organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1006-o1007

2-Benzoylmethyl-4-[(2-benzyl­idene­ethyl­idene)amino]-5-(2-thienylmethyl)-2H-1,2,4-triazol-3(4H)-one

aDepartment of Middle Education, Faculty of Education, Ondokuz Mayıs University, 55200-Atakum, Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Karadeniz Teknik University, 61080-Trabzon, Turkey, cDepartment of Elementary Education, Faculty of Education, Ondokuz Mayıs University, 55200-Atakum, Samsun, Turkey, and dDepartment of Computer Education and Instructional Technology, Faculty of Education, Ondokuz Mayıs University, 55200-Atakum-Samsun, Turkey
*Correspondence e-mail: rustabas@omu.edu.tr

(Received 27 March 2009; accepted 3 April 2009; online 8 April 2009)

In the mol­ecule of the title compound, C24H20N4O2S, the dihedral angle between the triazole and thio­phene rings is 66.80 (4)° and the dihedral angle between the two benzene rings is 63.37 (4)°. An intra­molecular C—H⋯O inter­action results in the formation of a six-membered ring. A ππ contact between the benzene rings, [centroid–centroid distance = 3.918 (2) Å] may stabilize the structure. Weak C—H⋯π inter­actions are also present. The S, C and H atoms of the thiophene ring are disordered over two positions and were refined with occupancies of 0.654 (3) and 0.346 (3).

Related literature

For general background to 1,2,4-triazoles, see: Clemons et al. (2004[Clemons, M., Colemon, R. E. & Verma, S. (2004). Cancer Treat. Rev. 30, 325-332.]); Colanceska-Ragenovic et al. (2001[Colanceska-Ragenovic, K., Dimovai, V., Kakurinov, V., Gabor Molnar, D. & Buzarovsk, A. (2001). Molecules, 6, 815-824.]); Goss & Strasser-Weippl (2004[Goss, P. E. & Strasser-Weippl, K. (2004). Best. Pract. Res. Clin. Endocrinol. Metab. 18, 113-130.]); Santen (2003[Santen, J. R. (2003). Steroids, 68, 559-567.]); Tsukuda et al. (1998[Tsukuda, T., Shiratori, Y., Watanabe, M., Ontsuka, H., Hattori, K., Shirai, M. & Shimma, N. (1998). Bioorg. Med. Chem. Lett. 8, 1819-1824.]); Ünver et al. (2008[Ünver, Y., Duğdu, E., Sancak, K., Er, M. & Karaoğlu, S. A. (2008). Turk. J. Chem. 32, 441-455.]); Zhu et al. (2000[Zhu, D., Zhu, X., Xu, L., Shao, S., Raj, S., Fun, H. & You, X. (2000). J. Chem. Crystallogr. 6, 429-432.]). For related structucres, see: Çoruh et al. (2003[Çoruh, U., Kahveci, B., Şaşmaz, S., Ağar, E., Kim, Y. & Erdönmez, A. (2003). Acta Cryst. C59, o476-o478.]); Ünver et al. (2006[Ünver, Y., Ustabaş, R., Çoruh, U., Sancak, K. & Vázquez-López, E. M. (2006). Acta Cryst. E62, o3938-o3939.]); Yılmaz et al. (2006[Yılmaz, I., Arslan, N. B., Kazak, C., Sancak, K. & Unver, Y. (2006). Acta Cryst. E62, o3067-o3068.]); Vrábel et al. (2005[Vrábel, V., Kožíšek, J., Marchalín, Š. & Svoboda, I. (2005). Acta Cryst. E61, o733-o735.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20N4O2S

  • Mr = 428.50

  • Monoclinic, P 21 /c

  • a = 17.4972 (3) Å

  • b = 14.7609 (3) Å

  • c = 8.2724 (1) Å

  • β = 96.395 (1)°

  • V = 2123.25 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.59 mm−1

  • T = 294 K

  • 0.30 × 0.11 × 0.07 mm

Data collection
  • Bruker CCD 6000 area-detector diffractometer

  • Absorption correction: none

  • 10706 measured reflections

  • 3697 independent reflections

  • 2561 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.175

  • S = 1.06

  • 3697 reflections

  • 314 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C42—H42⋯O1 0.93 2.23 2.916 (3) 130
C14—H14⋯Cg1i 0.93 2.91 3.501 (3) 122
C11—H11BCg2ii 0.97 2.89 3.816 (3) 159
C48—H48⋯Cg3iii 0.93 2.79 3.557 (3) 141
Symmetry codes: (i) x, y, z-1; (ii) [x, -y-{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg1, Cg2 and Cg3 are the centroids of the N1/N2/N4/C3/C5, C13–C18 and S1/C32–C35 rings, respectively.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The 1,2,4-triazole compounds posses important pharmacological activities such as antifungal and antiviral activities. Examples of such compounds bearing the 1,2,4- triazole residues are fluconazole, the powerful azole antifungal agent as well as the potent antiviral N- nucleoside ribavirin (Tsukuda et al., 1998; Ünver et al., 2008). The 1,2,4-triazole nucleus is associated with diverse pharmacological activities such as antibacterial, hypoglycemic, antihypertensive, analgesic and specific magnetic properties (Colanceska-Ragenovic et al., 2001; Zhu et al., 2000). It was reported that compounds having triazole moieties such as Vorozole, Anastrozole and Letrozole appear to be very effective aromatase inhibitors very useful for preventing breast cancer (Goss & Strasser-Weippl, 2004; Santen, 2003). There are antimicrobial agents having different structures are frequently used in treatment of microbial infections. However, there is an increasing resistance to these drugs. Moreover, some of azole derivatives used as common antibiotics, such as Amphotericin B posses a toxic effect on humans as well as their antimicrobial effects (Clemons et al., 2004). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. In the triazole ring, N2-C3 [1.292 (3) Å] bond is shorter than N4-C3 [1.373 (3) Å] bond and they are in agreement with the corresponding values in similar structures containing triazole ring, such as [1.290 (3) and 1.384 Å; Yılmaz et al., 2006] and [1.278 (3) and 1.379 (3) Å;Çoruh et al., 2003]. S1-C32 [1.698 (3) Å] and S1-C35 [1.735 (6) Å] bonds also agree with the corresponding values [1.706 (2) and 1.723 (2) Å;Ünver et al., 2006] and [1.676 (4) and 1.689 (3) Å (Vrábel et al., 2005]. Rings A (N1/N2/N4/C3/C5), B (C13-C18), C (S1/C32-C35) and D (C45-C50), are, of course, planar and they are oriented at dihedral angles of A/B = 63.76 (3), A/C = 66.80 (4), A/D = 4.81 (3), B/C = 68.37 (3), B/D = 63.37 (4) and C/D = 63.57 (3) °. Intramolecular C-H···O interaction results in the formation of a six-membered ring having envelope conformation, with atom O1 displaced by 0.300 (3) Å from the plane of the other ring atoms.

In the crystal structure, the π···π contact between the benzene rings, Cg2—Cg2i [symmetry code: (i) -x, -y, -1 - z, where Cg2 is centroid of the ring B (C13-C18)] may stabilize the structure, with centroid-centroid distance of 3.918 (2) Å. There also exist weak C—H···π interactions (Table 1).

Related literature top

For general background to 1,2,4-triazoles, see: Clemons et al. (2004); Colanceska-Ragenovic et al. (2001); Goss & Strasser-Weippl (2004); Santen (2003); Tsukuda et al. (1998); Ünver et al. (2008); Zhu et al. (2000). For related structucres, see: Çoruh et al. (2003); Ünver et al. (2006); Yılmaz et al. (2006); Vrábel et al. (2005). For bond-length data, see: Allen et al. (1987). Cg1, Cg2 and Cg3 are the centroids of the N1/N2/N4/C3/C5, C13–C18 and S1/C32–C35 rings, respectively.

Experimental top

For the preparation of the title compound, 4-[(3-phenyl-allidenamino)-5-thiophen -2-yl-methyl-2,4-dihydro-1,2,4]triazol-3-one (0.01 mol) was refluxed with an equivalent amount of natrium in absolute ethanol (100 ml) for 1 h. Then, ethyl bromoacetophenon (0.01 mol) was added and refluxed for an additional 5 h. The precipitate was filtered off, washed with water and recrystallized from ethanol/water (1:2) (yield; 70.79%, m.p. 433-434 K).

Refinement top

The S, C and H atoms of the thiophene ring were disordered. During the refinement process, the disordered atoms were refined with occupancies of 0.654 (3) and 0.346 (3). H atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
2-Benzoylmethyl-4-[(2-benzylideneethylidene)amino]-5-(2-thienylmethyl)-2H-1,2,4-triazol-3(4H)-one top
Crystal data top
C24H20N4O2SF(000) = 896
Mr = 428.50Dx = 1.340 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2561 reflections
a = 17.4972 (3) Åθ = 2.5–68.2°
b = 14.7609 (3) ŵ = 1.59 mm1
c = 8.2724 (1) ÅT = 294 K
β = 96.395 (1)°Prism, colorless
V = 2123.25 (6) Å30.30 × 0.11 × 0.07 mm
Z = 4
Data collection top
Bruker CCD 6000 area-detector
diffractometer
2561 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 68.2°, θmin = 2.5°
ϕ and ω scansh = 2018
10706 measured reflectionsk = 1616
3697 independent reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.1091P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3697 reflectionsΔρmax = 0.40 e Å3
314 parametersΔρmin = 0.22 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C24H20N4O2SV = 2123.25 (6) Å3
Mr = 428.50Z = 4
Monoclinic, P21/cCu Kα radiation
a = 17.4972 (3) ŵ = 1.59 mm1
b = 14.7609 (3) ÅT = 294 K
c = 8.2724 (1) Å0.30 × 0.11 × 0.07 mm
β = 96.395 (1)°
Data collection top
Bruker CCD 6000 area-detector
diffractometer
2561 reflections with I > 2σ(I)
10706 measured reflectionsRint = 0.039
3697 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052314 parameters
wR(F2) = 0.175H-atom parameters constrained
S = 1.06Δρmax = 0.40 e Å3
3697 reflectionsΔρmin = 0.22 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.58098 (11)0.41692 (13)0.0657 (3)0.0861 (6)0.654 (3)
S1'0.6146 (4)0.2606 (4)0.2561 (8)0.0857 (11)0.346 (3)
O10.88146 (9)0.54521 (11)0.47227 (19)0.0690 (5)
O20.83595 (10)0.40286 (12)0.7644 (2)0.0831 (5)
N10.86815 (11)0.38928 (12)0.4521 (2)0.0637 (5)
N20.82649 (11)0.32716 (12)0.3517 (2)0.0649 (5)
N40.79359 (10)0.46712 (11)0.2811 (2)0.0535 (4)
N410.75222 (11)0.53233 (12)0.1882 (2)0.0599 (5)
C30.78325 (13)0.37638 (15)0.2497 (3)0.0580 (6)
C50.85161 (13)0.47661 (15)0.4121 (3)0.0564 (5)
C110.92508 (14)0.36161 (16)0.5806 (3)0.0660 (6)
H11A0.97280.39320.56930.079*
H11B0.93450.29720.57050.079*
C120.90121 (14)0.38067 (14)0.7490 (3)0.0598 (6)
C130.96094 (13)0.37260 (13)0.8891 (3)0.0559 (5)
C140.94621 (16)0.40534 (15)1.0407 (3)0.0672 (7)
H140.89810.42971.05270.081*
C151.00083 (17)0.40240 (17)1.1714 (3)0.0744 (7)
H150.98990.42531.27100.089*
C161.07174 (17)0.36594 (18)1.1572 (3)0.0775 (7)
H161.10900.36391.24650.093*
C171.08709 (17)0.3324 (2)1.0088 (3)0.0839 (8)
H171.13480.30660.99840.101*
C181.03279 (15)0.33661 (16)0.8763 (3)0.0727 (7)
H181.04450.31490.77650.087*
C310.72983 (14)0.34018 (16)0.1113 (3)0.0687 (6)
H31A0.73510.37660.01550.082*
H31B0.74530.27890.08820.082*
C320.64725 (15)0.33916 (15)0.1403 (3)0.07042 (8)0.654 (3)
C32'0.64725 (15)0.33916 (15)0.1403 (3)0.07042 (8)0.346 (3)
C330.6141 (7)0.2793 (8)0.2307 (16)0.0822 (19)0.654 (3)
H330.64210.23220.28320.099*0.654 (3)
C33'0.5934 (8)0.3931 (9)0.070 (2)0.086 (2)0.346 (3)
H33'0.60370.43780.00360.103*0.346 (3)
C340.5342 (4)0.2905 (7)0.2437 (14)0.0834 (15)0.654 (3)
H340.50440.25280.30150.100*0.654 (3)
C34'0.5184 (7)0.3780 (12)0.116 (2)0.086 (2)0.346 (3)
H34'0.47430.41090.08090.103*0.346 (3)
C350.5090 (4)0.3640 (6)0.1591 (9)0.0847 (17)0.654 (3)
H350.45850.38440.15120.102*0.654 (3)
C35'0.5228 (7)0.3073 (13)0.219 (3)0.082 (2)0.346 (3)
H35'0.48070.28550.26700.099*0.346 (3)
C420.75715 (13)0.61382 (15)0.2406 (3)0.0598 (6)
H420.78840.62710.33610.072*
C430.71480 (13)0.68498 (15)0.1530 (3)0.0605 (6)
H430.68220.67050.06000.073*
C440.72076 (13)0.77056 (15)0.2004 (3)0.0637 (6)
H440.75510.78130.29250.076*
C450.68128 (13)0.85043 (15)0.1292 (3)0.0586 (6)
C460.62026 (14)0.84499 (17)0.0066 (3)0.0675 (6)
H460.60260.78860.03120.081*
C470.58586 (16)0.9221 (2)0.0589 (4)0.0826 (8)
H470.54530.91760.14120.099*
C480.61094 (17)1.0064 (2)0.0037 (4)0.0878 (8)
H480.58741.05850.04870.105*
C490.67029 (17)1.01301 (18)0.1166 (4)0.0893 (8)
H490.68731.06970.15420.107*
C500.70537 (16)0.93594 (17)0.1831 (3)0.0765 (7)
H500.74590.94130.26540.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0805 (10)0.0722 (11)0.1040 (9)0.0136 (6)0.0029 (7)0.0105 (8)
S1'0.100 (2)0.075 (2)0.0847 (19)0.0139 (15)0.0221 (15)0.0089 (14)
O10.0746 (11)0.0566 (10)0.0731 (10)0.0050 (7)0.0033 (8)0.0049 (8)
O20.0659 (12)0.0931 (13)0.0922 (12)0.0176 (9)0.0176 (10)0.0168 (9)
N10.0714 (13)0.0495 (11)0.0679 (11)0.0034 (9)0.0022 (10)0.0017 (9)
N20.0706 (14)0.0505 (11)0.0725 (12)0.0013 (9)0.0039 (10)0.0048 (9)
N40.0555 (11)0.0472 (11)0.0577 (10)0.0027 (7)0.0052 (8)0.0001 (8)
N410.0625 (12)0.0545 (12)0.0623 (10)0.0014 (8)0.0055 (9)0.0053 (9)
C30.0605 (14)0.0507 (13)0.0638 (13)0.0001 (10)0.0114 (11)0.0072 (10)
C50.0569 (14)0.0537 (14)0.0589 (12)0.0003 (10)0.0074 (11)0.0005 (10)
C110.0672 (16)0.0619 (14)0.0677 (14)0.0116 (11)0.0020 (12)0.0019 (11)
C120.0634 (16)0.0448 (12)0.0722 (14)0.0048 (10)0.0118 (12)0.0090 (10)
C130.0617 (14)0.0437 (12)0.0635 (13)0.0012 (9)0.0127 (11)0.0058 (9)
C140.0737 (17)0.0634 (15)0.0688 (15)0.0020 (11)0.0277 (14)0.0052 (11)
C150.091 (2)0.0772 (17)0.0579 (14)0.0105 (14)0.0212 (15)0.0020 (12)
C160.085 (2)0.0819 (18)0.0649 (15)0.0121 (14)0.0065 (14)0.0073 (13)
C170.0701 (18)0.111 (2)0.0691 (16)0.0171 (15)0.0029 (14)0.0011 (14)
C180.0739 (18)0.0830 (18)0.0619 (14)0.0169 (13)0.0112 (13)0.0054 (12)
C310.0737 (16)0.0609 (14)0.0715 (14)0.0004 (11)0.0082 (12)0.0152 (11)
C320.0780.0590.0730.0035 (11)0.0036 (11)0.0121 (11)
C32'0.0780.0590.0730.0035 (11)0.0036 (11)0.0121 (11)
C330.090 (3)0.067 (4)0.090 (4)0.020 (3)0.012 (3)0.005 (3)
C33'0.085 (4)0.072 (5)0.099 (4)0.001 (4)0.003 (4)0.006 (4)
C340.077 (3)0.076 (4)0.097 (4)0.012 (2)0.011 (3)0.003 (2)
C34'0.075 (4)0.078 (4)0.103 (5)0.005 (4)0.004 (4)0.001 (4)
C350.069 (3)0.082 (4)0.103 (5)0.005 (2)0.009 (3)0.006 (3)
C35'0.069 (4)0.079 (5)0.099 (5)0.013 (4)0.007 (4)0.009 (4)
C420.0619 (15)0.0551 (14)0.0624 (13)0.0041 (10)0.0067 (11)0.0016 (10)
C430.0617 (15)0.0560 (14)0.0632 (12)0.0002 (10)0.0046 (11)0.0050 (10)
C440.0614 (15)0.0612 (15)0.0671 (13)0.0018 (10)0.0015 (11)0.0009 (11)
C450.0520 (14)0.0540 (13)0.0713 (14)0.0007 (9)0.0125 (12)0.0025 (10)
C460.0611 (16)0.0624 (15)0.0795 (16)0.0009 (11)0.0097 (13)0.0041 (12)
C470.0709 (18)0.084 (2)0.0921 (18)0.0095 (14)0.0054 (15)0.0170 (15)
C480.077 (2)0.071 (2)0.118 (2)0.0145 (14)0.0189 (18)0.0249 (17)
C490.080 (2)0.0561 (16)0.132 (2)0.0019 (13)0.0142 (19)0.0025 (16)
C500.0697 (17)0.0586 (16)0.0998 (19)0.0024 (12)0.0033 (14)0.0030 (13)
Geometric parameters (Å, º) top
O1—C51.220 (2)C32—C331.331 (9)
N1—C111.433 (3)C33—C341.424 (13)
N2—N11.388 (2)C33—H330.9300
N4—N411.385 (2)C33'—C34'1.424 (15)
N4—C31.373 (3)C33'—H33'0.9300
N4—C51.407 (3)C34—C351.339 (6)
N41—C421.278 (3)C34—H340.9300
C3—N21.292 (3)C34'—C35'1.345 (9)
C5—N11.354 (3)C34'—H34'0.9300
C11—H11A0.9700C35—S11.735 (6)
C11—H11B0.9700C35—H350.9300
C12—O21.208 (3)C35'—S1'1.744 (10)
C12—C111.524 (3)C35'—H35'0.9300
C12—C131.476 (3)C42—C431.435 (3)
C13—C141.394 (3)C42—H420.9300
C13—C181.380 (3)C43—C441.323 (3)
C14—C151.362 (4)C43—H430.9300
C14—H140.9300C44—H440.9300
C15—C161.370 (4)C45—C501.388 (3)
C15—H150.9300C45—C461.391 (3)
C16—C171.378 (3)C45—C441.457 (3)
C16—H160.9300C46—C471.371 (3)
C17—H170.9300C46—H460.9300
C18—C171.369 (4)C47—C481.380 (4)
C18—H180.9300C47—H470.9300
C31—C31.494 (3)C48—C491.360 (4)
C31—C321.491 (4)C48—H480.9300
C31—H31A0.9700C49—H490.9300
C31—H31B0.9700C50—C491.378 (4)
C32—S11.698 (3)C50—H500.9300
C32—S1—C3591.9 (3)H31A—C31—H31B107.6
N2—N1—C11122.07 (18)C31—C32—S1124.70 (19)
C5—N1—N2113.51 (18)C33—C32—S1109.3 (5)
C5—N1—C11124.37 (19)C33—C32—C31126.0 (6)
C3—N2—N1104.44 (17)C32—C33—C34117.3 (9)
N41—N4—C5130.25 (17)C32—C33—H33121.4
C3—N4—N41121.59 (19)C34—C33—H33121.4
C3—N4—C5108.14 (18)C34'—C33'—H33'122.5
C42—N41—N4117.04 (18)C33—C34—H34125.6
N2—C3—N4111.7 (2)C35—C34—C33108.8 (9)
N2—C3—C31124.8 (2)C35—C34—H34125.6
N4—C3—C31123.5 (2)C33'—C34'—H34'126.2
O1—C5—N1128.3 (2)C35'—C34'—C33'107.5 (13)
O1—C5—N4129.5 (2)C35'—C34'—H34'126.2
N1—C5—N4102.10 (18)S1—C35—H35123.7
N1—C11—C12112.76 (19)C34—C35—S1112.6 (7)
N1—C11—H11A109.0C34—C35—H35123.7
N1—C11—H11B109.0S1'—C35'—H35'123.1
C12—C11—H11A109.0C34'—C35'—S1'113.8 (12)
C12—C11—H11B109.0C34'—C35'—H35'123.1
H11A—C11—H11B107.8N41—C42—C43120.4 (2)
O2—C12—C11120.3 (2)N41—C42—H42119.8
O2—C12—C13122.3 (2)C43—C42—H42119.8
C13—C12—C11117.41 (19)C42—C43—H43119.0
C14—C13—C12119.5 (2)C44—C43—C42122.0 (2)
C18—C13—C14117.6 (2)C44—C43—H43119.0
C18—C13—C12122.9 (2)C43—C44—C45129.4 (2)
C13—C14—H14119.4C43—C44—H44115.3
C15—C14—C13121.3 (2)C45—C44—H44115.3
C15—C14—H14119.4C46—C45—C44122.6 (2)
C14—C15—C16120.5 (2)C50—C45—C44119.5 (2)
C14—C15—H15119.8C50—C45—C46117.9 (2)
C16—C15—H15119.8C45—C46—H46119.7
C15—C16—C17119.1 (3)C47—C46—C45120.5 (2)
C15—C16—H16120.5C47—C46—H46119.7
C17—C16—H16120.5C46—C47—C48120.6 (3)
C16—C17—H17119.7C46—C47—H47119.7
C18—C17—C16120.7 (3)C48—C47—H47119.7
C18—C17—H17119.7C47—C48—H48120.2
C13—C18—H18119.6C49—C48—C47119.7 (3)
C17—C18—C13120.9 (2)C49—C48—H48120.2
C17—C18—H18119.6C48—C49—C50120.2 (3)
C3—C31—H31B108.6C48—C49—H49119.9
C3—C31—H31A108.6C50—C49—H49119.9
C32—C31—C3114.50 (18)C45—C50—H50119.4
C32—C31—H31A108.6C49—C50—C45121.1 (3)
C32—C31—H31B108.6C49—C50—H50119.4
N2—N1—C11—C12111.3 (2)C14—C13—C18—C170.8 (4)
C5—N1—C11—C1271.3 (3)C13—C14—C15—C160.8 (4)
C3—N2—N1—C50.6 (2)C14—C15—C16—C170.1 (4)
C3—N2—N1—C11178.2 (2)C15—C16—C17—C181.0 (4)
N41—N4—C5—O12.8 (4)C13—C18—C17—C161.5 (4)
N41—N4—C5—N1179.14 (17)C32—C31—C3—N2102.4 (3)
C3—N4—C5—O1175.3 (2)C32—C31—C3—N479.4 (3)
C3—N4—C5—N12.8 (2)C3—C31—C32—S1101.1 (3)
C3—N4—N41—C42169.85 (18)C3—C31—C32—C3377.2 (8)
C5—N4—N41—C4212.3 (3)C31—C32—S1—C35179.3 (4)
N41—N4—C3—N2179.05 (17)C33—C32—S1—C350.7 (8)
N41—N4—C3—C312.5 (3)S1—C32—C33—C341.2 (15)
C5—N4—C3—N22.7 (2)C31—C32—C33—C34179.7 (9)
C5—N4—C3—C31175.77 (19)C32—C33—C34—C351.1 (17)
N4—N41—C42—C43178.75 (17)C33—C34—C35—S10.4 (13)
N4—C3—N2—N11.3 (2)C33'—C34'—C35'—S1'1 (2)
C31—C3—N2—N1177.15 (19)C34—C35—S1—C320.1 (7)
O1—C5—N1—N2176.0 (2)N41—C42—C43—C44177.4 (2)
O1—C5—N1—C111.6 (4)C42—C43—C44—C45178.5 (2)
N4—C5—N1—N22.1 (2)C46—C45—C44—C439.7 (4)
N4—C5—N1—C11179.67 (19)C50—C45—C44—C43169.5 (2)
O2—C12—C11—N111.1 (3)C44—C45—C46—C47178.7 (2)
C13—C12—C11—N1167.79 (18)C50—C45—C46—C470.5 (3)
O2—C12—C13—C1410.8 (3)C44—C45—C50—C49178.9 (2)
O2—C12—C13—C18171.6 (2)C46—C45—C50—C490.4 (3)
C11—C12—C13—C14168.08 (19)C45—C46—C47—C480.3 (4)
C11—C12—C13—C189.5 (3)C46—C47—C48—C490.0 (4)
C12—C13—C14—C15177.4 (2)C47—C48—C49—C500.1 (4)
C18—C13—C14—C150.3 (3)C45—C50—C49—C480.1 (4)
C12—C13—C18—C17178.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C42—H42···O10.932.232.916 (3)130
C14—H14···Cg1i0.932.913.501 (3)122
C11—H11B···Cg2ii0.972.893.816 (3)159
C48—H48···Cg3iii0.932.793.557 (3)141
Symmetry codes: (i) x, y, z1; (ii) x, y3/2, z1/2; (iii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC24H20N4O2S
Mr428.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)17.4972 (3), 14.7609 (3), 8.2724 (1)
β (°) 96.395 (1)
V3)2123.25 (6)
Z4
Radiation typeCu Kα
µ (mm1)1.59
Crystal size (mm)0.30 × 0.11 × 0.07
Data collection
DiffractometerBruker CCD 6000 area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10706, 3697, 2561
Rint0.039
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.175, 1.06
No. of reflections3697
No. of parameters314
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.22

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT (Bruker, 1997, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C42—H42···O10.932.232.916 (3)130
C14—H14···Cg1i0.932.913.501 (3)122
C11—H11B···Cg2ii0.972.893.816 (3)159
C48—H48···Cg3iii0.932.793.557 (3)141
Symmetry codes: (i) x, y, z1; (ii) x, y3/2, z1/2; (iii) x, y1/2, z1/2.
 

Acknowledgements

This work was supported by the Research Fund of Karadeniz Technical University (grant No. 2004.111.02.11). The authors thank Dr Sean Parkin, Physical Chemistry Director, X-Ray Facility, University of Kentucky, USA for help in solving the disordered structure.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClemons, M., Colemon, R. E. & Verma, S. (2004). Cancer Treat. Rev. 30, 325–332.  Web of Science CrossRef PubMed CAS Google Scholar
First citationColanceska-Ragenovic, K., Dimovai, V., Kakurinov, V., Gabor Molnar, D. & Buzarovsk, A. (2001). Molecules, 6, 815–824.  Web of Science CrossRef CAS Google Scholar
First citationÇoruh, U., Kahveci, B., Şaşmaz, S., Ağar, E., Kim, Y. & Erdönmez, A. (2003). Acta Cryst. C59, o476-o478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGoss, P. E. & Strasser-Weippl, K. (2004). Best. Pract. Res. Clin. Endocrinol. Metab. 18, 113–130.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSanten, J. R. (2003). Steroids, 68, 559–567.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsukuda, T., Shiratori, Y., Watanabe, M., Ontsuka, H., Hattori, K., Shirai, M. & Shimma, N. (1998). Bioorg. Med. Chem. Lett. 8, 1819–1824.  Web of Science CrossRef CAS PubMed Google Scholar
First citationÜnver, Y., Duğdu, E., Sancak, K., Er, M. & Karaoğlu, S. A. (2008). Turk. J. Chem. 32, 441–455.  Google Scholar
First citationÜnver, Y., Ustabaş, R., Çoruh, U., Sancak, K. & Vázquez-López, E. M. (2006). Acta Cryst. E62, o3938–o3939.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVrábel, V., Kožíšek, J., Marchalín, Š. & Svoboda, I. (2005). Acta Cryst. E61, o733–o735.  CSD CrossRef IUCr Journals Google Scholar
First citationYılmaz, I., Arslan, N. B., Kazak, C., Sancak, K. & Unver, Y. (2006). Acta Cryst. E62, o3067–o3068.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, D., Zhu, X., Xu, L., Shao, S., Raj, S., Fun, H. & You, X. (2000). J. Chem. Crystallogr. 6, 429–432.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1006-o1007
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds