organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1151

7,14-Bis(4-bromo­phen­yl)-2,11,11-tri­methyl-1,4,10,12-tetra­oxa­di­spiro­[4.2.5.2]penta­decane-9,13-dione

aLianyungang Teachers' College, Lianyungang 222006, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: mollingmn1984@yahoo.com.cn

(Received 10 April 2009; accepted 16 April 2009; online 30 April 2009)

In the mol­ecule of the title compound, C26H26Br2O6, the cyclo­hexane ring is in a chair conformation, while the five-membered and 1,3-dioxane rings both adopt envelope conformations. The dihedral angle between the benzene rings is 77.21 (3)°. In the crystal structure, weak inter­molecular C—H⋯O inter­actions link the mol­ecules into centrosymmetric dimers, forming R22(14) ring motifs. One of the Br atoms, the methyl C and H atoms, and the C atom bonded to the methyl group of the five-membered ring are disordered over two positions. The Br atoms were refined with occupancies of 0.51 (4) and 0.49 (4), while the C and H atoms were refined with occupancies of 0.320 (18) and 0.680 (18).

Related literature

For general background, see: Davidson & Bernhard (1948[Davidson, D. & Bernhard, S. A. (1948). J. Am. Chem. Soc. 70, 3426-3428.]); Meldrum (1908[Meldrum, A. N. (1908). J. Chem. Soc. 93, 598-601.]); Muller et al. (2005[Muller, F. L., Constantieux, T. & Rodriguez, J. (2005). J. Am. Chem. Soc. 127, 17176-17177.]); Ramachary et al. (2003[Ramachary, D. B., Chowdari, N. S. & Barbas, C. F. III (2003). Angew. Chem. Int. Ed. 42, 4233-4237.]); Tietze & Beifuss (1993[Tietze, L. F. & Beifuss, U. (1993). Angew. Chem. Int. Ed. Engl. 32, 131-163.]); Tietze et al. (2001[Tietze, L. F., Evers, T. H. & Topken, E. (2001). Angew. Chem. Int. Ed. 40, 903-905.]). For related structures, see: Chande & Khanwelkar (2005[Chande, M. S. & Khanwelkar, R. R. (2005). Tetrahedron Lett. 46, 7787-7792.]); Ramachary & Barbas (2004[Ramachary, D. B. & Barbas, C. F. III (2004). Chem. Eur. J. 10, 5323-5231.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H26Br2O6

  • Mr = 594.29

  • Triclinic, [P \overline 1]

  • a = 7.356 (3) Å

  • b = 12.590 (5) Å

  • c = 14.852 (6) Å

  • α = 69.787 (6)°

  • β = 87.415 (7)°

  • γ = 79.243 (6)°

  • V = 1267.8 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.24 mm−1

  • T = 298 K

  • 0.18 × 0.11 × 0.09 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.594, Tmax = 0.759

  • 6454 measured reflections

  • 4330 independent reflections

  • 1413 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.146

  • S = 1.00

  • 4330 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯O5i 0.93 2.60 3.286 (2) 131
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Over the past few decades, Meldrum's acid (2,2-dimethyl-1,3-dioxane-4,6-dione) (Tietze & Beifuss, 1993; Tietze et al., 2001) has been used as a versatile organic reagent (Ramachary et al., 2003; Muller et al., 2005) and its derivatives are very useful building blocks in synthetic organic chemistry (Davidson & Bernhard, 1948; Meldrum, 1908). Spirocyclic compounds including a Meldrum's acid unit are attractive intermediates in the syntheses of natural products and in medicinal chemistry. Thus, the synthesis of new highly substituted spiro ring system with a Meldrum's acid unit has attracted widespread attention (Ramachary & Barbas, 2004; Chande & Khanwelkar, 2005). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C4-C9) is not planar, having total puckering amplitude, QT, of 0.576 (3) Å and chair conformation [ϕ = -150.30 (3) and θ = 3.77 (3) °] (Cremer & Pople, 1975). Rings D (C12-C17) and E (C18-C23) are, of course, planar, and they are oriented at a dihedral angle of D/E = 77.21 (3)°. Rings B (O1/O2/C1-C4) and C (O5/O6/C7/C24/C25) adopt envelope conformations, with atoms C2 and O5 displaced by -0.184 (3) and -0.291 (3) Å from the planes of the other rings atoms.

In the crystal structure, weak intermolecular C-H···O interactions (Table 1) link the molecules into centrosymmetric dimers forming R22(14) ring motifs (Fig. 2) (Bernstein et al., 1995), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Davidson & Bernhard (1948); Meldrum (1908); Muller et al. (2005); Ramachary et al. (2003); Tietze & Beifuss (1993); Tietze et al. (2001). For related structures, see: Chande & Khanwelkar (2005); Ramachary & Barbas (2004). For bond-length data, see: Allen et al. (1987). For ring-puckering parameters, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by the reaction of 1,2-diarylidenehydrazine (2 mmol), Meldrum's acid (5 mmol), HOAc (4 mL) and (S)-1,2-propanediol (8 ml). Upon completion, the reaction mixture was cooled to room temperature, and introduced into water. The solid was collected by washing with water. The combined solid was purified by ethanol.

Refinement top

The Br2, C25, H25, C26, H26A, H26B and H26C atoms were disordered. During the refinement process, the disordered C and H atoms were refined with occupancies of 0.320 (18) and 0.680 (18), while Br atoms were refined with occupancies of 0.51 (4) and 0.49 (4). H atoms were positioned geometrically, with C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
7,14-Bis(4-bromophenyl)-2,11,11-trimethyl-1,4,10,12- tetraoxadispiro[4.2.5.2]pentadecane-9,13-dione top
Crystal data top
C26H26Br2O6Z = 2
Mr = 594.29F(000) = 600
Triclinic, P1Dx = 1.557 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.356 (3) ÅCell parameters from 920 reflections
b = 12.590 (5) Åθ = 2.6–25.3°
c = 14.852 (6) ŵ = 3.24 mm1
α = 69.787 (6)°T = 298 K
β = 87.415 (7)°Prism, colorless
γ = 79.243 (6)°0.18 × 0.11 × 0.09 mm
V = 1267.8 (9) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4330 independent reflections
Radiation source: fine-focus sealed tube1413 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 84
Tmin = 0.594, Tmax = 0.759k = 1414
6454 measured reflectionsl = 1716
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.038P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4330 reflectionsΔρmax = 0.44 e Å3
327 parametersΔρmin = 0.32 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C26H26Br2O6γ = 79.243 (6)°
Mr = 594.29V = 1267.8 (9) Å3
Triclinic, P1Z = 2
a = 7.356 (3) ÅMo Kα radiation
b = 12.590 (5) ŵ = 3.24 mm1
c = 14.852 (6) ÅT = 298 K
α = 69.787 (6)°0.18 × 0.11 × 0.09 mm
β = 87.415 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4330 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1413 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.759Rint = 0.060
6454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.073327 parameters
wR(F2) = 0.146H-atom parameters constrained
S = 1.00Δρmax = 0.44 e Å3
4330 reflectionsΔρmin = 0.32 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Atom C25 is disordered over two sites, C25 and C25', for which occupation factors were refined and converged to 0.320 (18) and 0.680 (18), respectively. Atom Br2 is disordered over two sites, Br2 and Br2', for which occupation factors were refined and converged to 0.51 (4) and 0.49 (4), respectively

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.42012 (15)0.06501 (8)1.10942 (7)0.0968 (5)
Br20.153 (4)0.9617 (10)0.6351 (8)0.129 (4)0.51 (4)
Br2'0.052 (4)0.9718 (7)0.6478 (10)0.133 (4)0.49 (4)
O10.0177 (8)0.4886 (5)0.8942 (4)0.0710 (15)
O20.2101 (7)0.5229 (5)0.7764 (4)0.0800 (16)
O30.2839 (8)0.3774 (4)0.9013 (4)0.0636 (16)
O40.1776 (7)0.4473 (4)0.6644 (4)0.0771 (17)
O50.2593 (9)0.2562 (5)0.5545 (4)0.1010 (19)
O60.4502 (10)0.2393 (5)0.6762 (4)0.0924 (17)
C10.1367 (14)0.4189 (7)0.8619 (6)0.057 (2)
C20.1683 (13)0.5300 (8)0.8662 (7)0.067 (2)
C30.1111 (14)0.4561 (7)0.7342 (7)0.068 (2)
C40.0841 (11)0.4000 (6)0.7706 (6)0.0578 (18)
C50.1176 (11)0.2655 (6)0.7948 (5)0.0652 (19)
H50.24110.23570.82500.078*
C60.1253 (13)0.2337 (7)0.7058 (6)0.084 (2)
H6A0.00470.26000.67400.100*
H6B0.15400.15050.72390.100*
C70.2707 (14)0.2862 (7)0.6355 (7)0.082 (2)
C80.2277 (12)0.4198 (7)0.6086 (6)0.081 (2)
H8A0.31870.45320.56360.098*
H8B0.10680.44980.57720.098*
C90.2306 (11)0.4533 (6)0.6926 (6)0.069 (2)
H90.35360.42000.72270.083*
C100.2069 (13)0.6528 (7)0.8562 (6)0.106 (3)
H10A0.33370.68470.83650.158*
H10B0.12740.69320.80890.158*
H10C0.18450.66030.91670.158*
C110.2822 (11)0.4550 (6)0.9417 (5)0.076 (2)
H11A0.41120.48040.92410.114*
H11B0.26180.46111.00290.114*
H11C0.24540.37630.94540.114*
C120.0149 (12)0.2112 (6)0.8688 (6)0.0561 (19)
C130.0441 (12)0.1672 (6)0.9644 (6)0.068 (2)
H130.16480.16720.98070.081*
C140.0782 (13)0.1233 (6)1.0353 (6)0.072 (2)
H140.03910.09481.09930.087*
C150.2547 (13)0.1210 (6)1.0128 (7)0.064 (2)
C160.3171 (11)0.1642 (6)0.9171 (6)0.067 (2)
H160.43770.16400.90090.080*
C170.1928 (13)0.2069 (6)0.8477 (6)0.069 (2)
H170.23110.23400.78360.083*
C180.2047 (12)0.5829 (6)0.6711 (6)0.061 (2)
C190.3090 (12)0.6205 (7)0.7226 (6)0.078 (2)
H190.40120.56860.76450.094*
C200.2792 (13)0.7354 (7)0.7134 (6)0.093 (3)
H200.35130.76170.74810.111*
C210.1409 (15)0.8104 (7)0.6517 (7)0.085 (3)
C220.0427 (13)0.7738 (7)0.5975 (6)0.081 (2)
H220.04530.82570.55300.097*
C230.0739 (12)0.6600 (7)0.6087 (6)0.072 (2)
H230.00370.63440.57250.086*
C240.4398 (14)0.2316 (9)0.5185 (7)0.130 (3)
H24A0.46610.29650.46450.156*
H24B0.45420.16420.49940.156*
C250.5598 (15)0.2100 (9)0.6036 (8)0.119 (3)0.320 (18)
H250.59570.28580.57740.142*0.320 (18)
C260.755 (3)0.147 (3)0.602 (2)0.160 (9)0.320 (18)
H26A0.82230.14020.65830.240*0.320 (18)
H26B0.81570.18890.54590.240*0.320 (18)
H26C0.75250.07140.60090.240*0.320 (18)
C25'0.5598 (15)0.2100 (9)0.6036 (8)0.119 (3)0.680 (18)
H25'0.66100.25370.58580.142*0.680 (18)
C26'0.633 (3)0.0856 (14)0.6492 (12)0.201 (8)0.680 (18)
H26D0.69630.07250.70820.302*0.680 (18)
H26E0.71680.05960.60680.302*0.680 (18)
H26F0.53180.04410.66240.302*0.680 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0912 (9)0.0934 (8)0.1038 (8)0.0385 (6)0.0252 (6)0.0232 (6)
Br20.173 (10)0.061 (2)0.150 (3)0.016 (4)0.045 (5)0.030 (2)
Br2'0.173 (10)0.047 (2)0.170 (4)0.003 (4)0.049 (6)0.027 (2)
O10.065 (4)0.081 (3)0.077 (3)0.006 (3)0.006 (3)0.048 (3)
O20.070 (4)0.094 (3)0.079 (3)0.013 (3)0.007 (3)0.047 (3)
O30.058 (4)0.055 (3)0.076 (4)0.003 (3)0.012 (3)0.022 (3)
O40.070 (4)0.078 (4)0.084 (4)0.002 (3)0.025 (3)0.032 (3)
O50.110 (4)0.106 (4)0.085 (4)0.006 (3)0.006 (3)0.043 (3)
O60.106 (4)0.095 (4)0.086 (4)0.005 (3)0.007 (3)0.049 (3)
C10.059 (4)0.055 (4)0.066 (4)0.015 (4)0.003 (4)0.028 (3)
C20.059 (5)0.078 (5)0.072 (5)0.008 (5)0.022 (5)0.042 (4)
C30.075 (4)0.060 (4)0.074 (4)0.017 (4)0.005 (4)0.027 (4)
C40.059 (4)0.054 (3)0.069 (4)0.012 (3)0.003 (3)0.031 (3)
C50.073 (4)0.062 (4)0.072 (4)0.014 (3)0.004 (4)0.037 (3)
C60.095 (4)0.070 (4)0.087 (4)0.008 (4)0.002 (4)0.032 (4)
C70.094 (5)0.081 (4)0.078 (5)0.001 (4)0.005 (4)0.046 (4)
C80.090 (4)0.077 (4)0.078 (4)0.016 (4)0.001 (4)0.028 (4)
C90.080 (4)0.060 (4)0.074 (4)0.018 (3)0.006 (4)0.028 (3)
C100.107 (7)0.088 (6)0.116 (7)0.019 (6)0.015 (6)0.044 (6)
C110.067 (6)0.090 (6)0.082 (6)0.012 (5)0.002 (5)0.045 (5)
C120.055 (4)0.054 (4)0.072 (4)0.016 (4)0.001 (4)0.035 (3)
C130.063 (5)0.061 (4)0.080 (5)0.015 (4)0.002 (4)0.024 (4)
C140.074 (6)0.062 (4)0.082 (5)0.016 (4)0.003 (5)0.024 (4)
C150.063 (5)0.056 (4)0.079 (5)0.024 (4)0.004 (5)0.026 (4)
C160.057 (5)0.066 (5)0.089 (6)0.034 (4)0.003 (5)0.028 (4)
C170.081 (5)0.061 (4)0.071 (4)0.016 (4)0.007 (4)0.027 (4)
C180.072 (4)0.053 (4)0.064 (4)0.016 (4)0.003 (4)0.026 (3)
C190.085 (5)0.064 (4)0.089 (5)0.027 (4)0.012 (4)0.021 (4)
C200.108 (6)0.064 (5)0.104 (5)0.025 (5)0.037 (5)0.017 (5)
C210.106 (6)0.045 (4)0.101 (6)0.021 (5)0.022 (5)0.013 (4)
C220.098 (6)0.049 (4)0.088 (5)0.010 (4)0.030 (5)0.011 (4)
C230.083 (5)0.057 (4)0.075 (4)0.021 (4)0.009 (4)0.016 (4)
C240.113 (6)0.148 (6)0.118 (6)0.004 (6)0.001 (6)0.044 (5)
C250.106 (5)0.123 (5)0.106 (5)0.021 (5)0.010 (4)0.037 (4)
C260.156 (15)0.138 (14)0.150 (14)0.013 (14)0.011 (14)0.026 (13)
C25'0.106 (5)0.123 (5)0.106 (5)0.021 (5)0.010 (4)0.037 (4)
C26'0.179 (13)0.184 (12)0.180 (12)0.009 (11)0.044 (11)0.011 (11)
Geometric parameters (Å, º) top
Br1—C151.870 (8)C11—H11A0.9600
Br2—C211.853 (12)C11—H11B0.9600
Br2'—C211.997 (15)C11—H11C0.9600
O1—C11.316 (9)C12—C171.374 (10)
O1—C21.397 (9)C12—C131.391 (10)
O2—C31.313 (9)C13—C141.386 (9)
O2—C21.419 (8)C13—H130.9300
O3—C11.193 (9)C14—C151.363 (10)
O4—C31.213 (9)C14—H140.9300
O5—C71.390 (8)C15—C161.400 (10)
O5—C241.428 (9)C16—C171.380 (9)
O6—C71.411 (9)C16—H160.9300
O6—C251.426 (9)C17—H170.9300
C1—C41.534 (10)C18—C231.355 (10)
C2—C101.475 (10)C18—C191.356 (10)
C2—C111.525 (10)C19—C201.381 (10)
C3—C41.510 (11)C19—H190.9300
C4—C51.577 (9)C20—C211.376 (11)
C4—C91.604 (9)C20—H200.9300
C5—C121.503 (9)C21—C221.347 (10)
C5—C61.504 (9)C22—C231.360 (10)
C5—H50.9800C22—H220.9300
C6—C71.535 (10)C23—H230.9300
C6—H6A0.9700C24—C251.492 (10)
C6—H6B0.9700C24—H24A0.9700
C7—C81.562 (10)C24—H24B0.9700
C8—C91.450 (9)C25—C261.512 (16)
C8—H8A0.9700C25—H250.9800
C8—H8B0.9700C26—H26A0.9600
C9—C181.526 (9)C26—H26B0.9600
C9—H90.9800C26—H26C0.9600
C10—H10A0.9600C26'—H26D0.9600
C10—H10B0.9600C26'—H26E0.9600
C10—H10C0.9600C26'—H26F0.9600
C1—O1—C2126.5 (8)H11A—C11—H11C109.5
C3—O2—C2126.0 (7)H11B—C11—H11C109.5
C7—O5—C24110.3 (8)C17—C12—C13118.4 (8)
C7—O6—C25105.9 (8)C17—C12—C5123.7 (8)
O3—C1—O1119.5 (9)C13—C12—C5117.8 (8)
O3—C1—C4122.3 (9)C14—C13—C12119.5 (8)
O1—C1—C4118.1 (8)C14—C13—H13120.3
O1—C2—O2113.3 (7)C12—C13—H13120.3
O1—C2—C10106.9 (8)C15—C14—C13121.1 (9)
O2—C2—C10107.4 (7)C15—C14—H14119.4
O1—C2—C11107.3 (7)C13—C14—H14119.4
O2—C2—C11107.5 (7)C14—C15—C16120.5 (8)
C10—C2—C11114.8 (8)C14—C15—Br1120.7 (8)
O4—C3—O2118.2 (10)C16—C15—Br1118.8 (7)
O4—C3—C4122.9 (9)C17—C16—C15117.4 (8)
O2—C3—C4118.8 (9)C17—C16—H16121.3
C3—C4—C1114.0 (8)C15—C16—H16121.3
C3—C4—C5111.8 (7)C12—C17—C16123.0 (9)
C1—C4—C5106.2 (6)C12—C17—H17118.5
C3—C4—C9110.4 (7)C16—C17—H17118.5
C1—C4—C9104.9 (6)C23—C18—C19119.1 (8)
C5—C4—C9109.2 (6)C23—C18—C9123.1 (8)
C12—C5—C6114.8 (6)C19—C18—C9117.7 (8)
C12—C5—C4111.2 (6)C18—C19—C20120.4 (9)
C6—C5—C4112.0 (6)C18—C19—H19119.8
C12—C5—H5106.0C20—C19—H19119.8
C6—C5—H5106.0C21—C20—C19118.7 (9)
C4—C5—H5106.0C21—C20—H20120.6
C5—C6—C7112.4 (7)C19—C20—H20120.6
C5—C6—H6A109.1C22—C21—C20120.7 (8)
C7—C6—H6A109.1C22—C21—Br2126.7 (9)
C5—C6—H6B109.1C20—C21—Br2111.0 (10)
C7—C6—H6B109.1C22—C21—Br2'115.6 (9)
H6A—C6—H6B107.9C20—C21—Br2'123.3 (9)
O5—C7—O6108.0 (7)Br2—C21—Br2'22.3 (3)
O5—C7—C6107.4 (8)C21—C22—C23119.1 (9)
O6—C7—C6110.3 (8)C21—C22—H22120.4
O5—C7—C8110.5 (7)C23—C22—H22120.4
O6—C7—C8111.3 (8)C18—C23—C22121.8 (9)
C6—C7—C8109.1 (7)C18—C23—H23119.1
C9—C8—C7111.6 (7)C22—C23—H23119.1
C9—C8—H8A109.3O5—C24—C25101.7 (8)
C7—C8—H8A109.3O5—C24—H24A111.4
C9—C8—H8B109.3C25—C24—H24A111.4
C7—C8—H8B109.3O5—C24—H24B111.4
H8A—C8—H8B108.0C25—C24—H24B111.4
C8—C9—C18114.6 (7)H24A—C24—H24B109.3
C8—C9—C4112.0 (6)O6—C25—C24109.5 (9)
C18—C9—C4109.8 (6)O6—C25—C26133.7 (15)
C8—C9—H9106.6C24—C25—C26116.0 (13)
C18—C9—H9106.6O6—C25—H2593.0
C4—C9—H9106.6C24—C25—H2593.0
C2—C10—H10A109.5C26—C25—H2593.0
C2—C10—H10B109.5C25—C26—H26A109.5
H10A—C10—H10B109.5C25—C26—H26B109.5
C2—C10—H10C109.5H26A—C26—H26B109.5
H10A—C10—H10C109.5C25—C26—H26C109.5
H10B—C10—H10C109.5H26A—C26—H26C109.5
C2—C11—H11A109.5H26B—C26—H26C109.5
C2—C11—H11B109.5H26D—C26'—H26E109.5
H11A—C11—H11B109.5H26D—C26'—H26F109.5
C2—C11—H11C109.5H26E—C26'—H26F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O5i0.932.603.286 (2)131
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC26H26Br2O6
Mr594.29
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.356 (3), 12.590 (5), 14.852 (6)
α, β, γ (°)69.787 (6), 87.415 (7), 79.243 (6)
V3)1267.8 (9)
Z2
Radiation typeMo Kα
µ (mm1)3.24
Crystal size (mm)0.18 × 0.11 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.594, 0.759
No. of measured, independent and
observed [I > 2σ(I)] reflections
6454, 4330, 1413
Rint0.060
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.146, 1.00
No. of reflections4330
No. of parameters327
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.32

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O5i0.932.603.286 (2)131
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

We thank the Natural Science Foundation of China (grant No. 20672090) and the Natural Science Foundation of Jiangsu Province (grant No. BK2006033).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChande, M. S. & Khanwelkar, R. R. (2005). Tetrahedron Lett. 46, 7787–7792.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDavidson, D. & Bernhard, S. A. (1948). J. Am. Chem. Soc. 70, 3426–3428.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMeldrum, A. N. (1908). J. Chem. Soc. 93, 598–601.  CrossRef CAS Google Scholar
First citationMuller, F. L., Constantieux, T. & Rodriguez, J. (2005). J. Am. Chem. Soc. 127, 17176–17177.  Web of Science CrossRef PubMed Google Scholar
First citationRamachary, D. B. & Barbas, C. F. III (2004). Chem. Eur. J. 10, 5323–5231.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamachary, D. B., Chowdari, N. S. & Barbas, C. F. III (2003). Angew. Chem. Int. Ed. 42, 4233–4237.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTietze, L. F. & Beifuss, U. (1993). Angew. Chem. Int. Ed. Engl. 32, 131–163.  CrossRef Web of Science Google Scholar
First citationTietze, L. F., Evers, T. H. & Topken, E. (2001). Angew. Chem. Int. Ed. 40, 903–905.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1151
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds