metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m597-m598

[μ-N,N,N′,N′-Tetra­kis(di­phenyl­phosphino­meth­yl)benzene-1,4-di­amine-κ4P,P′:P′′,P′′′]bis­­[bis­­(nitrato-κO)palladium(II)]

aSchool of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: wang1_xj@yahoo.com.cn

(Received 26 March 2009; accepted 22 April 2009; online 30 April 2009)

The asymmetric unit of the title complex, [Pd2(NO3)4(C58H52N2P4)], contains one half-mol­ecule, in which the central benzene ring is located on a crystallographic centre of inversion. The Pd atom has a distorted square-planar coordination consisting of two P and two O atoms. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into chains, and ππ contacts between the phenyl rings [centroid–centroid distance = 3.928 (3) Å] may further stabilize the structure.

Related literature

For related structures, see: Aucott et al. (2002[Aucott, S. M., Slawin, A. M. Z. & Woollins, J. D. (2002). Eur. J. Inorg. Chem. pp. 2408-2418.]); Ganesamoorthy et al. (2008[Ganesamoorthy, C., Balakrishna, M. S., Mague, J. T. & Tuononen, H. M. (2008). Inorg. Chem. 47 7035-7047.]); Wang et al. (2008[Wang, X.-J., Gui, L.-C., Ni, Q.-L., Liao, Y.-F., Jiang, X.-F., Tang, L.-H., Zhang, Z. & Wu, Q. (2008). CrystEngComm, 10, 1003-1010.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd2(NO3)4(C58H52N2P4)]

  • Mr = 1361.74

  • Monoclinic, P 21 /n

  • a = 8.0715 (2) Å

  • b = 21.3419 (7) Å

  • c = 16.0283 (5) Å

  • β = 92.937 (3)°

  • V = 2757.43 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 294 K

  • 0.40 × 0.15 × 0.15 mm

Data collection
  • Oxford Diffraction Gemini S Untra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.773, Tmax = 0.882

  • 13871 measured reflections

  • 6838 independent reflections

  • 3511 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.072

  • S = 0.80

  • 6838 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—P1 2.2198 (7)
Pd1—P2 2.2087 (9)
Pd1—O3 2.144 (2)
Pd1—O6 2.1377 (17)
P2—Pd1—P1 92.34 (3)
O3—Pd1—P1 89.72 (5)
O3—Pd1—P2 177.92 (5)
O3—Pd1—O6 91.77 (8)
O6—Pd1—P1 173.04 (6)
O6—Pd1—P2 86.15 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯O5i 0.97 2.31 3.248 (3) 163
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The potential applications as catalysts of palladium(II) complexes, containing phosphine ligands, had been extensively studied so far. A lot of analogs were reported (Aucott et al., 2002; Ganesamoorthy et al., 2008; Wang et al., 2008), and some of them are catalytically active in homogeneous hydrogenations and in other organic reactions. We report herein the crystal structure of the title complex.

The asymmetric unit of the title complex contains one-half molecule (Fig. 1), in which the central benzene ring is located on a crystallographic centre of inversion. The Pd atom is in a distorted square-planar coordination by two P and two O atoms. The Pd-P and Pd-O bond lengths (Allen et al., 1987) and angles (Table 1) are within normal ranges. Rings A (C5-C10), B (C11-C16), C (C18-C23) and D (C24-C29) are, of course, planar and they are oriented at dihedral angles of A/B = 64.08 (3), A/C = 17.77 (3), A/D = 78.70 (3), B/C = 64.54 (3) and B/D = 27.80 (3) °. Ring E (Pd1/P1/P2/N1/C4/C17) is not planar, having total puckering amplitude, QT, of 2.670 (2) Å and twisted conformation [ϕ = -88.23 (3) and θ = 100.40 (3) °] (Cremer & Pople, 1975).

In the crystal structure, intermolecular C-H···O interactions (Table 2) link the molecules into chains, in which they may be effective in the stabilization of the structure. The ππ contact between the phenyl rings, Cg2—Cg4i [symmetry code: (i) 1/2 + x, 1/2 - y, z + 1/2, where Cg2 and Cg4 are centroids of the rings B (C11-C16) and D (C24-C29), respectively] may further stabilize the structure, with centroid-centroid distance of 3.928 (3) Å.

Related literature top

For related structures, see: Aucott et al. (2002); Ganesamoorthy et al. (2008); Wang et al. (2008). For bond-length data, see: Allen et al. (1987). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

For the preparation of the title complex, PdCl2(0.0350 g, 0.2 mmol) in CH3CN (10 ml) was stirred at 348-353 K for 4 h, until the solid palladium salt was dissolved completely to give a yellow solution. Then, the liquor was cooled to about 277 K for a few hours, and the yellow precipitate, Pd(CH3CN)2Cl2, was collected by filtration. Then, Pd(CH3CN)2Cl2 (0.0265 g, 0.1 mmol) in CH3CN (5 ml) was stirred at room temperature for 20 min, and AgNO3 (0.0345 g, 0.2 mmol) in DMF (5 ml) was added dropwise with stirring. A pale precipitate of AgCl formed and the solution was filtered, The phosphine ligand, (L), (0.0450 g, 0.05 mmol) was added until the color of solution turned to red, and then the stirring is continued for 2 h. After filtration, diffusion of diethyl ether at room temperature into the solution the yellow crystals of the title complex, [Pd2(L)(NO3)4], were obtained.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme [symmetry code ('): -x, -y, -z].
[µ-N,N,N',N'-Tetrakis(diphenylphosphinomethyl)benzene- 1,4-diamine-κ4P/i>,P/i>':P/i>'',P/i>''']bis[bis(nitrato- κO)palladium(II)] top
Crystal data top
[Pd2(NO3)4(C58H52N2P4)]F(000) = 1380
Mr = 1361.74Dx = 1.640 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4249 reflections
a = 8.0715 (2) Åθ = 11.3–28.6°
b = 21.3419 (7) ŵ = 0.84 mm1
c = 16.0283 (5) ÅT = 294 K
β = 92.937 (3)°Block, yellow
V = 2757.43 (14) Å30.4 × 0.15 × 0.15 mm
Z = 2
Data collection top
Gemini S Untra
diffractometer
6838 independent reflections
Radiation source: Enhance (Mo) X-ray Source3511 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 16.0855 pixels mm-1θmax = 30.2°, θmin = 2.8°
ω scansh = 119
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 2827
Tmin = 0.773, Tmax = 0.882l = 2221
13871 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 0.80 w = 1/[σ2(Fo2) + (0.0313P)2]
where P = (Fo2 + 2Fc2)/3
6838 reflections(Δ/σ)max = 0.004
370 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Pd2(NO3)4(C58H52N2P4)]V = 2757.43 (14) Å3
Mr = 1361.74Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.0715 (2) ŵ = 0.84 mm1
b = 21.3419 (7) ÅT = 294 K
c = 16.0283 (5) Å0.4 × 0.15 × 0.15 mm
β = 92.937 (3)°
Data collection top
Gemini S Untra
diffractometer
6838 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
3511 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.882Rint = 0.035
13871 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 0.80Δρmax = 1.04 e Å3
6838 reflectionsΔρmin = 0.37 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd11.39486 (3)1.789182 (12)0.214196 (13)0.02504 (8)
P11.22599 (9)1.78487 (4)0.10059 (4)0.02366 (18)
P21.30017 (9)1.88209 (4)0.24940 (5)0.02471 (19)
O11.4811 (3)1.60188 (12)0.22173 (15)0.0613 (8)
O21.3721 (3)1.67330 (12)0.29761 (14)0.0461 (6)
O31.4938 (2)1.69934 (10)0.18353 (12)0.0311 (5)
O41.8332 (3)1.83114 (12)0.33338 (14)0.0518 (7)
O51.7301 (3)1.81444 (13)0.20792 (14)0.0486 (7)
O61.5755 (2)1.80091 (10)0.31524 (11)0.0298 (5)
N11.0910 (3)1.90013 (12)0.11125 (14)0.0271 (6)
N21.4459 (3)1.65651 (15)0.23480 (18)0.0391 (7)
N31.7185 (3)1.81587 (13)0.28399 (18)0.0372 (7)
C10.9830 (3)1.93941 (14)0.02623 (17)0.0299 (8)
H1A0.97291.89850.04570.036*
C21.0433 (3)1.94993 (14)0.05573 (16)0.0240 (7)
C31.0617 (3)2.01198 (14)0.07878 (18)0.0286 (8)
H3A1.10612.02120.13200.034*
C41.0437 (3)1.83578 (14)0.09201 (17)0.0264 (7)
H4A0.99361.83350.03580.032*
H4B0.96241.82170.13040.032*
C51.3384 (3)1.80561 (14)0.00986 (17)0.0264 (7)
C61.5000 (4)1.82739 (15)0.0189 (2)0.0352 (8)
H6A1.55271.83040.07170.042*
C71.5828 (4)1.84462 (17)0.0511 (2)0.0417 (9)
H7A1.69161.85890.04510.050*
C81.5067 (4)1.84081 (16)0.1282 (2)0.0390 (8)
H8A1.56371.85230.17480.047*
C91.3461 (4)1.82008 (16)0.1380 (2)0.0378 (9)
H9A1.29451.81800.19110.045*
C101.2609 (4)1.80238 (15)0.06993 (18)0.0321 (8)
H10A1.15201.78830.07690.039*
C111.1447 (3)1.70636 (15)0.08770 (17)0.0249 (7)
C121.2026 (4)1.66574 (15)0.02931 (19)0.0305 (8)
H12A1.27941.67930.00810.037*
C131.1461 (5)1.60480 (16)0.0265 (2)0.0422 (9)
H13A1.18481.57740.01320.051*
C141.0363 (4)1.58451 (16)0.0802 (2)0.0438 (9)
H14A0.99991.54320.07760.053*
C150.9767 (5)1.62465 (18)0.1396 (2)0.0497 (10)
H15A0.89981.61040.17650.060*
C161.0314 (4)1.68549 (16)0.1437 (2)0.0387 (9)
H16A0.99281.71260.18390.046*
C171.1050 (3)1.91098 (15)0.20009 (16)0.0267 (7)
H17A1.01311.89060.22580.032*
H17B1.09631.95560.21050.032*
C181.4595 (4)1.93885 (15)0.23045 (18)0.0279 (7)
C191.4731 (4)1.96391 (15)0.15109 (19)0.0353 (8)
H19A1.39391.95450.10880.042*
C201.6040 (4)2.00260 (17)0.1352 (2)0.0411 (9)
H20A1.61232.01960.08220.049*
C211.7229 (4)2.01633 (16)0.1973 (2)0.0404 (9)
H21A1.81052.04290.18630.048*
C221.7118 (4)1.99062 (17)0.2755 (2)0.0398 (9)
H22A1.79261.99950.31720.048*
C231.5816 (4)1.95192 (15)0.29200 (19)0.0348 (8)
H23A1.57521.93440.34480.042*
C241.2525 (3)1.88447 (15)0.35784 (17)0.0258 (7)
C251.2340 (4)1.83006 (16)0.40314 (18)0.0320 (8)
H25A1.26171.79170.38020.038*
C261.1751 (4)1.83253 (18)0.4817 (2)0.0410 (9)
H26A1.16231.79570.51170.049*
C271.1346 (4)1.8891 (2)0.5166 (2)0.0490 (10)
H27A1.09321.89030.56960.059*
C281.1551 (4)1.9432 (2)0.4734 (2)0.0479 (10)
H28A1.13011.98140.49760.058*
C291.2133 (4)1.94164 (17)0.39349 (19)0.0374 (8)
H29A1.22601.97870.36390.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02445 (13)0.02725 (13)0.02345 (13)0.00320 (13)0.00145 (9)0.00167 (13)
P10.0258 (4)0.0238 (4)0.0215 (4)0.0005 (4)0.0019 (3)0.0011 (4)
P20.0240 (4)0.0260 (5)0.0242 (4)0.0002 (4)0.0017 (3)0.0016 (4)
O10.092 (2)0.0341 (16)0.0588 (17)0.0263 (16)0.0099 (14)0.0110 (14)
O20.0473 (15)0.0508 (17)0.0411 (15)0.0053 (13)0.0123 (12)0.0066 (13)
O30.0336 (12)0.0306 (13)0.0294 (12)0.0073 (11)0.0068 (9)0.0021 (11)
O40.0329 (14)0.0729 (19)0.0481 (15)0.0094 (14)0.0126 (11)0.0088 (14)
O50.0395 (14)0.078 (2)0.0293 (13)0.0059 (14)0.0083 (10)0.0091 (13)
O60.0195 (11)0.0434 (15)0.0266 (11)0.0012 (11)0.0019 (8)0.0020 (10)
N10.0311 (15)0.0222 (14)0.0275 (14)0.0011 (13)0.0017 (11)0.0015 (12)
N20.0383 (17)0.044 (2)0.0356 (18)0.0165 (16)0.0058 (13)0.0134 (17)
N30.0301 (17)0.0392 (17)0.0421 (18)0.0000 (14)0.0012 (14)0.0075 (15)
C10.0334 (18)0.0218 (17)0.0339 (18)0.0022 (15)0.0028 (14)0.0037 (15)
C20.0243 (17)0.0253 (17)0.0226 (17)0.0047 (15)0.0042 (13)0.0035 (15)
C30.0331 (18)0.0288 (19)0.0235 (16)0.0015 (16)0.0044 (13)0.0022 (15)
C40.0241 (17)0.0296 (18)0.0258 (17)0.0001 (15)0.0036 (13)0.0042 (15)
C50.0266 (17)0.0259 (18)0.0268 (17)0.0001 (14)0.0038 (13)0.0016 (14)
C60.035 (2)0.035 (2)0.0363 (19)0.0006 (18)0.0026 (15)0.0065 (17)
C70.035 (2)0.050 (2)0.040 (2)0.0088 (19)0.0065 (16)0.0088 (19)
C80.042 (2)0.044 (2)0.0331 (19)0.0032 (19)0.0169 (15)0.0040 (17)
C90.048 (2)0.034 (2)0.0313 (19)0.0001 (19)0.0014 (16)0.0023 (17)
C100.0289 (17)0.036 (2)0.0320 (18)0.0045 (16)0.0041 (14)0.0015 (16)
C110.0276 (17)0.0246 (17)0.0222 (15)0.0014 (16)0.0017 (13)0.0026 (16)
C120.0293 (18)0.0280 (19)0.0346 (18)0.0013 (16)0.0043 (14)0.0048 (17)
C130.063 (3)0.024 (2)0.039 (2)0.0072 (19)0.0000 (18)0.0046 (18)
C140.064 (3)0.0213 (19)0.045 (2)0.0073 (19)0.0067 (19)0.0044 (18)
C150.066 (3)0.043 (2)0.042 (2)0.018 (2)0.0138 (18)0.008 (2)
C160.049 (2)0.032 (2)0.035 (2)0.0066 (18)0.0085 (16)0.0010 (17)
C170.0216 (16)0.0277 (18)0.0310 (18)0.0059 (15)0.0035 (13)0.0050 (15)
C180.0253 (17)0.0257 (18)0.0328 (18)0.0046 (15)0.0016 (13)0.0034 (15)
C190.0320 (19)0.033 (2)0.041 (2)0.0028 (17)0.0057 (15)0.0012 (17)
C200.038 (2)0.041 (2)0.045 (2)0.0015 (19)0.0106 (16)0.0052 (18)
C210.037 (2)0.029 (2)0.056 (2)0.0055 (17)0.0153 (17)0.0056 (19)
C220.0274 (19)0.039 (2)0.054 (2)0.0034 (17)0.0044 (15)0.0153 (19)
C230.040 (2)0.034 (2)0.0301 (18)0.0011 (17)0.0053 (15)0.0023 (17)
C240.0182 (16)0.0330 (19)0.0260 (16)0.0040 (15)0.0005 (12)0.0046 (16)
C250.0304 (18)0.039 (2)0.0266 (18)0.0057 (17)0.0020 (14)0.0024 (17)
C260.042 (2)0.048 (3)0.032 (2)0.017 (2)0.0028 (16)0.0041 (19)
C270.044 (2)0.072 (3)0.032 (2)0.018 (2)0.0144 (16)0.014 (2)
C280.044 (2)0.055 (3)0.046 (2)0.002 (2)0.0145 (17)0.013 (2)
C290.038 (2)0.039 (2)0.036 (2)0.0014 (18)0.0014 (15)0.0011 (18)
Geometric parameters (Å, º) top
Pd1—P12.2198 (7)C10—H10A0.9300
Pd1—P22.2087 (9)C11—C121.375 (4)
Pd1—O32.144 (2)C11—C161.388 (4)
Pd1—O62.1377 (17)C12—C131.378 (4)
P1—C41.829 (3)C12—H12A0.9300
P1—C51.808 (3)C13—C141.338 (5)
P1—C111.807 (3)C13—H13A0.9300
P2—C171.833 (3)C14—C151.385 (5)
P2—C181.803 (3)C14—H14A0.9300
P2—C241.800 (3)C15—C161.372 (5)
O1—N21.221 (4)C15—H15A0.9300
O2—N21.248 (3)C16—H16A0.9300
O3—N21.301 (3)C17—H17A0.9700
O4—N31.231 (3)C17—H17B0.9700
O5—N31.228 (3)C18—C191.389 (4)
O6—N31.320 (3)C18—C231.387 (4)
N1—C21.426 (3)C19—C201.375 (4)
N1—C41.454 (4)C19—H19A0.9300
N1—C171.441 (3)C20—C211.378 (4)
C1—C21.396 (4)C20—H20A0.9300
C1—C3i1.373 (4)C21—C221.376 (4)
C1—H1A0.9300C21—H21A0.9300
C2—C31.381 (4)C22—C231.373 (4)
C3—C1i1.373 (4)C22—H22A0.9300
C3—H3A0.9300C23—H23A0.9300
C4—H4A0.9700C24—C251.381 (4)
C4—H4B0.9700C24—C291.391 (4)
C5—C61.386 (4)C25—C261.370 (4)
C5—C101.396 (4)C25—H25A0.9300
C6—C71.384 (4)C26—C271.376 (5)
C6—H6A0.9300C26—H26A0.9300
C7—C81.354 (4)C27—C281.360 (5)
C7—H7A0.9300C27—H27A0.9300
C8—C91.371 (4)C28—C291.387 (4)
C8—H8A0.9300C28—H28A0.9300
C9—C101.372 (4)C29—H29A0.9300
C9—H9A0.9300
P2—Pd1—P192.34 (3)C9—C10—H10A120.2
O3—Pd1—P189.72 (5)C12—C11—P1121.9 (2)
O3—Pd1—P2177.92 (5)C12—C11—C16119.8 (3)
O3—Pd1—O691.77 (8)C16—C11—P1118.1 (2)
O6—Pd1—P1173.04 (6)C11—C12—C13119.6 (3)
O6—Pd1—P286.15 (6)C11—C12—H12A120.2
C4—P1—Pd1119.67 (10)C13—C12—H12A120.2
C5—P1—Pd1109.72 (9)C12—C13—H13A119.5
C5—P1—C4103.24 (13)C14—C13—C12120.9 (3)
C11—P1—Pd1109.65 (9)C14—C13—H13A119.5
C11—P1—C4104.84 (13)C13—C14—C15120.4 (3)
C11—P1—C5109.21 (14)C13—C14—H14A119.8
C17—P2—Pd1119.53 (10)C15—C14—H14A119.8
C18—P2—Pd1107.51 (10)C14—C15—H15A120.1
C18—P2—C17107.81 (14)C16—C15—C14119.8 (3)
C24—P2—Pd1111.46 (11)C16—C15—H15A120.1
C24—P2—C17100.67 (13)C11—C16—H16A120.2
C24—P2—C18109.47 (14)C15—C16—C11119.6 (3)
N2—O3—Pd1110.94 (18)C15—C16—H16A120.2
N3—O6—Pd1108.45 (16)P2—C17—H17A108.9
C2—N1—C4120.8 (2)P2—C17—H17B108.9
C2—N1—C17120.1 (2)N1—C17—P2113.2 (2)
C17—N1—C4111.6 (2)N1—C17—H17A108.9
O1—N2—O2122.5 (3)N1—C17—H17B108.9
O1—N2—O3118.9 (3)H17A—C17—H17B107.7
O2—N2—O3118.5 (3)C19—C18—P2120.2 (2)
O4—N3—O5123.5 (3)C23—C18—P2120.1 (2)
O4—N3—O6117.6 (3)C23—C18—C19119.1 (3)
O5—N3—O6118.9 (2)C18—C19—H19A120.0
C2—C1—H1A119.2C20—C19—C18119.9 (3)
C3i—C1—C2121.6 (3)C20—C19—H19A120.0
C3i—C1—H1A119.2C19—C20—C21120.5 (3)
C1—C2—N1122.5 (3)C19—C20—H20A119.8
C3—C2—C1115.7 (3)C21—C20—H20A119.8
C3—C2—N1121.7 (2)C20—C21—H21A120.1
C1i—C3—C2122.6 (3)C22—C21—C20119.8 (3)
C1i—C3—H3A118.7C22—C21—H21A120.1
C2—C3—H3A118.7C21—C22—H22A119.9
P1—C4—H4A109.6C23—C22—C21120.1 (3)
P1—C4—H4B109.6C23—C22—H22A119.9
N1—C4—P1110.08 (19)C18—C23—H23A119.8
N1—C4—H4A109.6C22—C23—C18120.5 (3)
N1—C4—H4B109.6C22—C23—H23A119.8
H4A—C4—H4B108.2C25—C24—C29119.3 (3)
C6—C5—P1120.5 (2)C25—C24—P2121.2 (2)
C6—C5—C10119.2 (3)C29—C24—P2119.1 (2)
C10—C5—P1120.3 (2)C24—C25—H25A119.9
C5—C6—H6A120.1C26—C25—C24120.2 (3)
C7—C6—C5119.7 (3)C26—C25—H25A119.9
C7—C6—H6A120.1C25—C26—C27120.5 (4)
C6—C7—H7A119.7C25—C26—H26A119.8
C8—C7—C6120.5 (3)C27—C26—H26A119.8
C8—C7—H7A119.7C26—C27—H27A120.0
C7—C8—C9120.4 (3)C28—C27—C26120.0 (3)
C7—C8—H8A119.8C28—C27—H27A120.0
C9—C8—H8A119.8C27—C28—C29120.4 (4)
C8—C9—C10120.5 (3)C27—C28—H28A119.8
C8—C9—H9A119.7C29—C28—H28A119.8
C10—C9—H9A119.7C24—C29—H29A120.2
C5—C10—H10A120.2C28—C29—C24119.7 (3)
C9—C10—C5119.7 (3)C28—C29—H29A120.2
Symmetry code: (i) x+2, y+4, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O5ii0.972.313.248 (3)163
Symmetry code: (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Pd2(NO3)4(C58H52N2P4)]
Mr1361.74
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)8.0715 (2), 21.3419 (7), 16.0283 (5)
β (°) 92.937 (3)
V3)2757.43 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.4 × 0.15 × 0.15
Data collection
DiffractometerGemini S Untra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.773, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
13871, 6838, 3511
Rint0.035
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.072, 0.80
No. of reflections6838
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 0.37

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Pd1—P12.2198 (7)Pd1—O32.144 (2)
Pd1—P22.2087 (9)Pd1—O62.1377 (17)
P2—Pd1—P192.34 (3)O3—Pd1—O691.77 (8)
O3—Pd1—P189.72 (5)O6—Pd1—P1173.04 (6)
O3—Pd1—P2177.92 (5)O6—Pd1—P286.15 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O5i0.972.313.248 (3)163.00
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by the Innovation Project of Guangxi Graduate Education, China (grant No. 2008106020703M246).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAucott, S. M., Slawin, A. M. Z. & Woollins, J. D. (2002). Eur. J. Inorg. Chem. pp. 2408–2418.  CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGanesamoorthy, C., Balakrishna, M. S., Mague, J. T. & Tuononen, H. M. (2008). Inorg. Chem. 47 7035–7047.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-J., Gui, L.-C., Ni, Q.-L., Liao, Y.-F., Jiang, X.-F., Tang, L.-H., Zhang, Z. & Wu, Q. (2008). CrystEngComm, 10, 1003–1010.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m597-m598
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds