organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1109-o1110

3,6-Di­methyl-1-phenyl-4-(2-thien­yl)-8-(2-thienylmethyl­ene)-5,6,7,8-tetra­hydro-1H-pyrazolo[3,4-b][1,6]naphthyridine

aLianyungang Teachers' College, Lianyungang 222006, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: laotu2001@263.net

(Received 18 April 2009; accepted 21 April 2009; online 25 April 2009)

In the mol­ecule of the title compound, C26H22N4S2, the pyrazole ring is oriented at a dihedral angle of 0.85 (3)° with respect to the adjacent naphthyridine ring, while the other ring of naphthyridine adopts an envelope conformation. The dihedral angle between phenyl and pyrazole rings is 87.65 (3)°. In the crystal structure, weak inter­molecular C—H⋯N inter­actions link the mol­ecules into chains. The ππ contacts between the naphthyridine rings and the naphthyridine and thio­phene rings [centroid–centroid distances = 3.766 (3) and 3.878 (3) Å] may further stabilize the structure. A weak C—H⋯π inter­action is also present.

Related literature

For the biological activity of naphthyridines, see: Abou et al. (2001[Abou, G. H., Mohie, A. S. & Naglaa, A. A. (2001). Indian J. Chem. Sect. B, 40, 213-221.]); Aleem et al. (2002[Aleem, G., Yibin, Z., John, J. M. & Roy, L. K. (2002). J. Med. Chem. 45, 5173-5181.]); Blagg et al. (2003[Blagg, J., Fray, M. J., Lewis, M. L., Mathias, J. P., Stefaniak, M. H. & Stobie, A. (2003). PCT Int. Appl. WO 2003076427 A1 20030918.]); Ohta et al. (2004[Ohta, T., Komoriya, S., Yoshino, T., Uoto, K., Nakamoto, Y., Naito, H., Mochizuki, A., Nagata, T., Kanno, H., Haginoya, N., Yoshikawa, K., Nagamochi, M., Kobayashi, S. & Ono, M. (2004). PCT Int. Appl. WO 2004058715 A1 20040715.]). For the biological properties of pyrazolopyridine derivatives, see: Lynck et al. (1988[Lynck, B., Khan, M., Teo, H. & Pedrotti, F. (1988). Can. J. Chem. 66, 420-428.]); Fucini et al. (2008[Fucini, R. V., Hanan, E. J., Romanowski, M. J., Elling, R. A., Lew, W., Barr, K. J., Zhu, J., Yoburn, J. C., Liu, Y., Fahr, B. T., Fan, J. & Lu, Y. (2008). Bioorg. Med. Chem. Lett. 18, 5648-5652.]); Warshakoon et al. (2006[Warshakoon, N. C., Wu, S., Boyer, A., Kawamoto, R., Renock, S. & Xu, K. (2006). Bioorg. Med. Chem. Lett. 16, 5687-5690.]). They are also active against gram positive and gram negative bacteria, see: El-Dean et al. (1991[El-Dean, A. M., Aralla, A. A., Mohamed, T. A. & Geies, A. A. (1991). Z. Naturforsch. Teil B, 46, 541-546.]) and inhibit cholesterol formation, see: Fujikawa et al. (1989[Fujikawa, Y., Suzuki, M., Iwasaki, H., Sakashita, M. & Kitahara, M. (1989). Eur. Pat. Appl. EP 339 358.], 1990[Fujikawa, Y., Suzuki, M., Iwasaki, H., Sakashita, M. & Kitahara, M. (1990). Chem Abstr. 113, 23903.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22N4S2

  • Mr = 454.60

  • Triclinic, [P \overline 1]

  • a = 10.7187 (16) Å

  • b = 10.9704 (19) Å

  • c = 11.153 (2) Å

  • α = 109.785 (2)°

  • β = 102.364 (1)°

  • γ = 104.201 (1)°

  • V = 1131.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.955, Tmax = 0.960

  • 5846 measured reflections

  • 3918 independent reflections

  • 2322 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.176

  • S = 1.00

  • 3918 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯N2i 0.93 2.57 3.445 (3) 157
C20—H20⋯Cg6ii 0.93 2.93 3.680 (3) 139
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1. Cg6 is the centroid of the S1/C23–C26 ring.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Naphthyridines have received considerable attention over the past years because of their wide range of biological activities including antitumor (Abou et al., 2001; Aleem et al., 2002), anti-inflammatory (Blagg et al., 2003) and antifungal (Ohta et al., 2004) activities. Pyrazolopyridine derivatives are important heterocyclic compounds, which exhibit a diverse range of biological properties such as new inhibitors of xanthine oxidases (Lynck et al., 1988), as Polo-like kinase 1 inhibitors (Fucini et al., 2008) and HIF-1alpha prolyl hydroxylase inhibitors (Warshakoon et al., 2006). They also have proven to be active against gram positive and gram negative bacterias (El-Dean et al., 1991) and also as compounds for the inhibition of cholesterol formation (Fujikawa et al., 1989, 1990). We report herein the crystal structure of the title compound, containing the skeletons of naphthyridine and pyrazolopyridine.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N1/N2/C1-C3), B (N3/C2-C4/C6/C7), D (C10-C15), E (S2/C17-C20) and F (S1/C23-C26) are, of course, planar, and they are oriented at dihedral angles of A/B = 0.85 (3), A/D = 87.65 (3) and B/E = 18.10 (4) °. Ring C (N4/C5-C9) adopts envelope conformation, with atom N4 displaced by 0.660 (3) Å from the plane of the other ring atoms.

In the crystal structure, weak intermolecular C-H···N interactions (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contacts between the naphthyridine rings and the naphthyridine and thiophene rings, Cg2—Cg2i and Cg2—Cg6ii [symmetry codes: (i) 1 - x, 1 - y, 1 - z, (ii) -x, 1 - y, 1 - z, where Cg2 and Cg6 are centroids of the rings B (N3/C2-C4/C6/C7) and F (S1/C23-C26), respectively] may further stabilize the structure, with centroid-centroid distances of 3.766 (3) and 3.878 (3) Å, respectively. There also exists a weak C-H···π interaction (Table 1).

Related literature top

For the biological activity of naphthyridines, see: Abou et al. (2001); Aleem et al. (2002); Blagg et al. (2003); Ohta et al. (2004). For the biological properties of pyrazolopyridine derivatives, see: Lynck et al. (1988); Fucini et al. (2008); Warshakoon et al. (2006). They are also active against gram positive and gram negative bacteria, see: El-Dean et al. (1991) and inhibit cholesterol formation, see: Fujikawa et al. (1989, 1990). For bond-length data, see: Allen et al. (1987). Cg6 is the centroid of the S1/C23–C26 ring.

Experimental top

The title compound was prepared by the reaction of of 1-methyl-3,5-bis(thiophen -2-ylmethylene)piperidin-4-one (1 mmol) and 3-methyl-1-phenyl-1H-pyrazol -5- amine (1 mmol) in glycol (2 ml).

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
3,6-Dimethyl-1-phenyl-4-(2-thienyl)-8-(2-thienylmethylene)-5,6,7,8-tetrahydro- 1H-pyrazolo[3,4-b][1,6]naphthyridine top
Crystal data top
C26H22N4S2Z = 2
Mr = 454.60F(000) = 476
Triclinic, P1Dx = 1.335 Mg m3
Hall symbol: -P 1Melting point = 452–453 K
a = 10.7187 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9704 (19) ÅCell parameters from 1616 reflections
c = 11.153 (2) Åθ = 2.3–24.8°
α = 109.785 (2)°µ = 0.26 mm1
β = 102.364 (1)°T = 298 K
γ = 104.201 (1)°Block, yellow
V = 1131.0 (3) Å30.18 × 0.17 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3918 independent reflections
Radiation source: fine-focus sealed tube2322 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.955, Tmax = 0.960k = 1213
5846 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0957P)2]
where P = (Fo2 + 2Fc2)/3
3918 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C26H22N4S2γ = 104.201 (1)°
Mr = 454.60V = 1131.0 (3) Å3
Triclinic, P1Z = 2
a = 10.7187 (16) ÅMo Kα radiation
b = 10.9704 (19) ŵ = 0.26 mm1
c = 11.153 (2) ÅT = 298 K
α = 109.785 (2)°0.18 × 0.17 × 0.16 mm
β = 102.364 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3918 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2322 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.960Rint = 0.025
5846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.00Δρmax = 0.31 e Å3
3918 reflectionsΔρmin = 0.43 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.09086 (12)0.85725 (11)1.54317 (11)0.0768 (4)
S20.32900 (12)0.10633 (12)1.04051 (11)0.0826 (4)
N10.5616 (3)0.2524 (3)1.5917 (3)0.0481 (7)
N20.4340 (3)0.1519 (3)1.5362 (3)0.0529 (8)
N30.6907 (3)0.4256 (3)1.5345 (3)0.0442 (7)
N40.7120 (3)0.5378 (3)1.2194 (3)0.0507 (7)
C10.3741 (3)0.1548 (3)1.4219 (3)0.0477 (9)
C20.4614 (3)0.2600 (3)1.3994 (3)0.0432 (8)
C30.5805 (3)0.3207 (3)1.5104 (3)0.0417 (8)
C40.4568 (3)0.3106 (3)1.2988 (3)0.0416 (8)
C50.5739 (3)0.4802 (4)1.2173 (3)0.0518 (9)
H5A0.51980.40871.12820.062*
H5B0.53380.55201.23580.062*
C60.5706 (3)0.4201 (3)1.3199 (3)0.0432 (8)
C70.6845 (3)0.4735 (3)1.4386 (3)0.0417 (8)
C80.8071 (3)0.5867 (3)1.4584 (3)0.0435 (8)
C90.7958 (4)0.6439 (4)1.3528 (4)0.0565 (10)
H9A0.75670.71601.37670.068*
H9B0.88610.68491.35090.068*
C100.6506 (3)0.2705 (3)1.7162 (3)0.0458 (8)
C110.5969 (4)0.2282 (4)1.8042 (4)0.0588 (10)
H110.50320.18861.78240.071*
C120.6838 (4)0.2456 (4)1.9247 (4)0.0659 (11)
H120.64770.21741.98360.079*
C130.8214 (4)0.3032 (4)1.9589 (4)0.0690 (11)
H130.87880.31512.04050.083*
C140.8741 (4)0.3437 (4)1.8704 (4)0.0643 (11)
H140.96790.38201.89230.077*
C150.7896 (4)0.3281 (4)1.7496 (4)0.0555 (10)
H150.82650.35641.69110.067*
C160.2334 (4)0.0573 (4)1.3364 (4)0.0625 (11)
H16A0.20200.00311.37730.094*
H16B0.23410.00361.24850.094*
H16C0.17370.10871.32840.094*
C170.3367 (3)0.2461 (3)1.1741 (3)0.0459 (8)
C180.2173 (3)0.2811 (4)1.1483 (3)0.0498 (9)
H180.20160.35561.20570.060*
C190.1251 (4)0.1809 (5)1.0180 (4)0.0675 (11)
H190.03950.18320.98210.081*
C200.1702 (4)0.0850 (4)0.9523 (4)0.0657 (11)
H200.12020.01430.86750.079*
C210.7112 (4)0.5941 (4)1.1182 (4)0.0688 (11)
H21A0.68110.67191.14250.103*
H21B0.65060.52451.03200.103*
H21C0.80150.62301.11360.103*
C220.9196 (3)0.6288 (3)1.5629 (3)0.0482 (9)
H220.91190.58261.61860.058*
C231.0514 (4)0.7338 (3)1.6046 (3)0.0480 (9)
C241.1687 (3)0.7475 (3)1.7027 (3)0.0425 (8)
H241.17050.69321.75110.051*
C251.2830 (4)0.8555 (4)1.7167 (4)0.0665 (11)
H251.36960.87871.77500.080*
C261.2548 (4)0.9214 (4)1.6380 (4)0.0740 (13)
H261.31930.99451.63640.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0715 (8)0.0687 (7)0.0740 (8)0.0057 (6)0.0132 (6)0.0382 (6)
S20.0723 (8)0.0782 (8)0.0661 (7)0.0296 (6)0.0035 (6)0.0026 (6)
N10.0430 (17)0.0511 (17)0.0446 (16)0.0028 (14)0.0117 (14)0.0245 (14)
N20.0424 (17)0.0533 (18)0.0526 (18)0.0015 (14)0.0116 (14)0.0248 (15)
N30.0400 (16)0.0432 (15)0.0403 (15)0.0046 (13)0.0104 (13)0.0154 (13)
N40.0521 (18)0.0571 (17)0.0439 (16)0.0121 (15)0.0142 (14)0.0278 (15)
C10.042 (2)0.047 (2)0.048 (2)0.0066 (16)0.0138 (16)0.0192 (17)
C20.0382 (19)0.0431 (18)0.0415 (18)0.0080 (15)0.0127 (15)0.0140 (15)
C30.0405 (19)0.0447 (18)0.0362 (18)0.0095 (16)0.0102 (15)0.0177 (15)
C40.0378 (19)0.0428 (18)0.0402 (18)0.0126 (15)0.0104 (15)0.0147 (15)
C50.049 (2)0.057 (2)0.051 (2)0.0140 (18)0.0126 (17)0.0300 (18)
C60.042 (2)0.0457 (19)0.0436 (19)0.0134 (16)0.0157 (16)0.0204 (16)
C70.0414 (19)0.0432 (18)0.0415 (19)0.0128 (16)0.0150 (16)0.0192 (16)
C80.046 (2)0.0409 (18)0.0402 (18)0.0103 (16)0.0160 (16)0.0157 (15)
C90.056 (2)0.056 (2)0.057 (2)0.0079 (19)0.0181 (19)0.0306 (19)
C100.047 (2)0.0435 (19)0.045 (2)0.0110 (16)0.0141 (17)0.0204 (16)
C110.055 (2)0.065 (2)0.054 (2)0.0109 (19)0.0169 (19)0.029 (2)
C120.075 (3)0.080 (3)0.054 (2)0.025 (2)0.026 (2)0.040 (2)
C130.070 (3)0.086 (3)0.052 (2)0.029 (2)0.012 (2)0.033 (2)
C140.050 (2)0.072 (3)0.063 (3)0.017 (2)0.008 (2)0.027 (2)
C150.055 (2)0.062 (2)0.053 (2)0.0169 (19)0.0186 (19)0.0284 (19)
C160.048 (2)0.061 (2)0.063 (2)0.0026 (19)0.0112 (19)0.027 (2)
C170.044 (2)0.0469 (19)0.0428 (19)0.0086 (16)0.0146 (16)0.0186 (16)
C180.041 (2)0.058 (2)0.0372 (18)0.0101 (17)0.0098 (16)0.0105 (17)
C190.047 (2)0.089 (3)0.072 (3)0.026 (2)0.014 (2)0.043 (3)
C200.055 (2)0.061 (2)0.049 (2)0.001 (2)0.0019 (19)0.0084 (19)
C210.072 (3)0.083 (3)0.059 (2)0.018 (2)0.021 (2)0.045 (2)
C220.051 (2)0.0463 (19)0.047 (2)0.0076 (17)0.0196 (18)0.0229 (17)
C230.051 (2)0.0436 (19)0.0426 (19)0.0065 (17)0.0194 (17)0.0146 (16)
C240.0415 (19)0.0375 (17)0.0444 (19)0.0098 (15)0.0167 (16)0.0132 (15)
C250.047 (2)0.072 (3)0.061 (2)0.011 (2)0.017 (2)0.011 (2)
C260.064 (3)0.060 (2)0.068 (3)0.014 (2)0.025 (2)0.016 (2)
Geometric parameters (Å, º) top
S1—C261.672 (5)C11—C121.384 (5)
S1—C231.718 (4)C11—H110.9300
S2—C201.689 (4)C12—C131.363 (5)
S2—C171.708 (3)C12—H120.9300
N1—C31.375 (4)C13—C141.379 (6)
N1—N21.381 (3)C13—H130.9300
N1—C101.424 (4)C14—C151.381 (5)
N2—C11.314 (4)C14—H140.9300
N3—C31.334 (4)C15—H150.9300
N3—C71.338 (4)C16—H16A0.9600
N4—C51.451 (4)C16—H16B0.9600
N4—C91.455 (4)C16—H16C0.9600
N4—C211.458 (4)C17—C181.423 (5)
C1—C21.428 (4)C18—C191.438 (5)
C1—C161.493 (5)C18—H180.9300
C2—C31.398 (4)C19—C201.325 (5)
C2—C41.407 (4)C19—H190.9300
C4—C61.398 (4)C20—H200.9300
C4—C171.487 (4)C21—H21A0.9600
C5—C61.504 (5)C21—H21B0.9600
C5—H5A0.9700C21—H21C0.9600
C5—H5B0.9700C22—C231.448 (4)
C6—C71.420 (4)C22—H220.9300
C7—C81.486 (4)C23—C241.417 (5)
C8—C221.336 (5)C24—C251.417 (5)
C8—C91.508 (5)C24—H240.9300
C9—H9A0.9700C25—C261.344 (6)
C9—H9B0.9700C25—H250.9300
C10—C151.379 (5)C26—H260.9300
C10—C111.389 (5)
C26—S1—C2393.1 (2)C13—C12—H12119.3
C20—S2—C1792.60 (19)C11—C12—H12119.3
C3—N1—N2110.2 (3)C12—C13—C14118.9 (4)
C3—N1—C10130.4 (3)C12—C13—H13120.5
N2—N1—C10119.4 (3)C14—C13—H13120.5
C1—N2—N1107.4 (3)C13—C14—C15121.0 (4)
C3—N3—C7114.8 (3)C13—C14—H14119.5
C5—N4—C9110.4 (3)C15—C14—H14119.5
C5—N4—C21110.0 (3)C10—C15—C14119.8 (4)
C9—N4—C21110.6 (3)C10—C15—H15120.1
N2—C1—C2110.4 (3)C14—C15—H15120.1
N2—C1—C16120.6 (3)C1—C16—H16A109.5
C2—C1—C16129.0 (3)C1—C16—H16B109.5
C3—C2—C4117.5 (3)H16A—C16—H16B109.5
C3—C2—C1105.4 (3)C1—C16—H16C109.5
C4—C2—C1137.1 (3)H16A—C16—H16C109.5
N3—C3—N1126.3 (3)H16B—C16—H16C109.5
N3—C3—C2127.1 (3)C18—C17—C4128.8 (3)
N1—C3—C2106.6 (3)C18—C17—S2111.7 (2)
C6—C4—C2117.1 (3)C4—C17—S2119.5 (3)
C6—C4—C17122.2 (3)C17—C18—C19108.0 (3)
C2—C4—C17120.6 (3)C17—C18—H18126.0
N4—C5—C6111.5 (3)C19—C18—H18126.0
N4—C5—H5A109.3C20—C19—C18115.7 (4)
C6—C5—H5A109.3C20—C19—H19122.2
N4—C5—H5B109.3C18—C19—H19122.2
C6—C5—H5B109.3C19—C20—S2112.1 (3)
H5A—C5—H5B108.0C19—C20—H20124.0
C4—C6—C7119.5 (3)S2—C20—H20124.0
C4—C6—C5120.5 (3)N4—C21—H21A109.5
C7—C6—C5120.0 (3)N4—C21—H21B109.5
N3—C7—C6124.0 (3)H21A—C21—H21B109.5
N3—C7—C8116.7 (3)N4—C21—H21C109.5
C6—C7—C8119.3 (3)H21A—C21—H21C109.5
C22—C8—C7119.9 (3)H21B—C21—H21C109.5
C22—C8—C9124.1 (3)C8—C22—C23131.3 (3)
C7—C8—C9115.9 (3)C8—C22—H22114.4
N4—C9—C8112.0 (3)C23—C22—H22114.4
N4—C9—H9A109.2C24—C23—C22123.9 (3)
C8—C9—H9A109.2C24—C23—S1109.9 (2)
N4—C9—H9B109.2C22—C23—S1126.2 (3)
C8—C9—H9B109.2C23—C24—C25110.4 (3)
H9A—C9—H9B107.9C23—C24—H24124.8
C15—C10—C11119.6 (3)C25—C24—H24124.8
C15—C10—N1120.7 (3)C26—C25—C24114.0 (4)
C11—C10—N1119.7 (3)C26—C25—H25123.0
C12—C11—C10119.4 (4)C24—C25—H25123.0
C12—C11—H11120.3C25—C26—S1112.5 (3)
C10—C11—H11120.3C25—C26—H26123.7
C13—C12—C11121.3 (4)S1—C26—H26123.7
C3—N1—N2—C10.9 (4)C6—C7—C8—C94.5 (5)
C10—N1—N2—C1178.9 (3)C5—N4—C9—C862.2 (4)
N1—N2—C1—C20.7 (4)C21—N4—C9—C8175.8 (3)
N1—N2—C1—C16179.8 (3)C22—C8—C9—N4143.5 (3)
N2—C1—C2—C30.3 (4)C7—C8—C9—N434.4 (4)
C16—C1—C2—C3179.7 (3)C3—N1—C10—C1524.3 (6)
N2—C1—C2—C4178.8 (4)N2—N1—C10—C15155.4 (3)
C16—C1—C2—C41.8 (7)C3—N1—C10—C11156.4 (3)
C7—N3—C3—N1179.3 (3)N2—N1—C10—C1123.9 (5)
C7—N3—C3—C21.6 (5)C15—C10—C11—C120.5 (6)
N2—N1—C3—N3178.5 (3)N1—C10—C11—C12179.8 (3)
C10—N1—C3—N31.8 (6)C10—C11—C12—C130.1 (6)
N2—N1—C3—C20.7 (4)C11—C12—C13—C140.5 (6)
C10—N1—C3—C2179.0 (3)C12—C13—C14—C150.8 (6)
C4—C2—C3—N32.2 (5)C11—C10—C15—C140.2 (6)
C1—C2—C3—N3178.9 (3)N1—C10—C15—C14179.5 (3)
C4—C2—C3—N1178.6 (3)C13—C14—C15—C100.4 (6)
C1—C2—C3—N10.3 (4)C6—C4—C17—C1890.7 (4)
C3—C2—C4—C61.7 (5)C2—C4—C17—C1891.2 (4)
C1—C2—C4—C6180.0 (4)C6—C4—C17—S292.1 (4)
C3—C2—C4—C17176.6 (3)C2—C4—C17—S286.1 (4)
C1—C2—C4—C171.8 (6)C20—S2—C17—C182.6 (3)
C9—N4—C5—C658.1 (4)C20—S2—C17—C4175.1 (3)
C21—N4—C5—C6179.6 (3)C4—C17—C18—C19174.7 (3)
C2—C4—C6—C70.8 (5)S2—C17—C18—C192.8 (4)
C17—C4—C6—C7177.4 (3)C17—C18—C19—C201.6 (5)
C2—C4—C6—C5180.0 (3)C18—C19—C20—S20.4 (5)
C17—C4—C6—C51.8 (5)C17—S2—C20—C191.7 (3)
N4—C5—C6—C4151.4 (3)C7—C8—C22—C23179.2 (3)
N4—C5—C6—C727.8 (4)C9—C8—C22—C231.3 (6)
C3—N3—C7—C60.6 (5)C8—C22—C23—C24166.9 (4)
C3—N3—C7—C8177.7 (3)C8—C22—C23—S112.1 (6)
C4—C6—C7—N30.3 (5)C26—S1—C23—C241.5 (3)
C5—C6—C7—N3179.5 (3)C26—S1—C23—C22177.6 (3)
C4—C6—C7—C8177.9 (3)C22—C23—C24—C25177.2 (3)
C5—C6—C7—C81.3 (5)S1—C23—C24—C251.9 (3)
N3—C7—C8—C224.8 (5)C23—C24—C25—C261.4 (4)
C6—C7—C8—C22173.6 (3)C24—C25—C26—S10.2 (5)
N3—C7—C8—C9177.2 (3)C23—S1—C26—C250.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···N2i0.932.573.445 (3)157
C20—H20···Cg6ii0.932.933.680 (3)139
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC26H22N4S2
Mr454.60
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.7187 (16), 10.9704 (19), 11.153 (2)
α, β, γ (°)109.785 (2), 102.364 (1), 104.201 (1)
V3)1131.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.18 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.955, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
5846, 3918, 2322
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.176, 1.00
No. of reflections3918
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.43

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···N2i0.932.573.445 (3)157
C20—H20···Cg6ii0.932.933.680 (3)139
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20672090), the Natural Science Foundation of Jiangsu Province (grant No. BK2006033) and the Six Kinds of Professional Elite Foundation of Jiangsu Province (grant No. 06-A-039) for financial support.

References

First citationAbou, G. H., Mohie, A. S. & Naglaa, A. A. (2001). Indian J. Chem. Sect. B, 40, 213–221.  Google Scholar
First citationAleem, G., Yibin, Z., John, J. M. & Roy, L. K. (2002). J. Med. Chem. 45, 5173–5181.  Web of Science PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlagg, J., Fray, M. J., Lewis, M. L., Mathias, J. P., Stefaniak, M. H. & Stobie, A. (2003). PCT Int. Appl. WO 2003076427 A1 20030918.  Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Dean, A. M., Aralla, A. A., Mohamed, T. A. & Geies, A. A. (1991). Z. Naturforsch. Teil B, 46, 541–546.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFucini, R. V., Hanan, E. J., Romanowski, M. J., Elling, R. A., Lew, W., Barr, K. J., Zhu, J., Yoburn, J. C., Liu, Y., Fahr, B. T., Fan, J. & Lu, Y. (2008). Bioorg. Med. Chem. Lett. 18, 5648–5652.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFujikawa, Y., Suzuki, M., Iwasaki, H., Sakashita, M. & Kitahara, M. (1989). Eur. Pat. Appl. EP 339 358.  Google Scholar
First citationFujikawa, Y., Suzuki, M., Iwasaki, H., Sakashita, M. & Kitahara, M. (1990). Chem Abstr. 113, 23903.  Google Scholar
First citationLynck, B., Khan, M., Teo, H. & Pedrotti, F. (1988). Can. J. Chem. 66, 420–428.  Google Scholar
First citationOhta, T., Komoriya, S., Yoshino, T., Uoto, K., Nakamoto, Y., Naito, H., Mochizuki, A., Nagata, T., Kanno, H., Haginoya, N., Yoshikawa, K., Nagamochi, M., Kobayashi, S. & Ono, M. (2004). PCT Int. Appl. WO 2004058715 A1 20040715.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarshakoon, N. C., Wu, S., Boyer, A., Kawamoto, R., Renock, S. & Xu, K. (2006). Bioorg. Med. Chem. Lett. 16, 5687–5690.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o1109-o1110
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds