organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1104

(Z)-6-[(5-Chloro-2-hy­droxy­anilino)­methyl­ene]-4-meth­oxy­cyclo­hexa-2,4-dienone 0.25-hydrate

aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, bFaculty of Education, Sinop University, Turkey, and cPamukkale University, Denizli Technical Vocational School, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 30 March 2009; accepted 15 April 2009; online 25 April 2009)

The title compound, C14H12ClNO3·0.25H2O, exists in the keto–amine form, and the aromatic rings are oriented at a dihedral angle of 7.24 (7)°. Bifurcated intra­molecular N—H⋯(O,O) hydrogen bonds result in the formation of planar six- and five-membered rings. In the crystal structure, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into chains. ππ contacts between benzene rings [centroid–centroid distance = 3.5065 (9) Å] may further stabilize the structure. There also exists a weak C—H⋯π inter­action.

Related literature

For general background, see: Büyükgüngör et al. (2007[Büyükgüngör, O., Odabaşoğlu, M., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1996-o1998.]); Hökelek et al. (2004[Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803-o805.]); Odabaşoğlu et al. (2004[Odabaşoğlu, M., Albayrak, Ç. & Büyükgüngör, O. (2004). Acta Cryst. E60, o142-o144.]). For related structures, see: Özek et al. (2007[Özek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. C63, o177-o180.], 2008[Özek, A., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2008). Acta Cryst. E64, o1613-o1614.]); Ersanlı et al. (2003[Ersanlı, C. C., Albayrak, Ç., Odabaşoğlu, M. & Erdönmez, A. (2003). Acta Cryst. C59, o601-o602.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO3·0.25H2O

  • Mr = 279.95

  • Monoclinic, C 2/c

  • a = 21.3670 (11) Å

  • b = 6.7600 (3) Å

  • c = 17.7404 (9) Å

  • β = 103.841 (4)°

  • V = 2488.0 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 K

  • 0.68 × 0.54 × 0.41 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.970, Tmax = 0.970

  • 6976 measured reflections

  • 2588 independent reflections

  • 2352 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.086

  • S = 1.09

  • 2588 reflections

  • 186 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.84 2.5511 (16) 140
N1—H1⋯O3 0.86 2.19 2.6063 (17) 109
C3—H3⋯O4 0.93 2.43 3.279 (5) 151
O4—H4A⋯O2i 0.831 (19) 2.029 (19) 2.842 (3) 166 (6)
O3—H3A⋯O1ii 0.852 (17) 1.743 (18) 2.5652 (16) 162 (3)
C12—H12⋯O2iii 0.93 2.56 3.4372 (18) 157
C7—H7ACg1iv 0.96 2.83 3.644 (2) 143
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, y+{\script{3\over 2}}, z]. Cg1 is the centroid of the C1–C6 ring.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); data reduction: X-RED32; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing studies on the syntheses and structural characterizations of Schiff-base compounds (Özek et al., 2008; Özek et al., 2007), we report herein the crystal structure of the title compound.

In general, o-hydroxy Schiff bases exhibit two possible tautomeric forms, namely, phenol-imine and keto-amine. In the solid state, the keto-amine form is observed in naphthaldimine (Odabaşoǧlu et al., 2004), while the phenol-imine form is observed in salicylaldimine (Büyükgüngör et al., 2007) Schiff bases. However, naphthaldimine and salicylaldimine can also exist in the phenol-imine and keto-amine forms, respectively depending on the stereochemistry of the molecule and the type of nitrogen substituents in naphthaldimine and salicylaldimine Schiff bases (Hökelek et al., 2004).

In the title compound (Fig. 1), the keto-amine form is favored over the phenol-imine form, as indicated by C2—O1 [1.2924 (18) Å], C8—N1 [1.3122 (19) Å], C1—C8 [1.412 (2) Å] and C1—C2 [1.433 (2) Å] bonds. The C2—O1 and C8—N1 bonds indicate double-bond and a high degree of single-bond characters, respectively. Similar results were observed for 2-[(2-hydroxy-4-nitrophenyl) -aminomethylene]cyclohexa-3,5-dien-1(2H)-οne [C—O = 1.298 (2) and C—N = 1.308 (2) Å; Ersanlı et al., 2003].

It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. Therefore, one can expect thermochromic properties in the title compound caused by planarity of the molecule; the dihedral angle between rings A (C1—C6) and B (C9—C14) is 7.24 (7)°. Intramolecular N—H···O hydrogen bonds (Table 1) result in the formations of planar six- and five-membered rings C (O1/N1/C1/C2/C8/H1) and D (O3/N1/C9/C10/H1). They are oriented with respect to the adjacent rings at dihedral angles of A/C = 4.44 (9), A/D = 9.6 (9), B/C = 5.42 (9), B/D = 2.96 (9) and C/D = 6.55 (9)°. So, they are nearly coplanar.

In the crystal structure, intermolecular O—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contact between the phenyl rings, Cg1—Cg2i [symmetry code: (i) 1/2 - x, 3/2 - y, -z, where Cg1 and Cg2 are centroids of the rings A (C1—C6) and B (C9—C14), respectively] may further stabilize the structure, with centroid-centroid distance of 3.5065 (9) Å. There also exists a weak C—H···π interaction (Table 1).

Related literature top

For general background, see: Büyükgüngör et al. (2007); Hökelek et al. (2004); Odabaşoǧlu et al. (2004). For related structures, see: Özek et al. (2007, 2008); Ersanlı et al. (2003).

Experimental top

For the preparation of the title compound, the mixture of 5-methoxysalicyl- aldehyde (0.5 g, 3.3 mmol) in ethanol (20 ml) and 2-hydroxy-5-chloroaniline (0.47 g, 3.3 mmol) in ethanol (20 ml) was stirred for 1 h under reflux. Crystals suitable for X-ray analysis were obtained from methanol by slow evaporation (yield; % 84, m.p. 415–416 K).

Refinement top

H atoms of water molecule and hydroxy group were located in difference Fourier maps and refined isotropically, with restrains of O3—H3A = 0.852 (17) and O4—H4A = 0.831 (19) Å. The remaining H atoms were positioned geometrically with N—H = 0.86 Å (for NH) and C—H = 0.93 and 0.96 Å, for aromatic and methyl H atoms,respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-RED32 (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
(Z)-6-[(5-Chloro-2-hydroxyanilino)methylene]-4-methoxycyclohexa- 2,4-dienone 0.25-hydrate top
Crystal data top
C14H12ClNO3·0.25H2OF(000) = 1162
Mr = 279.95Dx = 1.495 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6976 reflections
a = 21.3670 (11) Åθ = 2.0–28.0°
b = 6.7600 (3) ŵ = 0.31 mm1
c = 17.7404 (9) ÅT = 100 K
β = 103.841 (4)°Prism, red
V = 2488.0 (2) Å30.68 × 0.54 × 0.41 mm
Z = 8
Data collection top
Stoe IPDS-II
diffractometer
2588 independent reflections
Radiation source: fine-focus sealed tube2352 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.022
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.0°
ω scansh = 2526
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 87
Tmin = 0.970, Tmax = 0.970l = 2222
6976 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0376P)2 + 3.3917P]
where P = (Fo2 + 2Fc2)/3
2588 reflections(Δ/σ)max = 0.001
186 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H12ClNO3·0.25H2OV = 2488.0 (2) Å3
Mr = 279.95Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.3670 (11) ŵ = 0.31 mm1
b = 6.7600 (3) ÅT = 100 K
c = 17.7404 (9) Å0.68 × 0.54 × 0.41 mm
β = 103.841 (4)°
Data collection top
Stoe IPDS-II
diffractometer
2588 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2352 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.970Rint = 0.022
6976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0312 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.28 e Å3
2588 reflectionsΔρmin = 0.31 e Å3
186 parameters
Special details top

Experimental. 141 frames, detector distance = 100 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.64391 (7)0.8209 (2)0.49336 (8)0.0163 (3)
C20.63352 (7)0.6614 (2)0.43854 (8)0.0171 (3)
C30.58193 (7)0.6836 (2)0.37118 (9)0.0191 (3)
H30.57360.58340.33420.023*
C40.54480 (7)0.8493 (2)0.36036 (8)0.0189 (3)
H40.51120.85930.31620.023*
C50.55578 (7)1.0069 (2)0.41439 (8)0.0175 (3)
C60.60491 (7)0.9945 (2)0.47962 (8)0.0170 (3)
H60.61291.09860.51490.020*
C70.51514 (8)1.3060 (2)0.45380 (9)0.0211 (3)
H7A0.50631.24340.49870.032*
H7B0.48321.40550.43490.032*
H7C0.55701.36630.46750.032*
C80.69160 (7)0.8057 (2)0.56359 (8)0.0164 (3)
H80.69870.91250.59760.020*
C90.77299 (7)0.6029 (2)0.65047 (8)0.0158 (3)
C100.79878 (7)0.4110 (2)0.65524 (9)0.0181 (3)
C110.84717 (7)0.3589 (2)0.71999 (9)0.0201 (3)
H110.86450.23210.72380.024*
C120.86950 (7)0.4950 (2)0.77875 (8)0.0190 (3)
H120.90200.46040.82180.023*
C130.84290 (7)0.6831 (2)0.77270 (8)0.0175 (3)
C140.79444 (7)0.7395 (2)0.70949 (8)0.0172 (3)
H140.77670.86570.70660.021*
Cl10.873014 (18)0.85790 (6)0.84450 (2)0.02270 (12)
N10.72613 (6)0.64456 (19)0.58204 (7)0.0165 (3)
H10.71920.55220.54770.020*
O10.66836 (5)0.50302 (16)0.45048 (6)0.0219 (3)
O20.51359 (5)1.16195 (17)0.39490 (6)0.0229 (3)
O30.77355 (5)0.28754 (18)0.59629 (7)0.0236 (3)
H3A0.7990 (11)0.196 (3)0.5898 (15)0.055 (8)*
O40.50000.3573 (10)0.25000.0253 (14)0.25
H4A0.500 (4)0.286 (5)0.2880 (13)0.03 (2)*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0144 (7)0.0192 (7)0.0150 (6)0.0005 (6)0.0028 (5)0.0001 (6)
C20.0154 (7)0.0190 (7)0.0166 (7)0.0000 (6)0.0033 (5)0.0010 (6)
C30.0184 (7)0.0226 (8)0.0155 (7)0.0012 (6)0.0023 (6)0.0039 (6)
C40.0166 (7)0.0262 (8)0.0127 (7)0.0004 (6)0.0012 (5)0.0000 (6)
C50.0158 (7)0.0202 (7)0.0167 (7)0.0021 (6)0.0043 (5)0.0017 (6)
C60.0173 (7)0.0187 (7)0.0147 (6)0.0001 (6)0.0037 (5)0.0016 (5)
C70.0221 (8)0.0180 (7)0.0213 (7)0.0030 (6)0.0017 (6)0.0009 (6)
C80.0142 (7)0.0192 (7)0.0161 (7)0.0004 (6)0.0045 (5)0.0018 (6)
C90.0119 (6)0.0217 (7)0.0139 (6)0.0004 (6)0.0031 (5)0.0008 (6)
C100.0165 (7)0.0194 (7)0.0180 (7)0.0003 (6)0.0031 (6)0.0021 (6)
C110.0178 (7)0.0196 (7)0.0220 (7)0.0035 (6)0.0030 (6)0.0025 (6)
C120.0153 (7)0.0245 (8)0.0158 (7)0.0016 (6)0.0011 (5)0.0043 (6)
C130.0143 (7)0.0235 (8)0.0146 (7)0.0019 (6)0.0035 (5)0.0017 (6)
C140.0158 (7)0.0183 (7)0.0166 (7)0.0018 (6)0.0021 (5)0.0009 (6)
Cl10.0219 (2)0.0258 (2)0.01674 (19)0.00025 (14)0.00266 (14)0.00406 (14)
N10.0151 (6)0.0184 (6)0.0142 (6)0.0007 (5)0.0001 (5)0.0018 (5)
O10.0205 (5)0.0206 (6)0.0221 (5)0.0040 (4)0.0002 (4)0.0053 (4)
O20.0226 (6)0.0233 (6)0.0189 (5)0.0078 (4)0.0030 (4)0.0015 (4)
O30.0206 (6)0.0228 (6)0.0238 (6)0.0049 (5)0.0016 (4)0.0077 (5)
O40.036 (4)0.021 (3)0.016 (3)0.0000.001 (3)0.000
Geometric parameters (Å, º) top
C1—C81.412 (2)C8—H80.9300
C1—C61.426 (2)C9—C141.389 (2)
C1—C21.433 (2)C9—C101.404 (2)
C2—O11.2924 (18)C9—N11.4050 (18)
C2—C31.427 (2)C10—O31.3459 (18)
C3—C41.359 (2)C10—C111.395 (2)
C3—H30.9300C11—C121.387 (2)
C4—C51.415 (2)C11—H110.9300
C4—H40.9300C12—C131.386 (2)
C5—C61.366 (2)C12—H120.9300
C5—O21.3720 (18)C13—C141.385 (2)
C6—H60.9300C13—Cl11.7438 (15)
C7—O21.4229 (19)C14—H140.9300
C7—H7A0.9600N1—H10.8600
C7—H7B0.9600O3—H3A0.852 (17)
C7—H7C0.9600O4—H4A0.831 (19)
C8—N11.3122 (19)
C8—C1—C6118.69 (13)N1—C8—H8119.2
C8—C1—C2120.36 (14)C1—C8—H8119.2
C6—C1—C2120.91 (13)C14—C9—C10120.98 (13)
O1—C2—C3121.57 (14)C14—C9—N1123.82 (13)
O1—C2—C1121.51 (13)C10—C9—N1115.19 (13)
C3—C2—C1116.90 (14)O3—C10—C11124.28 (14)
C4—C3—C2120.85 (14)O3—C10—C9116.60 (13)
C4—C3—H3119.6C11—C10—C9119.10 (14)
C2—C3—H3119.6C12—C11—C10120.35 (14)
C3—C4—C5121.89 (13)C12—C11—H11119.8
C3—C4—H4119.1C10—C11—H11119.8
C5—C4—H4119.1C13—C12—C11119.30 (13)
C6—C5—O2125.86 (14)C13—C12—H12120.3
C6—C5—C4119.79 (14)C11—C12—H12120.3
O2—C5—C4114.34 (12)C14—C13—C12121.88 (14)
C5—C6—C1119.64 (14)C14—C13—Cl1118.58 (12)
C5—C6—H6120.2C12—C13—Cl1119.49 (11)
C1—C6—H6120.2C13—C14—C9118.37 (14)
O2—C7—H7A109.5C13—C14—H14120.8
O2—C7—H7B109.5C9—C14—H14120.8
H7A—C7—H7B109.5C8—N1—C9128.60 (13)
O2—C7—H7C109.5C8—N1—H1115.7
H7A—C7—H7C109.5C9—N1—H1115.7
H7B—C7—H7C109.5C5—O2—C7116.07 (11)
N1—C8—C1121.66 (14)C10—O3—H3A114.0 (18)
C8—C1—C2—O12.1 (2)C14—C9—C10—C110.7 (2)
C6—C1—C2—O1179.69 (14)N1—C9—C10—C11177.86 (14)
C8—C1—C2—C3176.39 (14)O3—C10—C11—C12178.82 (15)
C6—C1—C2—C31.2 (2)C9—C10—C11—C120.1 (2)
O1—C2—C3—C4178.48 (14)C10—C11—C12—C130.5 (2)
C1—C2—C3—C40.0 (2)C11—C12—C13—C140.0 (2)
C2—C3—C4—C50.6 (2)C11—C12—C13—Cl1177.44 (12)
C3—C4—C5—C60.0 (2)C12—C13—C14—C90.9 (2)
C3—C4—C5—O2179.47 (14)Cl1—C13—C14—C9176.63 (11)
O2—C5—C6—C1178.19 (14)C10—C9—C14—C131.2 (2)
C4—C5—C6—C11.2 (2)N1—C9—C14—C13177.27 (14)
C8—C1—C6—C5175.82 (14)C1—C8—N1—C9176.94 (14)
C2—C1—C6—C51.8 (2)C14—C9—N1—C85.5 (2)
C6—C1—C8—N1175.38 (14)C10—C9—N1—C8175.95 (14)
C2—C1—C8—N12.3 (2)C6—C5—O2—C710.6 (2)
C14—C9—C10—O3178.07 (14)C4—C5—O2—C7168.79 (13)
N1—C9—C10—O33.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.842.5511 (16)140
N1—H1···O30.862.192.6063 (17)109
C3—H3···O40.932.433.279 (5)151
O4—H4A···O2i0.83 (2)2.03 (2)2.842 (3)166 (6)
O3—H3A···O1ii0.85 (2)1.74 (2)2.5652 (16)162 (3)
C12—H12···O2iii0.932.563.4372 (18)157
C7—H7A···Cg1iv0.962.833.644 (2)143
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y+1/2, z+1; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC14H12ClNO3·0.25H2O
Mr279.95
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)21.3670 (11), 6.7600 (3), 17.7404 (9)
β (°) 103.841 (4)
V3)2488.0 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.68 × 0.54 × 0.41
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.970, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
6976, 2588, 2352
Rint0.022
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.086, 1.09
No. of reflections2588
No. of parameters186
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.31

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.842.5511 (16)139.5
N1—H1···O30.862.192.6063 (17)109.1
C3—H3···O40.932.433.279 (5)151.3
O4—H4A···O2i0.831 (19)2.029 (19)2.842 (3)166 (6)
O3—H3A···O1ii0.852 (17)1.743 (18)2.5652 (16)162 (3)
C12—H12···O2iii0.932.563.4372 (18)156.5
C7—H7A···Cg1iv0.962.8343.644 (2)142.64
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y+1/2, z+1; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1/2, y+3/2, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the diffractometer (purchased under grant No. F.279 of the University Research Fund).

References

First citationBüyükgüngör, O., Odabaşoğlu, M., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1996–o1998.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationErsanlı, C. C., Albayrak, Ç., Odabaşoğlu, M. & Erdönmez, A. (2003). Acta Cryst. C59, o601–o602.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M., Albayrak, Ç. & Büyükgüngör, O. (2004). Acta Cryst. E60, o142–o144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. C63, o177–o180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzek, A., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2008). Acta Cryst. E64, o1613–o1614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1104
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds