organic compounds
2-(3-Methylbut-2-en-1-yl)-1,2-benzisothiazol-3(2H)-one 1,1-dioxide
aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com
In the title compound, C12H13NO3S, a saccharin derivative, the dihedral angle between the aromatic and isothiazole rings is 2.91 (12)°. The planar 3,3-dimethylallyl group [maximum deviation = 0.0086 (16) Å] is oriented at dihedral angles of 71.86 (7) and 74.35 (7)° with respect to the aromatic and isothiazole rings, respectively. In the weak intermolecular C—H⋯O interactions link the molecules into chains along the c axis. A weak C—H⋯π interaction is also present.
Related literature
For the biological activity of saccharine derivatives, see: Primofiore et al. (1997). For related structures, see: Arshad et al. (2008); Kruszynski & Czestkowski (2001); Siddiqui et al. (2007); Yu et al. (2008). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON.
Supporting information
10.1107/S1600536809012021/hk2656sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809012021/hk2656Isup2.hkl
For the preparation of the title compound, sodium salt of saccharine (1 g, 4.88 mmol) was dissolved in dimethylformamide (5 ml) in a round bottom flask (25 ml) equipped with condenser. Then, 3,3-dimethylallyl bromide (0.73 g, 4.88 mmol) was added to the solution and stirred at 353-373 K for 3 h. The progress of the reaction was observed by TLC. At completion of reaction, the mixture was poured on ice, precipitates obtained were filtered, washed with distilled water and dried. The residue was recrystalized in methanol to obtain the suitable crystals of the title compound.
H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).C12H13NO3S | F(000) = 528 |
Mr = 251.29 | Dx = 1.400 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 2818 reflections |
a = 9.4120 (5) Å | θ = 2.4–28.8° |
b = 19.4108 (11) Å | µ = 0.27 mm−1 |
c = 6.5261 (4) Å | T = 296 K |
V = 1192.28 (12) Å3 | Rod, colorless |
Z = 4 | 0.32 × 0.24 × 0.22 mm |
Bruker Kappa APEXII CCD area-detector diffractometer | 2525 independent reflections |
Radiation source: fine-focus sealed tube | 2304 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 7.40 pixels mm-1 | θmax = 28.8°, θmin = 2.4° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −26→26 |
Tmin = 0.924, Tmax = 0.946 | l = −8→4 |
7340 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.083 | w = 1/[σ2(Fo2) + (0.05P)2 + 0.1276P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2525 reflections | Δρmax = 0.28 e Å−3 |
156 parameters | Δρmin = −0.20 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 837 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.02 (8) |
C12H13NO3S | V = 1192.28 (12) Å3 |
Mr = 251.29 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 9.4120 (5) Å | µ = 0.27 mm−1 |
b = 19.4108 (11) Å | T = 296 K |
c = 6.5261 (4) Å | 0.32 × 0.24 × 0.22 mm |
Bruker Kappa APEXII CCD area-detector diffractometer | 2525 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2304 reflections with I > 2σ(I) |
Tmin = 0.924, Tmax = 0.946 | Rint = 0.019 |
7340 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.083 | Δρmax = 0.28 e Å−3 |
S = 1.05 | Δρmin = −0.20 e Å−3 |
2525 reflections | Absolute structure: Flack (1983), 837 Friedel pairs |
156 parameters | Absolute structure parameter: 0.02 (8) |
1 restraint |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.39059 (4) | 0.43722 (2) | 0.22028 (8) | 0.0360 (1) | |
O1 | 0.47203 (15) | 0.49780 (6) | 0.1846 (2) | 0.0527 (5) | |
O2 | 0.27683 (15) | 0.44174 (7) | 0.3626 (3) | 0.0501 (5) | |
O3 | 0.34253 (18) | 0.31180 (9) | −0.2062 (3) | 0.0681 (6) | |
N1 | 0.32910 (16) | 0.40665 (8) | −0.0015 (3) | 0.0420 (5) | |
C1 | 0.47927 (19) | 0.31849 (9) | 0.1051 (3) | 0.0430 (6) | |
C2 | 0.5491 (2) | 0.25556 (10) | 0.1123 (4) | 0.0571 (7) | |
C3 | 0.6312 (2) | 0.24143 (11) | 0.2810 (5) | 0.0643 (8) | |
C4 | 0.6463 (2) | 0.28766 (11) | 0.4407 (4) | 0.0582 (8) | |
C5 | 0.5766 (2) | 0.35100 (10) | 0.4341 (4) | 0.0474 (6) | |
C6 | 0.49541 (17) | 0.36438 (8) | 0.2640 (3) | 0.0377 (5) | |
C7 | 0.37937 (19) | 0.34237 (10) | −0.0545 (3) | 0.0449 (6) | |
C8 | 0.2217 (2) | 0.44531 (10) | −0.1171 (4) | 0.0480 (6) | |
C9 | 0.0741 (2) | 0.43125 (10) | −0.0398 (4) | 0.0492 (7) | |
C10 | −0.0319 (2) | 0.40469 (9) | −0.1434 (4) | 0.0476 (6) | |
C11 | −0.0249 (3) | 0.38285 (16) | −0.3615 (5) | 0.0740 (10) | |
C12 | −0.1738 (2) | 0.39260 (14) | −0.0418 (5) | 0.0718 (9) | |
H2 | 0.54056 | 0.22393 | 0.00600 | 0.0685* | |
H3 | 0.67821 | 0.19935 | 0.28810 | 0.0770* | |
H4 | 0.70306 | 0.27651 | 0.55253 | 0.0698* | |
H5 | 0.58470 | 0.38275 | 0.54021 | 0.0569* | |
H8A | 0.22741 | 0.43275 | −0.26069 | 0.0577* | |
H8B | 0.24147 | 0.49421 | −0.10592 | 0.0577* | |
H9 | 0.05601 | 0.44262 | 0.09618 | 0.0591* | |
H11A | 0.06668 | 0.39430 | −0.41673 | 0.1109* | |
H11B | −0.09740 | 0.40615 | −0.43825 | 0.1109* | |
H11C | −0.03930 | 0.33398 | −0.37040 | 0.1109* | |
H12A | −0.16911 | 0.40717 | 0.09857 | 0.1074* | |
H12B | −0.19663 | 0.34444 | −0.04742 | 0.1074* | |
H12C | −0.24574 | 0.41849 | −0.11203 | 0.1074* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0419 (2) | 0.0326 (2) | 0.0335 (2) | −0.0031 (1) | −0.0001 (2) | −0.0011 (2) |
O1 | 0.0694 (8) | 0.0384 (5) | 0.0503 (10) | −0.0151 (5) | −0.0077 (8) | 0.0034 (6) |
O2 | 0.0521 (8) | 0.0565 (8) | 0.0418 (9) | 0.0060 (5) | 0.0063 (7) | −0.0040 (7) |
O3 | 0.0786 (10) | 0.0716 (10) | 0.0540 (10) | −0.0120 (8) | −0.0050 (9) | −0.0261 (8) |
N1 | 0.0438 (8) | 0.0479 (8) | 0.0343 (9) | −0.0056 (6) | −0.0020 (7) | −0.0034 (7) |
C1 | 0.0392 (9) | 0.0402 (8) | 0.0495 (12) | −0.0075 (6) | 0.0084 (8) | −0.0088 (8) |
C2 | 0.0494 (11) | 0.0444 (9) | 0.0775 (17) | −0.0011 (8) | 0.0111 (11) | −0.0155 (11) |
C3 | 0.0501 (11) | 0.0438 (9) | 0.099 (2) | 0.0072 (8) | 0.0129 (12) | 0.0057 (12) |
C4 | 0.0462 (10) | 0.0532 (11) | 0.0752 (18) | 0.0057 (8) | −0.0045 (11) | 0.0117 (11) |
C5 | 0.0475 (10) | 0.0434 (9) | 0.0513 (14) | −0.0043 (7) | −0.0044 (9) | 0.0014 (9) |
C6 | 0.0352 (7) | 0.0336 (6) | 0.0442 (12) | −0.0041 (5) | 0.0046 (7) | −0.0010 (7) |
C7 | 0.0436 (9) | 0.0482 (9) | 0.0430 (12) | −0.0128 (7) | 0.0093 (8) | −0.0107 (9) |
C8 | 0.0458 (10) | 0.0566 (10) | 0.0417 (12) | −0.0100 (8) | −0.0051 (9) | 0.0101 (9) |
C9 | 0.0486 (10) | 0.0525 (10) | 0.0466 (14) | 0.0003 (8) | 0.0024 (9) | 0.0071 (9) |
C10 | 0.0421 (10) | 0.0398 (8) | 0.0609 (14) | 0.0017 (7) | −0.0025 (10) | 0.0120 (9) |
C11 | 0.0618 (14) | 0.0871 (17) | 0.0730 (19) | −0.0177 (12) | −0.0137 (13) | −0.0061 (15) |
C12 | 0.0427 (11) | 0.0706 (14) | 0.102 (2) | 0.0039 (9) | 0.0049 (13) | 0.0159 (14) |
S1—O1 | 1.4229 (13) | C10—C11 | 1.487 (4) |
S1—O2 | 1.4201 (17) | C10—C12 | 1.510 (3) |
S1—N1 | 1.6679 (19) | C2—H2 | 0.9300 |
S1—C6 | 1.7475 (16) | C3—H3 | 0.9300 |
O3—C7 | 1.205 (3) | C4—H4 | 0.9300 |
N1—C7 | 1.379 (2) | C5—H5 | 0.9300 |
N1—C8 | 1.468 (3) | C8—H8A | 0.9700 |
C1—C2 | 1.388 (3) | C8—H8B | 0.9700 |
C1—C6 | 1.376 (3) | C9—H9 | 0.9300 |
C1—C7 | 1.478 (3) | C11—H11A | 0.9600 |
C2—C3 | 1.373 (4) | C11—H11B | 0.9600 |
C3—C4 | 1.383 (4) | C11—H11C | 0.9600 |
C4—C5 | 1.394 (3) | C12—H12A | 0.9600 |
C5—C6 | 1.373 (3) | C12—H12B | 0.9600 |
C8—C9 | 1.503 (3) | C12—H12C | 0.9600 |
C9—C10 | 1.311 (3) | ||
O1···C5i | 3.391 (2) | C11···H8A | 2.6500 |
O1···C8ii | 3.347 (2) | C12···H2viii | 3.0500 |
O2···C9 | 3.253 (3) | H2···O3 | 2.8800 |
O2···C12iii | 3.416 (3) | H2···C9vii | 3.0400 |
O3···C5iv | 3.308 (3) | H2···C10vii | 2.7700 |
O1···H8B | 2.8800 | H2···C12vii | 3.0500 |
O1···H5i | 2.5600 | H3···C1vii | 3.0900 |
O2···H9 | 2.7100 | H3···C7vii | 3.0400 |
O2···H8Av | 2.5100 | H4···O3x | 2.6700 |
O2···H12Ciii | 2.7300 | H5···O1ii | 2.5600 |
O2···H11Av | 2.6100 | H8A···O2iv | 2.5100 |
O3···H2 | 2.8800 | H8A···O3 | 2.6100 |
O3···H8A | 2.6100 | H8A···C11 | 2.6500 |
O3···H4vi | 2.6700 | H8A···H11A | 1.9700 |
C3···C7vii | 3.591 (3) | H8B···O1 | 2.8800 |
C5···O1ii | 3.391 (2) | H9···O2 | 2.7100 |
C5···O3v | 3.308 (3) | H9···H12A | 2.2300 |
C7···C3viii | 3.591 (3) | H11A···O2iv | 2.6100 |
C8···O1i | 3.347 (2) | H11A···C8 | 2.6300 |
C9···O2 | 3.253 (3) | H11A···H8A | 1.9700 |
C12···O2ix | 3.416 (3) | H11B···H12C | 2.5600 |
C1···H3viii | 3.0900 | H11C···H12B | 2.5800 |
C7···H3viii | 3.0400 | H12A···H9 | 2.2300 |
C8···H11A | 2.6300 | H12B···H11C | 2.5800 |
C9···H2viii | 3.0400 | H12C···H11B | 2.5600 |
C10···H2viii | 2.7700 | H12C···O2ix | 2.7300 |
O1—S1—O2 | 117.53 (8) | C1—C2—H2 | 121.00 |
O1—S1—N1 | 109.81 (8) | C3—C2—H2 | 121.00 |
O1—S1—C6 | 113.03 (8) | C2—C3—H3 | 119.00 |
O2—S1—N1 | 109.14 (9) | C4—C3—H3 | 119.00 |
O2—S1—C6 | 111.65 (9) | C3—C4—H4 | 120.00 |
N1—S1—C6 | 92.85 (8) | C5—C4—H4 | 120.00 |
S1—N1—C7 | 114.88 (14) | C4—C5—H5 | 122.00 |
S1—N1—C8 | 120.21 (14) | C6—C5—H5 | 121.00 |
C7—N1—C8 | 124.76 (18) | N1—C8—H8A | 109.00 |
C2—C1—C6 | 119.48 (18) | N1—C8—H8B | 109.00 |
C2—C1—C7 | 126.96 (18) | C9—C8—H8A | 109.00 |
C6—C1—C7 | 113.49 (16) | C9—C8—H8B | 109.00 |
C1—C2—C3 | 118.0 (2) | H8A—C8—H8B | 108.00 |
C2—C3—C4 | 122.2 (2) | C8—C9—H9 | 117.00 |
C3—C4—C5 | 120.1 (2) | C10—C9—H9 | 116.00 |
C4—C5—C6 | 117.0 (2) | C10—C11—H11A | 109.00 |
S1—C6—C1 | 109.79 (14) | C10—C11—H11B | 109.00 |
S1—C6—C5 | 126.83 (15) | C10—C11—H11C | 109.00 |
C1—C6—C5 | 123.28 (16) | H11A—C11—H11B | 109.00 |
O3—C7—N1 | 123.57 (19) | H11A—C11—H11C | 109.00 |
O3—C7—C1 | 127.42 (18) | H11B—C11—H11C | 109.00 |
N1—C7—C1 | 108.99 (16) | C10—C12—H12A | 109.00 |
N1—C8—C9 | 111.79 (19) | C10—C12—H12B | 109.00 |
C8—C9—C10 | 127.0 (2) | C10—C12—H12C | 109.00 |
C9—C10—C11 | 124.9 (2) | H12A—C12—H12B | 109.00 |
C9—C10—C12 | 120.5 (2) | H12A—C12—H12C | 110.00 |
C11—C10—C12 | 114.6 (2) | H12B—C12—H12C | 109.00 |
O1—S1—N1—C7 | 116.40 (14) | C6—C1—C2—C3 | 0.6 (3) |
O1—S1—N1—C8 | −67.88 (16) | C7—C1—C2—C3 | −176.00 (19) |
O2—S1—N1—C7 | −113.44 (14) | C2—C1—C6—S1 | −177.54 (15) |
O2—S1—N1—C8 | 62.29 (17) | C2—C1—C6—C5 | −0.9 (3) |
C6—S1—N1—C7 | 0.66 (15) | C7—C1—C6—S1 | −0.5 (2) |
C6—S1—N1—C8 | 176.38 (15) | C7—C1—C6—C5 | 176.15 (17) |
O1—S1—C6—C1 | −113.04 (13) | C2—C1—C7—O3 | −0.8 (3) |
O1—S1—C6—C5 | 70.51 (19) | C2—C1—C7—N1 | 177.73 (19) |
O2—S1—C6—C1 | 111.81 (14) | C6—C1—C7—O3 | −177.6 (2) |
O2—S1—C6—C5 | −64.64 (19) | C6—C1—C7—N1 | 0.9 (2) |
N1—S1—C6—C1 | −0.09 (14) | C1—C2—C3—C4 | −0.3 (3) |
N1—S1—C6—C5 | −176.54 (17) | C2—C3—C4—C5 | 0.2 (3) |
S1—N1—C7—O3 | 177.61 (17) | C3—C4—C5—C6 | −0.4 (3) |
S1—N1—C7—C1 | −1.0 (2) | C4—C5—C6—S1 | 176.81 (15) |
C8—N1—C7—O3 | 2.1 (3) | C4—C5—C6—C1 | 0.8 (3) |
C8—N1—C7—C1 | −176.49 (17) | N1—C8—C9—C10 | −119.5 (2) |
S1—N1—C8—C9 | −83.37 (19) | C8—C9—C10—C11 | 0.3 (3) |
C7—N1—C8—C9 | 91.9 (2) | C8—C9—C10—C12 | 178.9 (2) |
Symmetry codes: (i) −x+1, −y+1, z−1/2; (ii) −x+1, −y+1, z+1/2; (iii) −x, −y+1, z+1/2; (iv) x, y, z−1; (v) x, y, z+1; (vi) x−1/2, −y+1/2, z−1; (vii) x+1/2, −y+1/2, z; (viii) x−1/2, −y+1/2, z; (ix) −x, −y+1, z−1/2; (x) x+1/2, −y+1/2, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1ii | 0.93 | 2.56 | 3.391 (2) | 149 |
C8—H8A···O2iv | 0.97 | 2.51 | 3.436 (3) | 160 |
C3—H3···Cg1vii | 0.93 | 2.89 | 3.664 (2) | 141 |
Symmetry codes: (ii) −x+1, −y+1, z+1/2; (iv) x, y, z−1; (vii) x+1/2, −y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C12H13NO3S |
Mr | 251.29 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 296 |
a, b, c (Å) | 9.4120 (5), 19.4108 (11), 6.5261 (4) |
V (Å3) | 1192.28 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.27 |
Crystal size (mm) | 0.32 × 0.24 × 0.22 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.924, 0.946 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7340, 2525, 2304 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.678 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.083, 1.05 |
No. of reflections | 2525 |
No. of parameters | 156 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.20 |
Absolute structure | Flack (1983), 837 Friedel pairs |
Absolute structure parameter | 0.02 (8) |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SAINT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1i | 0.93 | 2.56 | 3.391 (2) | 149 |
C8—H8A···O2ii | 0.97 | 2.51 | 3.436 (3) | 160 |
C3—H3···Cg1iii | 0.93 | 2.89 | 3.664 (2) | 141 |
Symmetry codes: (i) −x+1, −y+1, z+1/2; (ii) x, y, z−1; (iii) x+1/2, −y+1/2, z. |
Acknowledgements
MNA greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 042–120607-PS2–183).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kruszynski, R. & Czestkowski, W. (2001). Acta Cryst. E57, o516–o518. Web of Science CSD CrossRef IUCr Journals Google Scholar
Primofiore, G., Da Settimo, F., La Motta, C., Simorini, F., Minutolo, A. & Boldrini, E. (1997). Farmaco, 52, 583–588. Web of Science CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2007). Acta Cryst. E63, o4116. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, G.-P., Xu, Z.-J., Xu, L.-Z. & Aisa, H. A. (2008). Acta Cryst. E64, o805. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The sodium salt of 1,2-benzisothiazole-3(2H)-one-1,1-dioxide is commonly known as saccharine, a sweetener. The derivatives of this compound are biologically active (Primofiore et al., 1997) and used for the syntheses of various biologically active heterocyclic compounds. We report herein the crystal structure of the title compound, (I), as part of our ongoing studies on thiazine related heterocycles (Arshad et al., 2008).
The crystal structures of 3-methylbut-2-enyl)ammonium chloride, (II) (Kruszynski & Czestkowski, 2001), 2-(chloromethyl)-1,2-benzisothiazole-1,1,3(2H) -trione, (III) (Siddiqui et al., 2007) and 2-n-butyl-1,2-benziso- thiazol-3(2H)-one, (IV) (Yu et al., 2008) have been published.
In the molecule of (I) (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (S1/N1/C1/C6/C7) are, of course, planar and they are oriented at a dihedral angle of 2.91 (12)°. So, benzisothiazole ring system is nearly coplanar. The 3,3-dimethylallyl moiety C (C8-C12) is also planar with a maximum deviation of 0.0086 (16) Å for C10 atom, and it is oriented with respect to rings A and B at dihedral angles of A/C = 74.35 (7) and B/C = 71.86 (7) °. Atoms O1, O2 and O3 are 1.2007 (17), -1.2296 (19) and -0.0441 (27) Å away from the ring plane of B, respectively.
In the crystal structure, weak intermolecular C-H···O interactions (Table 1) link the molecules into chains along the c axis, in which they may be effective in the stabilization of the structure. There also exists a weak C—H···π interaction (Table 1).