organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1054

4-(4-Meth­oxy­phen­yl)-3-methyl-1,6-di­oxa-2,8-di­aza-s-indacen-5(7H)-one

aCollege of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: xhzhang1119@sohu.com

(Received 7 April 2009; accepted 8 April 2009; online 18 April 2009)

In the mol­ecule of the title compound, C16H12N2O4, the pyridine ring is oriented at the same dihedral angle of 2.92 (3)° with respect to the furan and isoxazole rings, while the dihedral angle between furan and isoxazole rings is 1.34 (3)°. The dihedral angle between the benzene and pyridine rings is 53.23 (3)°. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into chains. Weak ππ contacts between isoxazole and benzene rings [centroid–centroid distance = 3.969 (3) Å] may further stabilize the structure.

Related literature

For general background to isoxazoles, see: Pinho & Teresa (2005[Pinho, E. M. & Teresa, M. V. D. (2005). Curr. Org. Chem. 9, 925-958.]); Shin et al. (2005[Shin, K. D., Lee, M. Y., Shin, D. S., Lee, S., Son, K. H., Koh, S., Paik, Y. K., Kwon, B. M. & Han, D. C. (2005). J. Biol. Chem. 280, 41439-41448.]); Tatee et al. (1987[Tatee, T., Narita, K., Kurashige, S., Ito, S., Miyazaki, H., Yamanaka, H., Mizugaki, M., Sakamoto, T. & Fukuda, H. (1987). Chem. Pharm. Bull. 35, 3676-3690.]). For a related structure, see: Chande et al. (2005[Chande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B. & Ajaikumar, K. B. (2005). Eur. J. Med. Chem. 40, 1143-1148.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O4

  • Mr = 296.28

  • Monoclinic, P 21 /c

  • a = 13.8513 (16) Å

  • b = 7.6116 (11) Å

  • c = 12.6732 (15) Å

  • β = 95.592 (1)°

  • V = 1329.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.14 × 0.11 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.985, Tmax = 0.995

  • 6625 measured reflections

  • 2333 independent reflections

  • 1267 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.093

  • S = 1.03

  • 2333 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O2i 0.97 2.39 3.215 (3) 143
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Isoxazole is one of the important heterocyclic units, which has been widely used as a key building block for pharmaceutical agents. Its derivatives are endowed with many pharmacological properties, such as hypoglycemic, analgesic, anti-inflammatory, anti-bacterial, anti-cancer and anti-HIV activities (Shin et al., 2005). Besides, they also have agrochemical properties including herbicidal and soil fungicidal activities, thus they have been used as pesticides and insecticides (Pinho & Teresa, 2005). Among the derivatives of isoxazole, isoxazolopyridine has evoked people's interest and concern, since it showed muscle relaxant, anticonvulsant and CNS depressant activities (Tatee et al., 1987). To the best of our knowledge, modification and synthesis of polycyclic-fused isoxazolopyridine have never been reported. Thus, synthesis of structurally diverse isoxazole-based (Chande et al., 2005) small molecules is of great significance. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (O1/C1-C4), B (O3/N2/C6-C8), C (N1/C1/C4-C7) and D (C10-C15) are, of course, planar, and they are oriented at dihedral angles of A/B = 1.34 (3), A/C = 2.92 (3), A/D = 56.13 (4), B/C = 2.92 (3), B/D = 55.97 (4) and C/D = 53.23 (3) °.

In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contact between the isoxazole and phenyl rings, Cg2—Cg4i [symmetry code: (i) x, 3/2 - y, z + 1/2, where Cg2 and Cg4 are centroids of the rings B (O3/N2/C6-C8) and D (C10-C15), respectively] may further stabilize the structure, with centroid-centroid distance of 3.969 (3) Å.

Related literature top

For general background to isoxazoles, see: Pinho & Teresa (2005); Shin et al. (2005); Tatee et al. (1987). For a related structure, see: Chande et al. (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of 4-methoxybenzaldehyde (1 mmol), tetronic acid (1 mmol) and 3-methylisoxazol-5-amine (1 mmol) in water (2 ml). Crystals suitable for X-ray analysis were obtained by slow evaporation of an aqueous ethanol solution (95%) (yield; 91%, m.p. 504-506 K). IR (cm-1): 1759; 1H NMR (DMSO-d6): 7.56 (d, 2H, J = 8.8 Hz, ArH), 7.12 (d, 2H, J = 8.8 Hz, ArH), 5.49 (s, 2H, CH2), 3.87 (s, 3H, OCH3), 2.16 (s, 3H, CH3); 13C NMR (DMSO-d6): 171.84, 170.16, 167.00, 160.71, 157.07, 149.38, 131.54, 121.73, 113.40, 113.30, 112.89, 68.72, 55.30, 12.86.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
4-(4-Methoxyphenyl)-3-methyl-1,6-dioxa-2,8-diaza-s- indacen-5(7H)-one top
Crystal data top
C16H12N2O4F(000) = 616
Mr = 296.28Dx = 1.480 Mg m3
Monoclinic, P21/cMelting point = 504–506 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.8513 (16) ÅCell parameters from 1263 reflections
b = 7.6116 (11) Åθ = 3.0–27.5°
c = 12.6732 (15) ŵ = 0.11 mm1
β = 95.592 (1)°T = 298 K
V = 1329.8 (3) Å3Block, colorless
Z = 40.14 × 0.11 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2333 independent reflections
Radiation source: fine-focus sealed tube1267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.985, Tmax = 0.995k = 59
6625 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0242P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2333 reflectionsΔρmax = 0.14 e Å3
201 parametersΔρmin = 0.19 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C16H12N2O4V = 1329.8 (3) Å3
Mr = 296.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8513 (16) ŵ = 0.11 mm1
b = 7.6116 (11) ÅT = 298 K
c = 12.6732 (15) Å0.14 × 0.11 × 0.05 mm
β = 95.592 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2333 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1267 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.995Rint = 0.085
6625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058201 parameters
wR(F2) = 0.093H-atom parameters constrained
S = 1.03Δρmax = 0.14 e Å3
2333 reflectionsΔρmin = 0.19 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.19564 (17)0.0001 (3)0.93775 (17)0.0496 (6)
N20.42384 (17)0.1679 (3)0.8929 (2)0.0646 (7)
O10.00728 (12)0.1886 (3)0.77882 (13)0.0530 (5)
O20.03096 (12)0.1945 (3)0.61265 (14)0.0561 (5)
O30.35098 (14)0.1183 (3)0.95948 (14)0.0625 (6)
O40.30666 (13)0.0742 (2)0.28784 (14)0.0553 (6)
C10.1314 (2)0.0595 (3)0.8621 (2)0.0413 (7)
C20.03488 (19)0.1313 (4)0.8820 (2)0.0545 (8)
H2A0.00490.04150.91060.065*
H2B0.04180.22910.93120.065*
C30.05378 (18)0.1546 (4)0.7033 (2)0.0431 (7)
C40.14180 (18)0.0708 (3)0.75423 (18)0.0371 (6)
C50.22780 (17)0.0190 (3)0.71290 (19)0.0364 (6)
C60.29723 (19)0.0463 (3)0.7918 (2)0.0411 (7)
C70.2760 (2)0.0493 (4)0.8971 (2)0.0461 (7)
C80.3921 (2)0.1270 (4)0.7960 (2)0.0496 (7)
C90.45235 (19)0.1739 (4)0.7089 (2)0.0653 (9)
H9A0.48370.07030.68570.098*
H9B0.41170.22320.65070.098*
H9C0.50060.25840.73440.098*
C100.24536 (17)0.0332 (3)0.60100 (18)0.0366 (6)
C110.18199 (17)0.0388 (3)0.52099 (19)0.0410 (7)
H110.12630.09550.53850.049*
C120.19987 (17)0.0281 (3)0.41641 (19)0.0424 (7)
H120.15670.07840.36420.051*
C130.28166 (18)0.0570 (4)0.3886 (2)0.0411 (7)
C140.34544 (18)0.1327 (3)0.4676 (2)0.0438 (7)
H140.40020.19210.44980.053*
C150.32724 (17)0.1194 (3)0.5715 (2)0.0420 (7)
H150.37060.16910.62370.050*
C160.2431 (2)0.0018 (4)0.2031 (2)0.0576 (8)
H16A0.23550.12190.21450.086*
H16B0.27030.02030.13710.086*
H16C0.18100.05840.20080.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0622 (16)0.0493 (17)0.0355 (14)0.0014 (14)0.0045 (12)0.0028 (12)
N20.0610 (16)0.0695 (19)0.0598 (18)0.0076 (15)0.0117 (14)0.0066 (14)
O10.0524 (11)0.0708 (14)0.0364 (12)0.0069 (11)0.0064 (9)0.0018 (10)
O20.0512 (11)0.0798 (15)0.0365 (12)0.0089 (11)0.0012 (9)0.0128 (11)
O30.0690 (13)0.0704 (16)0.0447 (13)0.0046 (12)0.0123 (11)0.0081 (11)
O40.0597 (12)0.0746 (15)0.0319 (12)0.0042 (11)0.0065 (10)0.0003 (10)
C10.0515 (16)0.0396 (18)0.0320 (16)0.0066 (14)0.0008 (13)0.0008 (13)
C20.0623 (19)0.067 (2)0.0340 (17)0.0022 (17)0.0060 (14)0.0004 (15)
C30.0476 (17)0.048 (2)0.0345 (17)0.0057 (15)0.0068 (14)0.0007 (14)
C40.0417 (15)0.0376 (17)0.0311 (16)0.0049 (13)0.0001 (12)0.0018 (12)
C50.0430 (15)0.0349 (17)0.0294 (15)0.0061 (13)0.0056 (12)0.0006 (12)
C60.0458 (16)0.0413 (18)0.0351 (17)0.0052 (14)0.0020 (13)0.0021 (13)
C70.0537 (18)0.0376 (19)0.0431 (19)0.0019 (15)0.0154 (15)0.0031 (14)
C80.0483 (17)0.049 (2)0.0489 (19)0.0036 (16)0.0102 (14)0.0005 (15)
C90.0561 (18)0.069 (2)0.069 (2)0.0130 (18)0.0001 (16)0.0028 (17)
C100.0384 (15)0.0395 (18)0.0310 (16)0.0010 (13)0.0012 (12)0.0006 (12)
C110.0371 (15)0.0471 (19)0.0385 (18)0.0041 (13)0.0015 (12)0.0026 (13)
C120.0411 (16)0.050 (2)0.0339 (17)0.0022 (15)0.0058 (13)0.0066 (13)
C130.0441 (16)0.0436 (19)0.0355 (17)0.0061 (14)0.0030 (13)0.0004 (13)
C140.0389 (15)0.051 (2)0.0418 (18)0.0034 (14)0.0049 (13)0.0020 (14)
C150.0380 (15)0.0470 (19)0.0393 (17)0.0039 (14)0.0052 (12)0.0028 (14)
C160.080 (2)0.057 (2)0.0342 (17)0.0050 (18)0.0010 (15)0.0030 (15)
Geometric parameters (Å, º) top
N1—C11.324 (3)C6—C81.446 (3)
N1—C71.325 (3)C8—C91.490 (4)
N2—C81.302 (3)C9—H9A0.9600
N2—O31.428 (3)C9—H9B0.9600
O1—C31.363 (3)C9—H9C0.9600
O1—C21.446 (3)C10—C111.388 (3)
O2—C31.200 (3)C10—C151.393 (3)
O3—C71.349 (3)C11—C121.374 (3)
O4—C131.361 (3)C11—H110.9300
O4—C161.431 (3)C12—C131.380 (3)
C1—C41.391 (3)C12—H120.9300
C1—C21.488 (3)C13—C141.394 (3)
C2—H2A0.9700C14—C151.368 (3)
C2—H2B0.9700C14—H140.9300
C3—C41.469 (3)C15—H150.9300
C4—C51.404 (3)C16—H16A0.9600
C5—C61.409 (3)C16—H16B0.9600
C5—C101.466 (3)C16—H16C0.9600
C6—C71.395 (3)
C1—N1—C7110.3 (2)C6—C8—C9130.3 (3)
C8—N2—O3107.5 (2)C8—C9—H9A109.5
C3—O1—C2110.7 (2)C8—C9—H9B109.5
C7—O3—N2107.8 (2)H9A—C9—H9B109.5
C13—O4—C16118.2 (2)C8—C9—H9C109.5
N1—C1—C4127.3 (3)H9A—C9—H9C109.5
N1—C1—C2123.7 (2)H9B—C9—H9C109.5
C4—C1—C2109.0 (2)C11—C10—C15117.6 (2)
O1—C2—C1104.4 (2)C11—C10—C5121.7 (2)
O1—C2—H2A110.9C15—C10—C5120.7 (2)
C1—C2—H2A110.9C12—C11—C10121.4 (2)
O1—C2—H2B110.9C12—C11—H11119.3
C1—C2—H2B110.9C10—C11—H11119.3
H2A—C2—H2B108.9C11—C12—C13120.2 (2)
O2—C3—O1120.0 (2)C11—C12—H12119.9
O2—C3—C4131.4 (2)C13—C12—H12119.9
O1—C3—C4108.6 (2)O4—C13—C12125.1 (2)
C1—C4—C5121.5 (2)O4—C13—C14115.6 (2)
C1—C4—C3107.3 (2)C12—C13—C14119.3 (2)
C5—C4—C3131.0 (2)C15—C14—C13119.8 (2)
C4—C5—C6112.3 (2)C15—C14—H14120.1
C4—C5—C10124.6 (2)C13—C14—H14120.1
C6—C5—C10123.1 (2)C14—C15—C10121.7 (2)
C7—C6—C5119.5 (3)C14—C15—H15119.2
C7—C6—C8103.5 (2)C10—C15—H15119.2
C5—C6—C8136.9 (3)O4—C16—H16A109.5
N1—C7—O3120.7 (3)O4—C16—H16B109.5
N1—C7—C6129.1 (3)H16A—C16—H16B109.5
O3—C7—C6110.2 (3)O4—C16—H16C109.5
N2—C8—C6111.0 (2)H16A—C16—H16C109.5
N2—C8—C9118.6 (3)H16B—C16—H16C109.5
C8—N2—O3—C70.6 (3)N2—O3—C7—C61.7 (3)
C7—N1—C1—C40.6 (4)C5—C6—C7—N11.1 (4)
C7—N1—C1—C2177.6 (2)C8—C6—C7—N1176.1 (3)
C3—O1—C2—C11.0 (3)C5—C6—C7—O3179.2 (2)
N1—C1—C2—O1176.8 (2)C8—C6—C7—O32.0 (3)
C4—C1—C2—O11.6 (3)O3—N2—C8—C60.7 (3)
C2—O1—C3—O2179.5 (2)O3—N2—C8—C9176.8 (2)
C2—O1—C3—C40.0 (3)C7—C6—C8—N21.7 (3)
N1—C1—C4—C51.1 (4)C5—C6—C8—N2178.1 (3)
C2—C1—C4—C5177.3 (2)C7—C6—C8—C9175.4 (3)
N1—C1—C4—C3176.8 (3)C5—C6—C8—C91.0 (5)
C2—C1—C4—C31.7 (3)C4—C5—C10—C1153.8 (4)
O2—C3—C4—C1178.3 (3)C6—C5—C10—C11127.3 (3)
O1—C3—C4—C11.1 (3)C4—C5—C10—C15126.5 (3)
O2—C3—C4—C53.2 (5)C6—C5—C10—C1552.4 (4)
O1—C3—C4—C5176.1 (2)C15—C10—C11—C121.0 (4)
C1—C4—C5—C61.4 (3)C5—C10—C11—C12178.7 (2)
C3—C4—C5—C6175.9 (3)C10—C11—C12—C130.7 (4)
C1—C4—C5—C10177.6 (2)C16—O4—C13—C121.1 (4)
C3—C4—C5—C103.1 (4)C16—O4—C13—C14179.0 (2)
C4—C5—C6—C71.4 (3)C11—C12—C13—O4179.5 (2)
C10—C5—C6—C7177.7 (2)C11—C12—C13—C140.4 (4)
C4—C5—C6—C8174.6 (3)O4—C13—C14—C15178.8 (2)
C10—C5—C6—C86.4 (5)C12—C13—C14—C151.1 (4)
C1—N1—C7—O3178.5 (2)C13—C14—C15—C100.8 (4)
C1—N1—C7—C60.6 (4)C11—C10—C15—C140.3 (4)
N2—O3—C7—N1176.5 (2)C5—C10—C15—C14179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O2i0.972.393.215 (3)143
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H12N2O4
Mr296.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.8513 (16), 7.6116 (11), 12.6732 (15)
β (°) 95.592 (1)
V3)1329.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.14 × 0.11 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.985, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
6625, 2333, 1267
Rint0.085
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.093, 1.03
No. of reflections2333
No. of parameters201
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O2i0.972.393.215 (3)143
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20672090) and the Natural Science Foundation of Jiangsu Province (grant No. BK2006033) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B. & Ajaikumar, K. B. (2005). Eur. J. Med. Chem. 40, 1143–1148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPinho, E. M. & Teresa, M. V. D. (2005). Curr. Org. Chem. 9, 925–958.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, K. D., Lee, M. Y., Shin, D. S., Lee, S., Son, K. H., Koh, S., Paik, Y. K., Kwon, B. M. & Han, D. C. (2005). J. Biol. Chem. 280, 41439–41448.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTatee, T., Narita, K., Kurashige, S., Ito, S., Miyazaki, H., Yamanaka, H., Mizugaki, M., Sakamoto, T. & Fukuda, H. (1987). Chem. Pharm. Bull. 35, 3676–3690.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1054
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds