organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3-Methyl­but-2-en-1-yl)-1,2-benziso­thia­zol-3(2H)-one 1,1-dioxide

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 28 March 2009; accepted 31 March 2009; online 8 April 2009)

In the title compound, C12H13NO3S, a saccharin derivative, the dihedral angle between the aromatic and isothia­zole rings is 2.91 (12)°. The planar 3,3-dimethyl­allyl group [maximum deviation = 0.0086 (16) Å] is oriented at dihedral angles of 71.86 (7) and 74.35 (7)° with respect to the aromatic and isothia­zole rings, respectively. In the crystal structure, weak inter­molecular C—H⋯O inter­actions link the mol­ecules into chains along the c axis. A weak C—H⋯π inter­action is also present.

Related literature

For the biological activity of saccharine derivatives, see: Primofiore et al. (1997[Primofiore, G., Da Settimo, F., La Motta, C., Simorini, F., Minutolo, A. & Boldrini, E. (1997). Farmaco, 52, 583-588.]). For related structures, see: Arshad et al. (2008[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.]); Kruszynski & Czestkowski (2001[Kruszynski, R. & Czestkowski, W. (2001). Acta Cryst. E57, o516-o518.]); Siddiqui et al. (2007[Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2007). Acta Cryst. E63, o4116.]); Yu et al. (2008[Yu, G.-P., Xu, Z.-J., Xu, L.-Z. & Aisa, H. A. (2008). Acta Cryst. E64, o805.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13NO3S

  • Mr = 251.29

  • Orthorhombic, P n a 21

  • a = 9.4120 (5) Å

  • b = 19.4108 (11) Å

  • c = 6.5261 (4) Å

  • V = 1192.28 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.32 × 0.24 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.924, Tmax = 0.946

  • 7340 measured reflections

  • 2525 independent reflections

  • 2304 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.083

  • S = 1.05

  • 2525 reflections

  • 156 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 837 Friedel pairs

  • Flack parameter: 0.02 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.56 3.391 (2) 149
C8—H8A⋯O2ii 0.97 2.51 3.436 (3) 160
C3—H3⋯Cg1iii 0.93 2.89 3.664 (2) 141
Symmetry codes: (i) [-x+1, -y+1, z+{\script{1\over 2}}]; (ii) x, y, z-1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]. Cg1 is the centroid of the C1–C6 ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The sodium salt of 1,2-benzisothiazole-3(2H)-one-1,1-dioxide is commonly known as saccharine, a sweetener. The derivatives of this compound are biologically active (Primofiore et al., 1997) and used for the syntheses of various biologically active heterocyclic compounds. We report herein the crystal structure of the title compound, (I), as part of our ongoing studies on thiazine related heterocycles (Arshad et al., 2008).

The crystal structures of 3-methylbut-2-enyl)ammonium chloride, (II) (Kruszynski & Czestkowski, 2001), 2-(chloromethyl)-1,2-benzisothiazole-1,1,3(2H) -trione, (III) (Siddiqui et al., 2007) and 2-n-butyl-1,2-benziso- thiazol-3(2H)-one, (IV) (Yu et al., 2008) have been published.

In the molecule of (I) (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (S1/N1/C1/C6/C7) are, of course, planar and they are oriented at a dihedral angle of 2.91 (12)°. So, benzisothiazole ring system is nearly coplanar. The 3,3-dimethylallyl moiety C (C8-C12) is also planar with a maximum deviation of 0.0086 (16) Å for C10 atom, and it is oriented with respect to rings A and B at dihedral angles of A/C = 74.35 (7) and B/C = 71.86 (7) °. Atoms O1, O2 and O3 are 1.2007 (17), -1.2296 (19) and -0.0441 (27) Å away from the ring plane of B, respectively.

In the crystal structure, weak intermolecular C-H···O interactions (Table 1) link the molecules into chains along the c axis, in which they may be effective in the stabilization of the structure. There also exists a weak C—H···π interaction (Table 1).

Related literature top

For the biological activity of saccharine derivatives, see: Primofiore et al. (1997). For related structures, see: Arshad et al. (2008); Kruszynski & Czestkowski (2001); Siddiqui et al. (2007); Yu et al. (2008). For bond-length data, see: Allen et al. (1987). Cg1 is the centroid of the C1–C6 ring.

Experimental top

For the preparation of the title compound, sodium salt of saccharine (1 g, 4.88 mmol) was dissolved in dimethylformamide (5 ml) in a round bottom flask (25 ml) equipped with condenser. Then, 3,3-dimethylallyl bromide (0.73 g, 4.88 mmol) was added to the solution and stirred at 353-373 K for 3 h. The progress of the reaction was observed by TLC. At completion of reaction, the mixture was poured on ice, precipitates obtained were filtered, washed with distilled water and dried. The residue was recrystalized in methanol to obtain the suitable crystals of the title compound.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
2-(3-Methylbut-2-en-1-yl)-1,2-benzisothiazol-3(2H)-one 1,1-dioxide top
Crystal data top
C12H13NO3SF(000) = 528
Mr = 251.29Dx = 1.400 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2818 reflections
a = 9.4120 (5) Åθ = 2.4–28.8°
b = 19.4108 (11) ŵ = 0.27 mm1
c = 6.5261 (4) ÅT = 296 K
V = 1192.28 (12) Å3Rod, colorless
Z = 40.32 × 0.24 × 0.22 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2525 independent reflections
Radiation source: fine-focus sealed tube2304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 7.40 pixels mm-1θmax = 28.8°, θmin = 2.4°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2626
Tmin = 0.924, Tmax = 0.946l = 84
7340 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.05P)2 + 0.1276P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2525 reflectionsΔρmax = 0.28 e Å3
156 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983), 837 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (8)
Crystal data top
C12H13NO3SV = 1192.28 (12) Å3
Mr = 251.29Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.4120 (5) ŵ = 0.27 mm1
b = 19.4108 (11) ÅT = 296 K
c = 6.5261 (4) Å0.32 × 0.24 × 0.22 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2525 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2304 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.946Rint = 0.019
7340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.28 e Å3
S = 1.05Δρmin = 0.20 e Å3
2525 reflectionsAbsolute structure: Flack (1983), 837 Friedel pairs
156 parametersAbsolute structure parameter: 0.02 (8)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39059 (4)0.43722 (2)0.22028 (8)0.0360 (1)
O10.47203 (15)0.49780 (6)0.1846 (2)0.0527 (5)
O20.27683 (15)0.44174 (7)0.3626 (3)0.0501 (5)
O30.34253 (18)0.31180 (9)0.2062 (3)0.0681 (6)
N10.32910 (16)0.40665 (8)0.0015 (3)0.0420 (5)
C10.47927 (19)0.31849 (9)0.1051 (3)0.0430 (6)
C20.5491 (2)0.25556 (10)0.1123 (4)0.0571 (7)
C30.6312 (2)0.24143 (11)0.2810 (5)0.0643 (8)
C40.6463 (2)0.28766 (11)0.4407 (4)0.0582 (8)
C50.5766 (2)0.35100 (10)0.4341 (4)0.0474 (6)
C60.49541 (17)0.36438 (8)0.2640 (3)0.0377 (5)
C70.37937 (19)0.34237 (10)0.0545 (3)0.0449 (6)
C80.2217 (2)0.44531 (10)0.1171 (4)0.0480 (6)
C90.0741 (2)0.43125 (10)0.0398 (4)0.0492 (7)
C100.0319 (2)0.40469 (9)0.1434 (4)0.0476 (6)
C110.0249 (3)0.38285 (16)0.3615 (5)0.0740 (10)
C120.1738 (2)0.39260 (14)0.0418 (5)0.0718 (9)
H20.540560.223930.006000.0685*
H30.678210.199350.288100.0770*
H40.703060.276510.552530.0698*
H50.584700.382750.540210.0569*
H8A0.227410.432750.260690.0577*
H8B0.241470.494210.105920.0577*
H90.056010.442620.096180.0591*
H11A0.066680.394300.416730.1109*
H11B0.097400.406150.438250.1109*
H11C0.039300.333980.370400.1109*
H12A0.169110.407170.098570.1074*
H12B0.196630.344440.047420.1074*
H12C0.245740.418490.112030.1074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0419 (2)0.0326 (2)0.0335 (2)0.0031 (1)0.0001 (2)0.0011 (2)
O10.0694 (8)0.0384 (5)0.0503 (10)0.0151 (5)0.0077 (8)0.0034 (6)
O20.0521 (8)0.0565 (8)0.0418 (9)0.0060 (5)0.0063 (7)0.0040 (7)
O30.0786 (10)0.0716 (10)0.0540 (10)0.0120 (8)0.0050 (9)0.0261 (8)
N10.0438 (8)0.0479 (8)0.0343 (9)0.0056 (6)0.0020 (7)0.0034 (7)
C10.0392 (9)0.0402 (8)0.0495 (12)0.0075 (6)0.0084 (8)0.0088 (8)
C20.0494 (11)0.0444 (9)0.0775 (17)0.0011 (8)0.0111 (11)0.0155 (11)
C30.0501 (11)0.0438 (9)0.099 (2)0.0072 (8)0.0129 (12)0.0057 (12)
C40.0462 (10)0.0532 (11)0.0752 (18)0.0057 (8)0.0045 (11)0.0117 (11)
C50.0475 (10)0.0434 (9)0.0513 (14)0.0043 (7)0.0044 (9)0.0014 (9)
C60.0352 (7)0.0336 (6)0.0442 (12)0.0041 (5)0.0046 (7)0.0010 (7)
C70.0436 (9)0.0482 (9)0.0430 (12)0.0128 (7)0.0093 (8)0.0107 (9)
C80.0458 (10)0.0566 (10)0.0417 (12)0.0100 (8)0.0051 (9)0.0101 (9)
C90.0486 (10)0.0525 (10)0.0466 (14)0.0003 (8)0.0024 (9)0.0071 (9)
C100.0421 (10)0.0398 (8)0.0609 (14)0.0017 (7)0.0025 (10)0.0120 (9)
C110.0618 (14)0.0871 (17)0.0730 (19)0.0177 (12)0.0137 (13)0.0061 (15)
C120.0427 (11)0.0706 (14)0.102 (2)0.0039 (9)0.0049 (13)0.0159 (14)
Geometric parameters (Å, º) top
S1—O11.4229 (13)C10—C111.487 (4)
S1—O21.4201 (17)C10—C121.510 (3)
S1—N11.6679 (19)C2—H20.9300
S1—C61.7475 (16)C3—H30.9300
O3—C71.205 (3)C4—H40.9300
N1—C71.379 (2)C5—H50.9300
N1—C81.468 (3)C8—H8A0.9700
C1—C21.388 (3)C8—H8B0.9700
C1—C61.376 (3)C9—H90.9300
C1—C71.478 (3)C11—H11A0.9600
C2—C31.373 (4)C11—H11B0.9600
C3—C41.383 (4)C11—H11C0.9600
C4—C51.394 (3)C12—H12A0.9600
C5—C61.373 (3)C12—H12B0.9600
C8—C91.503 (3)C12—H12C0.9600
C9—C101.311 (3)
O1···C5i3.391 (2)C11···H8A2.6500
O1···C8ii3.347 (2)C12···H2viii3.0500
O2···C93.253 (3)H2···O32.8800
O2···C12iii3.416 (3)H2···C9vii3.0400
O3···C5iv3.308 (3)H2···C10vii2.7700
O1···H8B2.8800H2···C12vii3.0500
O1···H5i2.5600H3···C1vii3.0900
O2···H92.7100H3···C7vii3.0400
O2···H8Av2.5100H4···O3x2.6700
O2···H12Ciii2.7300H5···O1ii2.5600
O2···H11Av2.6100H8A···O2iv2.5100
O3···H22.8800H8A···O32.6100
O3···H8A2.6100H8A···C112.6500
O3···H4vi2.6700H8A···H11A1.9700
C3···C7vii3.591 (3)H8B···O12.8800
C5···O1ii3.391 (2)H9···O22.7100
C5···O3v3.308 (3)H9···H12A2.2300
C7···C3viii3.591 (3)H11A···O2iv2.6100
C8···O1i3.347 (2)H11A···C82.6300
C9···O23.253 (3)H11A···H8A1.9700
C12···O2ix3.416 (3)H11B···H12C2.5600
C1···H3viii3.0900H11C···H12B2.5800
C7···H3viii3.0400H12A···H92.2300
C8···H11A2.6300H12B···H11C2.5800
C9···H2viii3.0400H12C···H11B2.5600
C10···H2viii2.7700H12C···O2ix2.7300
O1—S1—O2117.53 (8)C1—C2—H2121.00
O1—S1—N1109.81 (8)C3—C2—H2121.00
O1—S1—C6113.03 (8)C2—C3—H3119.00
O2—S1—N1109.14 (9)C4—C3—H3119.00
O2—S1—C6111.65 (9)C3—C4—H4120.00
N1—S1—C692.85 (8)C5—C4—H4120.00
S1—N1—C7114.88 (14)C4—C5—H5122.00
S1—N1—C8120.21 (14)C6—C5—H5121.00
C7—N1—C8124.76 (18)N1—C8—H8A109.00
C2—C1—C6119.48 (18)N1—C8—H8B109.00
C2—C1—C7126.96 (18)C9—C8—H8A109.00
C6—C1—C7113.49 (16)C9—C8—H8B109.00
C1—C2—C3118.0 (2)H8A—C8—H8B108.00
C2—C3—C4122.2 (2)C8—C9—H9117.00
C3—C4—C5120.1 (2)C10—C9—H9116.00
C4—C5—C6117.0 (2)C10—C11—H11A109.00
S1—C6—C1109.79 (14)C10—C11—H11B109.00
S1—C6—C5126.83 (15)C10—C11—H11C109.00
C1—C6—C5123.28 (16)H11A—C11—H11B109.00
O3—C7—N1123.57 (19)H11A—C11—H11C109.00
O3—C7—C1127.42 (18)H11B—C11—H11C109.00
N1—C7—C1108.99 (16)C10—C12—H12A109.00
N1—C8—C9111.79 (19)C10—C12—H12B109.00
C8—C9—C10127.0 (2)C10—C12—H12C109.00
C9—C10—C11124.9 (2)H12A—C12—H12B109.00
C9—C10—C12120.5 (2)H12A—C12—H12C110.00
C11—C10—C12114.6 (2)H12B—C12—H12C109.00
O1—S1—N1—C7116.40 (14)C6—C1—C2—C30.6 (3)
O1—S1—N1—C867.88 (16)C7—C1—C2—C3176.00 (19)
O2—S1—N1—C7113.44 (14)C2—C1—C6—S1177.54 (15)
O2—S1—N1—C862.29 (17)C2—C1—C6—C50.9 (3)
C6—S1—N1—C70.66 (15)C7—C1—C6—S10.5 (2)
C6—S1—N1—C8176.38 (15)C7—C1—C6—C5176.15 (17)
O1—S1—C6—C1113.04 (13)C2—C1—C7—O30.8 (3)
O1—S1—C6—C570.51 (19)C2—C1—C7—N1177.73 (19)
O2—S1—C6—C1111.81 (14)C6—C1—C7—O3177.6 (2)
O2—S1—C6—C564.64 (19)C6—C1—C7—N10.9 (2)
N1—S1—C6—C10.09 (14)C1—C2—C3—C40.3 (3)
N1—S1—C6—C5176.54 (17)C2—C3—C4—C50.2 (3)
S1—N1—C7—O3177.61 (17)C3—C4—C5—C60.4 (3)
S1—N1—C7—C11.0 (2)C4—C5—C6—S1176.81 (15)
C8—N1—C7—O32.1 (3)C4—C5—C6—C10.8 (3)
C8—N1—C7—C1176.49 (17)N1—C8—C9—C10119.5 (2)
S1—N1—C8—C983.37 (19)C8—C9—C10—C110.3 (3)
C7—N1—C8—C991.9 (2)C8—C9—C10—C12178.9 (2)
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1, y+1, z+1/2; (iii) x, y+1, z+1/2; (iv) x, y, z1; (v) x, y, z+1; (vi) x1/2, y+1/2, z1; (vii) x+1/2, y+1/2, z; (viii) x1/2, y+1/2, z; (ix) x, y+1, z1/2; (x) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1ii0.932.563.391 (2)149
C8—H8A···O2iv0.972.513.436 (3)160
C3—H3···Cg1vii0.932.893.664 (2)141
Symmetry codes: (ii) x+1, y+1, z+1/2; (iv) x, y, z1; (vii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC12H13NO3S
Mr251.29
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)9.4120 (5), 19.4108 (11), 6.5261 (4)
V3)1192.28 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.32 × 0.24 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.924, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
7340, 2525, 2304
Rint0.019
(sin θ/λ)max1)0.678
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.083, 1.05
No. of reflections2525
No. of parameters156
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.20
Absolute structureFlack (1983), 837 Friedel pairs
Absolute structure parameter0.02 (8)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SAINT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.563.391 (2)149
C8—H8A···O2ii0.972.513.436 (3)160
C3—H3···Cg1iii0.932.893.664 (2)141
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x, y, z1; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

MNA greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 042–120607-PS2–183).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKruszynski, R. & Czestkowski, W. (2001). Acta Cryst. E57, o516–o518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrimofiore, G., Da Settimo, F., La Motta, C., Simorini, F., Minutolo, A. & Boldrini, E. (1997). Farmaco, 52, 583–588.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2007). Acta Cryst. E63, o4116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, G.-P., Xu, Z.-J., Xu, L.-Z. & Aisa, H. A. (2008). Acta Cryst. E64, o805.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds