organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1083

2-Bromo-1-mesitylethanone

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 31 March 2009; accepted 1 April 2009; online 22 April 2009)

In the mol­ecule of the title compound, C11H13BrO, the adjacent C atoms are almost coplanar with the aromatic ring [maximum deviation 0.035 (3) Å]. In the crystal structure, weak inter­molecular C—H⋯O inter­actions link the mol­ecules into chains along the b axis. A very weak C—H⋯π inter­action is also present.

Related literature

The title compound is used to synthesize organic electronic devices, see: Rose et al. (2008[Rose, J. M., Deplace, F., Lynd, N. A., Wang, Z., Hotta, A., Lobkovsky, E. B., Edward, J., Kramer, E. K. & Coates, G. W. (2008). Macromolecules, 41, 9548-9555.]). For a related structure, see: Guss (1953[Guss, C. O. (1953). J. Am. Chem. Soc. 75, 3177-3179.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13BrO

  • Mr = 241.12

  • Orthorhombic, P b c a

  • a = 15.379 (3) Å

  • b = 8.2820 (17) Å

  • c = 17.374 (4) Å

  • V = 2212.9 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.68 mm−1

  • T = 294 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.527, Tmax = 0.710

  • 3509 measured reflections

  • 2002 independent reflections

  • 805 reflections with I > 2σ(I)

  • Rint = 0.099

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.095

  • S = 1.00

  • 2002 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯Oi 0.96 2.52 3.462 (7) 166
C11—H11A⋯Oi 0.97 2.36 3.308 (7) 167
C7—H7CCg1ii 0.96 2.94 3.722 (3) 140
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x, -y+1, -z+1. Cg1 is the centroid of the C1–C6 ring.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is used to synthesize organic electronic devices and medical intermediates (Rose et al., 2008). We report herein the crystal structure of the title compound, which is interested to us in the field.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1-C6) is, of course, planar. Atoms C7, C8, C9 and C10 are -0.012 (2), -0.019 (3), -0.035 (3) and -0.006 (3) Å away from the ring plane of A, respectively.

In the crystal structure, weak intermolecular C-H···O interactions (Table 1) link the molecules into chains along the b axis, in which they may be effective in the stabilization of the structure. There also exists a weak C—H···π interaction (Table 1).

Related literature top

The title compound is used to synthesize organic electronic devices and medical intermediates, see: Rose et al. (2008). For a related structure, see: Guss (1953). For bond-length data, see: Allen et al. (1987). Cg1 is the centroid of the C1–C6 ring.

Experimental top

The title compound, (m.p. 323-324 K), was prepared according to the literature method (Guss, 1953). Crystals suitable for X-ray analysis were obtained by dissolving the title compound (0.2 g) in ethyl acetate (50 ml) and evaporating the solvent slowly at room temperature for about 3 d.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
2-bromo-1-mesitylethanone top
Crystal data top
C11H13BrOF(000) = 976
Mr = 241.12Dx = 1.447 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 15.379 (3) Åθ = 10–13°
b = 8.2820 (17) ŵ = 3.68 mm1
c = 17.374 (4) ÅT = 294 K
V = 2212.9 (8) Å3Needle, colorless
Z = 80.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
805 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.099
Graphite monochromatorθmax = 25.3°, θmin = 2.3°
ω/2θ scansh = 018
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.527, Tmax = 0.710l = 2012
3509 measured reflections3 standard reflections every 120 min
2002 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.022P)2]
where P = (Fo2 + 2Fc2)/3
2002 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C11H13BrOV = 2212.9 (8) Å3
Mr = 241.12Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.379 (3) ŵ = 3.68 mm1
b = 8.2820 (17) ÅT = 294 K
c = 17.374 (4) Å0.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
805 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.099
Tmin = 0.527, Tmax = 0.7103 standard reflections every 120 min
3509 measured reflections intensity decay: 1%
2002 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.00Δρmax = 0.28 e Å3
2002 reflectionsΔρmin = 0.29 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.22106 (4)0.01688 (8)0.59900 (4)0.0758 (3)
O0.1783 (3)0.1396 (5)0.7510 (3)0.0853 (16)
C10.0250 (4)0.1475 (7)0.8818 (4)0.0557 (19)
H1A0.08520.15830.88160.067*
C20.0138 (4)0.0860 (6)0.8160 (4)0.0461 (16)
C30.1038 (4)0.0675 (6)0.8208 (4)0.0458 (17)
C40.1509 (4)0.1135 (7)0.8840 (4)0.0462 (17)
C50.1083 (4)0.1744 (7)0.9464 (4)0.0540 (18)
H5A0.14000.20400.98980.065*
C60.0180 (5)0.1932 (7)0.9465 (4)0.062 (2)
C70.0290 (3)0.2598 (7)1.0151 (4)0.079 (2)
H7A0.09030.26241.00480.119*
H7B0.00880.36721.02550.119*
H7C0.01810.19241.05900.119*
C80.0388 (3)0.0364 (6)0.7488 (3)0.0630 (18)
H8A0.09890.06010.75830.094*
H8B0.03190.07740.74030.094*
H8C0.01960.09440.70400.094*
C90.2492 (3)0.0917 (7)0.8895 (3)0.068 (2)
H9A0.26920.13040.93850.101*
H9B0.27690.15170.84910.101*
H9C0.26330.02070.88430.101*
C100.1514 (4)0.0002 (8)0.7513 (3)0.0459 (15)
C110.1681 (3)0.1137 (7)0.6882 (3)0.0592 (19)
H11A0.20570.19910.70690.071*
H11B0.11350.16280.67290.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0835 (6)0.0705 (5)0.0734 (5)0.0009 (5)0.0146 (4)0.0066 (5)
O0.111 (4)0.057 (3)0.088 (4)0.040 (3)0.016 (3)0.015 (3)
C10.033 (4)0.044 (4)0.090 (6)0.000 (3)0.021 (4)0.011 (4)
C20.037 (5)0.036 (4)0.065 (5)0.002 (3)0.000 (4)0.005 (4)
C30.044 (5)0.030 (4)0.064 (5)0.002 (3)0.011 (4)0.009 (3)
C40.026 (4)0.041 (4)0.072 (6)0.004 (3)0.005 (4)0.001 (4)
C50.047 (5)0.050 (4)0.065 (5)0.008 (4)0.004 (4)0.002 (4)
C60.087 (7)0.039 (4)0.059 (6)0.005 (5)0.016 (5)0.002 (4)
C70.075 (6)0.084 (5)0.079 (7)0.015 (4)0.011 (5)0.009 (5)
C80.049 (4)0.054 (4)0.085 (5)0.000 (4)0.021 (4)0.002 (4)
C90.048 (5)0.080 (5)0.075 (5)0.016 (3)0.015 (4)0.014 (4)
C100.038 (4)0.038 (4)0.061 (4)0.005 (4)0.016 (3)0.010 (5)
C110.042 (4)0.065 (5)0.070 (5)0.002 (3)0.003 (4)0.003 (4)
Geometric parameters (Å, º) top
Br—C111.925 (6)C6—C71.499 (8)
O—C101.226 (6)C7—H7A0.9600
C1—C61.358 (9)C7—H7B0.9600
C1—C21.387 (8)C7—H7C0.9600
C1—H1A0.9300C8—H8A0.9600
C2—C31.396 (7)C8—H8B0.9600
C2—C81.479 (7)C8—H8C0.9600
C3—C41.369 (8)C9—H9A0.9600
C3—C101.519 (8)C9—H9B0.9600
C4—C51.364 (7)C9—H9C0.9600
C4—C91.526 (7)C10—C111.470 (7)
C5—C61.399 (7)C11—H11A0.9700
C5—H5A0.9300C11—H11B0.9700
C6—C1—C2125.2 (6)H7B—C7—H7C109.5
C6—C1—H1A117.4C2—C8—H8A109.5
C2—C1—H1A117.4C2—C8—H8B109.5
C1—C2—C3114.7 (6)H8A—C8—H8B109.5
C1—C2—C8121.2 (6)C2—C8—H8C109.5
C3—C2—C8124.0 (6)H8A—C8—H8C109.5
C4—C3—C2122.8 (6)H8B—C8—H8C109.5
C4—C3—C10119.0 (6)C4—C9—H9A109.5
C2—C3—C10118.1 (6)C4—C9—H9B109.5
C5—C4—C3119.1 (6)H9A—C9—H9B109.5
C5—C4—C9118.0 (6)C4—C9—H9C109.5
C3—C4—C9122.8 (6)H9A—C9—H9C109.5
C4—C5—C6121.3 (6)H9B—C9—H9C109.5
C4—C5—H5A119.4O—C10—C11122.8 (6)
C6—C5—H5A119.4O—C10—C3120.9 (5)
C1—C6—C5116.8 (7)C11—C10—C3116.1 (6)
C1—C6—C7121.8 (7)C10—C11—Br114.0 (4)
C5—C6—C7121.4 (8)C10—C11—H11A108.7
C6—C7—H7A109.5Br—C11—H11A108.7
C6—C7—H7B109.5C10—C11—H11B108.7
H7A—C7—H7B109.5Br—C11—H11B108.7
C6—C7—H7C109.5H11A—C11—H11B107.6
H7A—C7—H7C109.5
C6—C1—C2—C32.1 (9)C9—C4—C5—C6178.0 (5)
C6—C1—C2—C8178.8 (6)C2—C1—C6—C50.8 (10)
C1—C2—C3—C43.0 (8)C2—C1—C6—C7179.6 (6)
C8—C2—C3—C4179.6 (6)C4—C5—C6—C10.2 (9)
C1—C2—C3—C10179.6 (5)C4—C5—C6—C7179.9 (6)
C8—C2—C3—C103.0 (8)C4—C3—C10—O77.5 (8)
C2—C3—C4—C52.6 (9)C2—C3—C10—O105.0 (7)
C10—C3—C4—C5180.0 (5)C4—C3—C10—C1198.3 (6)
C2—C3—C4—C9179.4 (5)C2—C3—C10—C1179.2 (7)
C10—C3—C4—C93.3 (8)O—C10—C11—Br8.5 (8)
C3—C4—C5—C61.2 (9)C3—C10—C11—Br175.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···Oi0.962.523.462 (7)166
C11—H11A···Oi0.972.363.308 (7)167
C7—H7C···Cg1ii0.962.943.722 (3)140
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H13BrO
Mr241.12
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)15.379 (3), 8.2820 (17), 17.374 (4)
V3)2212.9 (8)
Z8
Radiation typeMo Kα
µ (mm1)3.68
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.527, 0.710
No. of measured, independent and
observed [I > 2σ(I)] reflections
3509, 2002, 805
Rint0.099
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.095, 1.00
No. of reflections2002
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.29

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···Oi0.962.523.462 (7)166
C11—H11A···Oi0.972.363.308 (7)167
C7—H7C···Cg1ii0.962.943.722 (3)140
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGuss, C. O. (1953). J. Am. Chem. Soc. 75, 3177–3179.  CrossRef CAS Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRose, J. M., Deplace, F., Lynd, N. A., Wang, Z., Hotta, A., Lobkovsky, E. B., Edward, J., Kramer, E. K. & Coates, G. W. (2008). Macromolecules, 41, 9548–9555.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1083
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds