organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1005

1-(4-Benz­yl­oxy-5-meth­­oxy-2-nitro­phen­yl)ethanone

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: nj_mhf@yahoo.cn

(Received 26 March 2009; accepted 28 March 2009; online 8 April 2009)

In the mol­ecule of the title compound, C16H15NO5, the aromatic rings are oriented at a dihedral angle of 74.89 (3)°. Intra­molecular C—H⋯O inter­actions result in the formation of a seven-membered ring. In the crystal structure, weak inter­molecular C—H⋯O inter­actions link the mol­ecules into chains along the b axis.

Related literature

The title compound is an important pharmaceutical intermediate. For general background, see: Mizuta et al. (2002[Mizuta, H., Watanabe, S., Sakurai, Y., Nishiyama, K., Furuta, T., Kobayashi, Y. & Iwamura, M. (2002). Bioorg. Med. Chem. 10, 675-683.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15NO5

  • Mr = 301.29

  • Orthorhombic, P b c a

  • a = 13.390 (3) Å

  • b = 10.465 (2) Å

  • c = 20.768 (4) Å

  • V = 2910.1 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.980, Tmax = 0.990

  • 2634 measured reflections

  • 2634 independent reflections

  • 1446 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.223

  • S = 1.06

  • 2634 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O3i 0.93 2.58 3.466 (5) 158
C16—H16C⋯O4 0.96 2.35 2.899 (5) 115
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound contains nitro, acetyl and methoxy groups, which can react with different groups to prepare various functional organic compounds as a fine organic intermediate. We report herein its crystal structure.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (C8-C13) are, of course, planar and they are oriented at a dihedral angle of 74.89 (3)°. Intramolecular C-H···O interaction (Table 1) results in the formation of a seven-membered ring C (O4/N/C10/C11/C15/C16/H16C) having twisted conformation.

In the crystal structure, weak intermolecular C-H···O interactions (Table 1) link the molecules into chains along the b axis (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

The title compound is an important pharmaceutical intermediate. For general background, see: Mizuta et al. (2002). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 1-(4-benzyloxy-5-methoxy-2-nitro- phenyl)ethanone (20.0 g, 66.4 mmol) were dissolved in DMF (50 ml). Then, the solution was poured into ice water (100 ml). The crystalline product was isolated by filtration, washed with water (600 ml). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.
1-(4-Benzyloxy-5-methoxy-2-nitrophenyl)ethanone top
Crystal data top
C16H15NO5F(000) = 1264
Mr = 301.29Dx = 1.375 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 13.390 (3) Åθ = 1.0–1.0°
b = 10.465 (2) ŵ = 0.10 mm1
c = 20.768 (4) ÅT = 294 K
V = 2910.1 (10) Å3Needle, colorless
Z = 80.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1446 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.2°, θmin = 2.0°
ω/2θ scansh = 016
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.980, Tmax = 0.990l = 024
2634 measured reflections3 standard reflections every 120 min
2634 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.223H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.118P)2]
where P = (Fo2 + 2Fc2)/3
2634 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H15NO5V = 2910.1 (10) Å3
Mr = 301.29Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.390 (3) ŵ = 0.10 mm1
b = 10.465 (2) ÅT = 294 K
c = 20.768 (4) Å0.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1446 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.980, Tmax = 0.9903 standard reflections every 120 min
2634 measured reflections intensity decay: none
2634 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.223H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
2634 reflectionsΔρmin = 0.26 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.4084 (2)0.3120 (3)0.33235 (15)0.0456 (8)
O10.07225 (17)0.1644 (3)0.38239 (11)0.0460 (7)
O20.13768 (18)0.0124 (3)0.46870 (13)0.0538 (8)
O30.5275 (2)0.0290 (3)0.42219 (18)0.0748 (10)
O40.4987 (2)0.2830 (3)0.33126 (15)0.0684 (10)
O50.3740 (2)0.4020 (3)0.30338 (14)0.0633 (9)
C10.1972 (3)0.0558 (5)0.2841 (2)0.0683 (13)
H1A0.21280.01960.26260.082*
C20.2731 (4)0.1305 (6)0.3092 (3)0.0793 (16)
H2A0.33940.10540.30510.095*
C30.2488 (3)0.2420 (5)0.3400 (3)0.0682 (13)
H3A0.29940.29420.35580.082*
C40.1506 (3)0.2778 (4)0.3478 (2)0.0546 (11)
H4A0.13570.35190.37060.065*
C50.0736 (3)0.2049 (4)0.32217 (18)0.0461 (10)
C60.0996 (3)0.0917 (4)0.2906 (2)0.0592 (12)
H6A0.04950.03990.27370.071*
C70.0318 (3)0.2420 (4)0.3310 (2)0.0510 (10)
H7A0.06900.22770.29150.061*
H7B0.03640.33180.34200.061*
C80.1732 (3)0.1672 (3)0.39057 (17)0.0380 (9)
C90.2392 (3)0.2446 (4)0.35806 (18)0.0428 (9)
H9A0.21590.30380.32820.051*
C100.3402 (2)0.2336 (4)0.37010 (17)0.0409 (9)
C110.3807 (3)0.1481 (4)0.41517 (18)0.0430 (9)
C120.3098 (3)0.0707 (4)0.44838 (19)0.0478 (10)
H12A0.33230.01180.47860.057*
C130.2105 (3)0.0807 (4)0.43705 (18)0.0422 (9)
C140.1676 (3)0.0629 (5)0.5236 (2)0.0661 (13)
H14A0.11030.10540.54130.099*
H14B0.19640.00800.55570.099*
H14C0.21600.12530.51040.099*
C150.4875 (3)0.1311 (4)0.43162 (19)0.0478 (10)
C160.5384 (3)0.2346 (5)0.4663 (2)0.0652 (13)
H16A0.60680.21150.47350.098*
H16B0.50590.24860.50690.098*
H16C0.53560.31150.44110.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0501 (17)0.049 (2)0.0377 (18)0.0016 (16)0.0013 (14)0.0030 (16)
O10.0448 (14)0.0553 (18)0.0378 (15)0.0030 (12)0.0076 (11)0.0163 (13)
O20.0561 (15)0.0561 (19)0.0492 (16)0.0062 (13)0.0013 (13)0.0211 (14)
O30.0644 (19)0.056 (2)0.104 (3)0.0188 (17)0.0083 (17)0.0031 (19)
O40.0493 (16)0.083 (2)0.073 (2)0.0008 (15)0.0050 (14)0.0105 (18)
O50.0683 (18)0.057 (2)0.065 (2)0.0072 (15)0.0065 (15)0.0197 (17)
C10.076 (3)0.059 (3)0.070 (3)0.014 (3)0.017 (3)0.009 (2)
C20.059 (3)0.081 (4)0.098 (4)0.018 (3)0.016 (3)0.019 (3)
C30.049 (2)0.067 (3)0.089 (3)0.004 (2)0.003 (2)0.009 (3)
C40.055 (2)0.048 (3)0.060 (3)0.003 (2)0.005 (2)0.000 (2)
C50.055 (2)0.041 (2)0.043 (2)0.0047 (18)0.0095 (17)0.0119 (19)
C60.064 (3)0.050 (3)0.063 (3)0.001 (2)0.009 (2)0.001 (2)
C70.053 (2)0.054 (3)0.046 (2)0.001 (2)0.0072 (18)0.009 (2)
C80.0472 (19)0.037 (2)0.0300 (18)0.0084 (16)0.0018 (15)0.0034 (16)
C90.0491 (19)0.037 (2)0.042 (2)0.0030 (17)0.0059 (17)0.0082 (17)
C100.0400 (18)0.043 (2)0.039 (2)0.0042 (16)0.0018 (16)0.0059 (17)
C110.050 (2)0.038 (2)0.040 (2)0.0024 (18)0.0055 (17)0.0017 (18)
C120.053 (2)0.040 (2)0.050 (3)0.0087 (18)0.0106 (19)0.0086 (18)
C130.050 (2)0.036 (2)0.041 (2)0.0040 (17)0.0026 (17)0.0077 (17)
C140.075 (3)0.066 (3)0.057 (3)0.010 (2)0.008 (2)0.019 (2)
C150.050 (2)0.052 (3)0.041 (2)0.0042 (19)0.0028 (17)0.002 (2)
C160.059 (2)0.073 (3)0.063 (3)0.001 (2)0.016 (2)0.016 (3)
Geometric parameters (Å, º) top
N—O51.209 (4)C6—H6A0.9300
N—O41.247 (4)C7—H7A0.9700
N—C101.456 (5)C7—H7B0.9700
O1—C81.363 (4)C8—C91.376 (5)
O1—C71.446 (4)C8—C131.414 (5)
O2—C131.376 (4)C9—C101.380 (5)
O2—C141.443 (5)C9—H9A0.9300
O3—C151.212 (5)C10—C111.404 (5)
C1—C61.367 (5)C11—C121.426 (5)
C1—C21.384 (7)C11—C151.480 (5)
C1—H1A0.9300C12—C131.355 (5)
C2—C31.370 (7)C12—H12A0.9300
C2—H2A0.9300C14—H14A0.9600
C3—C41.377 (5)C14—H14B0.9600
C3—H3A0.9300C14—H14C0.9600
C4—C51.389 (5)C15—C161.468 (6)
C4—H4A0.9300C16—H16A0.9600
C5—C61.398 (6)C16—H16B0.9600
C5—C71.475 (5)C16—H16C0.9600
O5—N—O4123.3 (3)C9—C8—C13119.0 (3)
O5—N—C10117.9 (3)C8—C9—C10119.4 (3)
O4—N—C10118.7 (3)C8—C9—H9A120.3
C8—O1—C7116.8 (3)C10—C9—H9A120.3
C13—O2—C14117.7 (3)C9—C10—C11123.5 (3)
C6—C1—C2120.6 (5)C9—C10—N118.0 (3)
C6—C1—H1A119.7C11—C10—N118.4 (3)
C2—C1—H1A119.7C10—C11—C12115.3 (3)
C3—C2—C1118.9 (4)C10—C11—C15127.1 (3)
C3—C2—H2A120.6C12—C11—C15117.6 (3)
C1—C2—H2A120.6C13—C12—C11121.7 (4)
C2—C3—C4120.9 (5)C13—C12—H12A119.1
C2—C3—H3A119.5C11—C12—H12A119.1
C4—C3—H3A119.5C12—C13—O2124.9 (4)
C3—C4—C5120.9 (4)C12—C13—C8121.0 (3)
C3—C4—H4A119.5O2—C13—C8114.1 (3)
C5—C4—H4A119.5O2—C14—H14A109.5
C4—C5—C6117.4 (4)O2—C14—H14B109.5
C4—C5—C7121.2 (4)H14A—C14—H14B109.5
C6—C5—C7121.3 (4)O2—C14—H14C109.5
C1—C6—C5121.1 (4)H14A—C14—H14C109.5
C1—C6—H6A119.4H14B—C14—H14C109.5
C5—C6—H6A119.4O3—C15—C16121.6 (4)
O1—C7—C5107.6 (3)O3—C15—C11119.7 (4)
O1—C7—H7A110.2C16—C15—C11118.2 (4)
C5—C7—H7A110.2C15—C16—H16A109.5
O1—C7—H7B110.2C15—C16—H16B109.5
C5—C7—H7B110.2H16A—C16—H16B109.5
H7A—C7—H7B108.5C15—C16—H16C109.5
O1—C8—C9126.0 (3)H16A—C16—H16C109.5
O1—C8—C13115.0 (3)H16B—C16—H16C109.5
C6—C1—C2—C30.8 (8)O4—N—C10—C1114.6 (5)
C1—C2—C3—C42.0 (8)C9—C10—C11—C120.4 (5)
C2—C3—C4—C52.9 (7)N—C10—C11—C12177.4 (3)
C3—C4—C5—C62.5 (6)C9—C10—C11—C15179.2 (4)
C3—C4—C5—C7179.4 (4)N—C10—C11—C153.0 (6)
C2—C1—C6—C50.5 (7)C10—C11—C12—C130.4 (6)
C4—C5—C6—C11.3 (6)C15—C11—C12—C13179.2 (4)
C7—C5—C6—C1178.1 (4)C11—C12—C13—O2177.7 (3)
C8—O1—C7—C5168.6 (3)C11—C12—C13—C81.3 (6)
C4—C5—C7—O1100.4 (4)C14—O2—C13—C128.6 (6)
C6—C5—C7—O176.4 (5)C14—O2—C13—C8170.5 (4)
C7—O1—C8—C95.7 (5)O1—C8—C13—C12177.8 (4)
C7—O1—C8—C13174.0 (3)C9—C8—C13—C122.0 (6)
O1—C8—C9—C10177.9 (3)O1—C8—C13—O23.1 (5)
C13—C8—C9—C101.9 (5)C9—C8—C13—O2177.1 (3)
C8—C9—C10—C111.1 (6)C10—C11—C15—O3118.1 (5)
C8—C9—C10—N176.7 (3)C12—C11—C15—O362.3 (5)
O5—N—C10—C916.4 (5)C10—C11—C15—C1669.2 (5)
O4—N—C10—C9163.3 (3)C12—C11—C15—C16110.4 (4)
O5—N—C10—C11165.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O3i0.932.583.466 (5)158
C16—H16C···O40.962.352.899 (5)115
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC16H15NO5
Mr301.29
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)13.390 (3), 10.465 (2), 20.768 (4)
V3)2910.1 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
2634, 2634, 1446
Rint0.000
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.223, 1.06
No. of reflections2634
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.26

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O3i0.932.583.466 (5)158
C16—H16C···O40.962.352.899 (5)115
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMizuta, H., Watanabe, S., Sakurai, Y., Nishiyama, K., Furuta, T., Kobayashi, Y. & Iwamura, M. (2002). Bioorg. Med. Chem. 10, 675–683.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1005
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds