—Hg1—N2 | 179.6 (9) |
N2—C13—C14—N1 | 0.7 (14) | C14—N1—Hg1—Br2 | 114.7 (7) |
C8—C13—C14—N1 | 178.9 (9) | C2—N1—Hg1—Br2 | −67.5 (8) |
N2—C13—C14—C5 | 179.1 (8) | C14—N1—Hg1—Br1 | −111.4 (7) |
C8—C13—C14—C5 | −2.7 (14) | C2—N1—Hg1—Br1 | 66.4 (8) |
C5—C14—N1—C2 | 1.9 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1C···Br2i | 0.96 | 2.85 | 3.812 (18) | 178 |
Symmetry code: (i) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [HgBr2(C14H12N2)] |
Mr | 568.65 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 7.8587 (7), 10.5556 (8), 18.7304 (13) |
β (°) | 97.517 (6) |
V (Å3) | 1540.4 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 15.17 |
Crystal size (mm) | 0.49 × 0.44 × 0.26 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Numerical Shape of crystal determined optically |
Tmin, Tmax | 0.008, 0.022 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11121, 4161, 3006 |
Rint | 0.093 |
(sin θ/λ)max (Å−1) | 0.687 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.068, 0.183, 1.12 |
No. of reflections | 4161 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.23, −2.40 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Hg1—Br2 | 2.5053 (16) | N1—Hg1 | 2.345 (8) |
Hg1—Br1 | 2.5156 (17) | N2—Hg1 | 2.340 (8) |
Br2—Hg1—Br1 | 116.23 (6) | N2—Hg1—Br1 | 117.3 (2) |
N1—Hg1—Br1 | 109.6 (2) | N2—Hg1—Br2 | 118.2 (2) |
N1—Hg1—Br2 | 115.7 (2) | N2—Hg1—N1 | 71.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1C···Br2i | 0.96 | 2.85 | 3.812 (18) | 178.00 |
Symmetry code: (i) −x+1, y−1/2, −z+1/2. |
Acknowledgements
We are grateful to Damghan University of Basic Sciences for financial support.
References
Ahmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008). Acta Cryst. E64, m1407. Web of Science CSD CrossRef IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Craig, D. C., Farhangi, Y., Graddon, D. P. & Stephenson, N. C. (1974). Cryst. Struct. Commun. 3, 155–158. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hughes, C. M., Favas, M. C., Skelton, B. W. & White, A. H. (1985). Aust. J. Chem. 38, 1521–1527. CSD CrossRef CAS Google Scholar
Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kalateh, K., Norouzi, A., Ebadi, A., Ahmadi, R. & Amani, V. (2008). Acta Cryst. E64, m1583–m1584. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Perlepes, S. P., Kasselouri, S., Garoufis, A., Lutz, F., Bau, R. & Hadjiliadis, N. (1995). Polyhedron, 14, 1461–1470. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xie, Y., Ni, J., Jiang, H. & Liu, Q. (2004). J. Mol. Struct. 687, 73–78. Web of Science CSD CrossRef CAS Google Scholar
Yousefi, M., Allahgholi Ghasri, M. R., Heidari, A. & Amani, V. (2009). Acta Cryst. E65, m9–m10. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yousefi, M., Rashidi Vahid, R., Amani, V., Arab Chamjangali, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m1339–m1340. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
There are several HgII complexes, with formula, [Hg(N—N)X2], (X=Br, Cl and I), such as [Hg(TPA)Br2], (II), (Xie et al., 2004), [Hg(TPD)Br2], (III), (Hughes et al., 1985), [Hg(NH(py)2)Br2], (IV), (Kalateh, Norouzi et al., 2008), [Hg(6-mbpy)Cl2], (V), (Ahmadi et al., 2008), [Hg(NH(py)2)Cl2], (VI), (Yousefi, Allahgholi Ghasri et al., 2009), [Hg(4,4'-dmbpy)I2], (VII), (Yousefi, Tadayon Pour et al., 2008), [Hg(5,5'-dmbpy)I2], (VIII), (Tadayon Pour et al., 2008) and [Hg(dmphen)I2], (IX), (Yousefi, Rashidi Vahid et al., 2008) [where TPA is tris(2-pyridyl)amine, TPD is N,N,N',N'-Tetramethyl-o-phenylenediamine, NH(py)2 is di-2-pyridylamine, 6-mbpy is 6-methyl-2,2'-bipyridine, 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine and dmphen is 4,7-diphenyl-1,10-phenanthroline] have been synthesized and characterized by single-crystal X-ray diffraction methods.
There are also several HgII dimer complexes, with formula, [{HgBr(N—N)}2(µ-Br)2], such as [{HgBr(bipy)}2(µ-Br)2], (X), (Craig et al., 1974),[{HgBr(pquin)}2(µ-Br)2], (XI), (Perlepes et al., 1995) and [{HgBr(4,4'-dmbpy)}2(µ-Br)2], (XII), (Kalateh, Ebadi et al., 2008) [where bipy is 2,2'-bipyridine and pquin is 2-(2'-pyridyl)quinoxaline] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).
In the title compound, (Fig. 1), the HgII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from 2,9-dimethyl-1,10-phenanthroline and by two Br atoms. The Hg-Br and Hg-N bond lengths (Allen et al., 1987) and angles (Table 1) are within normal ranges, and comparable with the corresponding values in (II) and (III).
In the crystal structure, weak intermolecular C-H···Br hydrogen bonds (Table 2) link the molecules into chains along the b-axis, in which they may be effective in the stabilization of the crystal structure (Fig. 2). The π-π contacts between the phenanthroline rings, Cg3···Cg2i, Cg3···Cg3ii, Cg4···Cg1i, Cg4···Cg2i, Cg4···Cg3ii and Cg4···Cg4i [symmetry codes: (i) 1 - x, -y, -z; (ii) 2 - x, -y, -z, where Cg1, Cg2, Cg3 and Cg4 are centroids of the rings A (Hg1/N1/N2/C13/C14), B (N1/C2-C5/C14), C (N2/C8-C11/C13) and D (C5-C8/C13/C14), respectively] may further stabilize the structure, with centroid-centroid distances of 3.806 (4), 3.819 (4), 3.739 (3), 3.690 (3), 3.619 (4) and 3.674 (3) Å, respectively.