organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1180

N-Acetyl-4-(benzene­sulfonamido)benzene­sulfonamide

aDepartment of Chemistry, Government College University, Lahore, Pakistan, bDepartment of Physics, University of Sargodha, Sagrodha, Pakistan, and cUniversity College of Pharmacy, University of the Punjab, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 26 April 2009; accepted 28 April 2009; online 30 April 2009)

In the mol­ecule of the title compound, C14H14N2O5S2, the dihedral angle between the aromatic rings is 77.75 (9)°. The acetamide group is planar [maximum deviation = 0.002 (3) Å] and oriented at dihedral angles of 13.49 (21) and 73.94 (10)° with respect to the aromatic rings. An intra­molecular C—H⋯O inter­action results in the formation of a six-membered ring. In the crystal structure, inter­molecular N—H⋯O and C—H⋯O inter­actions link the mol­ecules into a three-dimensional network, forming R22(20) ring motifs.

Related literature

For related structures, see: Chohan et al. (2008[Chohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o648.], 2009[Chohan, Z. H., Shad, H. A. & Tahir, M. N. (2009). Acta Cryst. E65, o57.]); Deng & Mani (2006[Deng, X. & Mani, N. S. (2006). Green Chem. 8, 835-838.]); Ellingboe et al. (1992[Ellingboe, J. W., Spinelli, W., Winkley, M. W., Nguyen, T. T., Parsons, R. W., Moubarak, I. F., Kitzen, J. M., Engen, D. V. & Bagli, J. F. (1992). J. Med. Chem., 35, 705-716.]); Shad et al. (2009[Shad, H. A., Tahir, M. N. & Chohan, Z. H. (2009). Acta Cryst. E65, o98-o99.]); Tahir et al. (2008[Tahir, M. N., Chohan, Z. H., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o720.]). For ring-motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O5S2

  • Mr = 354.39

  • Monoclinic, P 21 /n

  • a = 9.9316 (9) Å

  • b = 9.4828 (8) Å

  • c = 17.6490 (17) Å

  • β = 103.169 (5)°

  • V = 1618.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 296 K

  • 0.28 × 0.22 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.909, Tmax = 0.940

  • 17674 measured reflections

  • 4034 independent reflections

  • 2423 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.128

  • S = 1.02

  • 4034 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O5i 0.86 2.25 2.839 (3) 126
N2—H2N⋯O1ii 0.86 2.14 2.922 (3) 151
C8—H8⋯O2 0.93 2.49 3.116 (3) 125
C9—H9⋯O4iii 0.93 2.60 3.237 (3) 126
C14—H14A⋯O2iv 0.96 2.56 3.401 (4) 147
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Sulfonamides have attracted much attention, due to their extensive use in medicine. We have reported the syntheses and crystal structures of sulfonamides, which have the central portion of title compound as common (Chohan et al., 2008, 2009; Shad et al., 2009; Tahir et al., 2008). Similarly, the crystal structure of N-Methyl-N-(2-(methyl(1-methyl-1H-benzimidazol-2-yl)amino)- ethyl)-4-((methylsulfonyl)amino)-benzenesulfonamide (Ellingboe et al., 1992) has been reported, which also has a central portion as in the title compound.

In the molecule of the title compound (Fig 1), rings A (C1-C6) and B (C7-C12) are, of course, planar. The acetamide moiety C (N2/O5/C13/C14) is also planar with a maximum deviation of 0.002 (3) Å for atom C13. The diheadral angles between them are A/B = 77.75 (9), A/C = 13.49 (21) and B/C = 73.94 (10) °. The SO2 groups are oriented at a dihedral angle of 71.02 (15)°. Intramolecular C-H···O interaction (Table 1) results in the formation of a six-membered ring D (S1/O2/N1/C7/C8/H8) having twisted conformation.

In the crystal structure, intermolecular N-H···O and C-H···O interactions (Table 1) link the molecules into a three-dimensional network forming R22(20) ring motifs (Bernstein et al., 1995), in which they may be effective in the stabilization of the structure.

Related literature top

For related structures, see: Chohan et al. (2008, 2009); Deng & Mani (2006); Ellingboe et al. (1992); Shad et al. (2009); Tahir et al. (2008). For ring-motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized according to a literature method (Deng & Mani, 2006). For the preparation of the title compound, phenylglycine (2 g, 5.3 mmol) was dissolved in distilled water, and then benzene sulfonyl chloride (0.93 g, 5.3 mmol) was added. It was stirred at room temperature. During the reaction pH was maintained at 8-9, strictly using Na2CO3 (1 M), since HCl was produced as a byproduct, which lowers the pH. The completion of reaction was observed by the consumption of the oily drops of benzene sulfonyl chloride. On completion, pH was adjusted to 2-3 using HCl (2 N). The precipitate formed was filtered, washed with distilled water and recrystalyzed from methanol.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
N-Acetyl-4-(benzenesulfonamido)benzenesulfonamide top
Crystal data top
C14H14N2O5S2F(000) = 736
Mr = 354.39Dx = 1.454 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4034 reflections
a = 9.9316 (9) Åθ = 2.4–28.3°
b = 9.4828 (8) ŵ = 0.36 mm1
c = 17.6490 (17) ÅT = 296 K
β = 103.169 (5)°Prism, colorless
V = 1618.5 (3) Å30.28 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4034 independent reflections
Radiation source: fine-focus sealed tube2423 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.4°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1112
Tmin = 0.909, Tmax = 0.940l = 2223
17674 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.052P)2 + 0.3831P]
where P = (Fo2 + 2Fc2)/3
4034 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C14H14N2O5S2V = 1618.5 (3) Å3
Mr = 354.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.9316 (9) ŵ = 0.36 mm1
b = 9.4828 (8) ÅT = 296 K
c = 17.6490 (17) Å0.28 × 0.22 × 0.18 mm
β = 103.169 (5)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4034 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2423 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.940Rint = 0.060
17674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
4034 reflectionsΔρmin = 0.36 e Å3
209 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.90183 (7)0.28463 (8)0.04571 (4)0.0407 (3)
S20.58491 (7)0.45284 (7)0.26062 (4)0.0374 (2)
O10.9231 (2)0.3308 (2)0.11946 (11)0.0530 (7)
O21.01569 (19)0.2335 (2)0.01166 (11)0.0546 (7)
O30.68083 (19)0.4029 (2)0.32790 (10)0.0564 (7)
O40.5257 (2)0.58953 (19)0.26098 (11)0.0510 (7)
O50.3371 (2)0.4255 (2)0.13539 (11)0.0560 (7)
N10.8361 (2)0.4215 (2)0.01260 (12)0.0384 (7)
N20.4595 (2)0.3347 (2)0.24701 (12)0.0387 (7)
C10.7705 (3)0.1563 (3)0.06104 (15)0.0396 (9)
C20.6519 (3)0.1794 (3)0.11844 (17)0.0518 (11)
C30.5482 (3)0.0815 (4)0.1295 (2)0.0703 (14)
C40.5621 (4)0.0385 (4)0.0833 (3)0.0759 (17)
C50.6797 (4)0.0586 (3)0.0265 (2)0.0729 (16)
C60.7849 (3)0.0381 (3)0.01472 (18)0.0545 (11)
C70.7799 (2)0.4241 (3)0.05379 (14)0.0315 (8)
C80.8129 (3)0.3261 (3)0.11352 (15)0.0417 (9)
C90.7502 (3)0.3347 (3)0.17563 (14)0.0389 (9)
C100.6584 (3)0.4411 (3)0.17997 (14)0.0321 (8)
C110.6272 (3)0.5403 (3)0.12140 (17)0.0472 (10)
C120.6873 (3)0.5305 (3)0.05858 (16)0.0446 (10)
C130.3439 (3)0.3407 (3)0.18721 (15)0.0393 (9)
C140.2314 (3)0.2385 (4)0.19149 (18)0.0655 (13)
H1N0.835460.499260.037740.0461*
H20.642890.260190.149020.0622*
H2N0.467140.265480.279200.0464*
H30.468130.095380.167980.0843*
H40.491660.105230.090980.0910*
H50.688250.138770.004600.0874*
H60.864710.024090.023930.0655*
H80.876840.255220.111760.0501*
H90.770380.267630.215030.0467*
H110.566020.613310.124320.0566*
H120.665220.596580.018740.0536*
H14A0.192940.201410.140560.0984*
H14B0.160380.285760.210670.0984*
H14C0.268680.162770.226010.0984*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0359 (4)0.0556 (5)0.0317 (4)0.0099 (3)0.0102 (3)0.0074 (3)
S20.0349 (4)0.0507 (4)0.0281 (3)0.0047 (3)0.0104 (3)0.0067 (3)
O10.0571 (13)0.0707 (14)0.0371 (11)0.0023 (11)0.0232 (10)0.0102 (10)
O20.0387 (11)0.0718 (14)0.0482 (12)0.0218 (10)0.0006 (10)0.0091 (10)
O30.0407 (11)0.0984 (16)0.0271 (10)0.0047 (11)0.0013 (9)0.0017 (10)
O40.0557 (12)0.0467 (11)0.0586 (13)0.0019 (10)0.0294 (10)0.0167 (10)
O50.0474 (12)0.0781 (15)0.0391 (11)0.0021 (11)0.0025 (10)0.0205 (11)
N10.0451 (13)0.0396 (12)0.0341 (12)0.0070 (10)0.0163 (10)0.0013 (10)
N20.0379 (12)0.0473 (13)0.0291 (12)0.0050 (10)0.0042 (10)0.0113 (10)
C10.0409 (15)0.0424 (15)0.0356 (15)0.0128 (13)0.0089 (12)0.0048 (12)
C20.0467 (18)0.0586 (19)0.0480 (18)0.0087 (15)0.0062 (15)0.0005 (15)
C30.046 (2)0.085 (3)0.074 (2)0.000 (2)0.0015 (18)0.008 (2)
C40.072 (3)0.066 (3)0.095 (3)0.016 (2)0.030 (2)0.021 (2)
C50.093 (3)0.046 (2)0.082 (3)0.002 (2)0.025 (2)0.0040 (18)
C60.063 (2)0.0479 (18)0.0515 (19)0.0132 (16)0.0109 (16)0.0028 (15)
C70.0290 (13)0.0378 (14)0.0279 (13)0.0014 (11)0.0067 (10)0.0040 (11)
C80.0456 (16)0.0467 (16)0.0347 (15)0.0180 (13)0.0130 (13)0.0028 (12)
C90.0460 (16)0.0421 (15)0.0291 (14)0.0109 (13)0.0095 (12)0.0051 (12)
C100.0313 (13)0.0358 (14)0.0306 (13)0.0013 (11)0.0098 (11)0.0013 (11)
C110.0574 (18)0.0407 (16)0.0517 (18)0.0180 (14)0.0298 (15)0.0084 (13)
C120.0578 (18)0.0403 (16)0.0420 (16)0.0159 (14)0.0242 (14)0.0124 (12)
C130.0376 (15)0.0549 (17)0.0272 (14)0.0049 (13)0.0109 (12)0.0006 (12)
C140.0526 (19)0.100 (3)0.0427 (18)0.0311 (19)0.0083 (15)0.0000 (17)
Geometric parameters (Å, º) top
S1—O11.434 (2)C7—C121.381 (4)
S1—O21.420 (2)C7—C81.387 (4)
S1—N11.621 (2)C8—C91.381 (4)
S1—C11.759 (3)C9—C101.374 (4)
S2—O31.4235 (19)C10—C111.380 (4)
S2—O41.424 (2)C11—C121.377 (4)
S2—N21.652 (2)C13—C141.494 (5)
S2—C101.745 (3)C2—H20.9300
O5—C131.208 (3)C3—H30.9300
N1—C71.408 (3)C4—H40.9300
N2—C131.372 (3)C5—H50.9300
N1—H1N0.8600C6—H60.9300
N2—H2N0.8600C8—H80.9300
C1—C61.375 (4)C9—H90.9300
C1—C21.385 (4)C11—H110.9300
C2—C31.367 (5)C12—H120.9300
C3—C41.388 (6)C14—H14A0.9600
C4—C51.368 (6)C14—H14B0.9600
C5—C61.370 (5)C14—H14C0.9600
S1···H82.8600C8···C63.517 (4)
O1···N2i2.922 (3)C9···O4xi3.237 (3)
O2···C6ii3.242 (4)C10···O53.111 (4)
O2···C5ii3.407 (4)C11···O53.142 (4)
O2···C83.116 (3)C12···O5vi3.402 (3)
O2···C14iii3.401 (4)C14···O4xii3.193 (4)
O4···O52.992 (3)C14···O2xiii3.401 (4)
O4···C8iv3.300 (3)C2···H14Bi3.0500
O4···C9iv3.237 (3)C2···H11vi2.9100
O4···C14v3.193 (4)C5···H14Ax2.9400
O5···C113.142 (4)C6···H83.0200
O5···N1vi2.839 (3)H1N···H122.3400
O5···O42.992 (3)H1N···O2vii2.9200
O5···C12vi3.402 (3)H1N···O5vi2.2500
O5···C103.111 (4)H2···O12.7900
O1···H14Ci2.8100H2···O4vi2.6900
O1···H22.7900H2···H11vi2.5200
O1···H2Ni2.1400H2···H14Bi2.5600
O2···H82.4900H2N···H14C2.2100
O2···H6ii2.8500H2N···O1ix2.1400
O2···H62.5300H3···O3xiv2.8400
O2···H1Nvii2.9200H5···H12xv2.5400
O2···H14Aiii2.5600H6···O22.5300
O3···H3viii2.8400H6···O2ii2.8500
O3···H92.6900H8···S12.8600
O4···H112.5400H8···O22.4900
O4···H14Bv2.7500H8···C63.0200
O4···H2vi2.6900H8···O4xi2.7300
O4···H8iv2.7300H9···O32.6900
O4···H9iv2.6000H9···O4xi2.6000
O5···H1Nvi2.2500H11···O42.5400
O5···H12vi2.7200H11···C2vi2.9100
N1···O5vi2.839 (3)H11···H2vi2.5200
N2···O1ix2.922 (3)H12···H1N2.3400
C1···C83.416 (4)H12···H5xvi2.5400
C4···C5x3.534 (6)H12···O5vi2.7200
C4···C4x3.515 (7)H14A···O2xiii2.5600
C5···O2ii3.407 (4)H14A···C5x2.9400
C5···C4x3.534 (6)H14B···O4xii2.7500
C6···C83.517 (4)H14B···C2ix3.0500
C6···O2ii3.242 (4)H14B···H2ix2.5600
C8···O23.116 (3)H14C···H2N2.2100
C8···C13.416 (4)H14C···O1ix2.8100
C8···O4xi3.300 (3)
O1—S1—O2119.56 (12)S2—C10—C11120.2 (2)
O1—S1—N1103.74 (11)C9—C10—C11119.9 (3)
O1—S1—C1109.21 (12)C10—C11—C12119.5 (3)
O2—S1—N1109.70 (11)C7—C12—C11121.0 (3)
O2—S1—C1108.39 (13)O5—C13—C14123.8 (3)
N1—S1—C1105.31 (12)N2—C13—C14116.0 (2)
O3—S2—O4119.85 (12)O5—C13—N2120.2 (3)
O3—S2—N2103.58 (11)C1—C2—H2121.00
O3—S2—C10109.54 (13)C3—C2—H2120.00
O4—S2—N2108.64 (11)C2—C3—H3120.00
O4—S2—C10108.16 (13)C4—C3—H3120.00
N2—S2—C10106.25 (12)C3—C4—H4120.00
S1—N1—C7125.64 (18)C5—C4—H4120.00
S2—N2—C13123.70 (18)C4—C5—H5120.00
C7—N1—H1N117.00C6—C5—H5120.00
S1—N1—H1N117.00C1—C6—H6121.00
S2—N2—H2N118.00C5—C6—H6121.00
C13—N2—H2N118.00C7—C8—H8120.00
S1—C1—C2118.7 (2)C9—C8—H8120.00
S1—C1—C6120.0 (2)C8—C9—H9120.00
C2—C1—C6121.3 (3)C10—C9—H9120.00
C1—C2—C3119.0 (3)C10—C11—H11120.00
C2—C3—C4120.1 (3)C12—C11—H11120.00
C3—C4—C5119.9 (3)C7—C12—H12119.00
C4—C5—C6120.8 (3)C11—C12—H12120.00
C1—C6—C5118.9 (3)C13—C14—H14A109.00
C8—C7—C12119.2 (2)C13—C14—H14B109.00
N1—C7—C8123.4 (2)C13—C14—H14C109.00
N1—C7—C12117.4 (2)H14A—C14—H14B109.00
C7—C8—C9119.5 (3)H14A—C14—H14C110.00
C8—C9—C10120.8 (2)H14B—C14—H14C109.00
S2—C10—C9119.9 (2)
O1—S1—N1—C7171.1 (2)S2—N2—C13—O59.3 (4)
O2—S1—N1—C760.1 (2)S2—N2—C13—C14170.4 (2)
C1—S1—N1—C756.4 (2)S1—C1—C2—C3178.6 (2)
O1—S1—C1—C244.2 (3)C6—C1—C2—C30.8 (4)
O1—S1—C1—C6137.9 (2)S1—C1—C6—C5178.4 (2)
O2—S1—C1—C2176.0 (2)C2—C1—C6—C50.5 (5)
O2—S1—C1—C66.1 (3)C1—C2—C3—C40.4 (5)
N1—S1—C1—C266.7 (3)C2—C3—C4—C50.1 (6)
N1—S1—C1—C6111.2 (2)C3—C4—C5—C60.4 (6)
O3—S2—N2—C13179.6 (2)C4—C5—C6—C10.0 (5)
O4—S2—N2—C1352.0 (2)N1—C7—C8—C9178.4 (2)
C10—S2—N2—C1364.2 (2)C12—C7—C8—C91.5 (4)
O3—S2—C10—C932.2 (3)N1—C7—C12—C11179.7 (3)
O3—S2—C10—C11146.2 (2)C8—C7—C12—C110.2 (4)
O4—S2—C10—C9164.5 (2)C7—C8—C9—C101.7 (4)
O4—S2—C10—C1114.0 (3)C8—C9—C10—S2177.9 (2)
N2—S2—C10—C979.1 (3)C8—C9—C10—C110.5 (4)
N2—S2—C10—C11102.5 (2)S2—C10—C11—C12179.2 (2)
S1—N1—C7—C822.2 (3)C9—C10—C11—C120.8 (4)
S1—N1—C7—C12157.8 (2)C10—C11—C12—C71.0 (4)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+2, y, z; (iii) x+1, y, z; (iv) x+3/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1, y+1, z; (vii) x+2, y+1, z; (viii) x+1/2, y+1/2, z+1/2; (ix) x1/2, y+1/2, z+1/2; (x) x+1, y, z; (xi) x+3/2, y1/2, z+1/2; (xii) x+1/2, y1/2, z+1/2; (xiii) x1, y, z; (xiv) x1/2, y+1/2, z1/2; (xv) x, y1, z; (xvi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5vi0.862.252.839 (3)126
N2—H2N···O1ix0.862.142.922 (3)151
C8—H8···O20.932.493.116 (3)125
C9—H9···O4xi0.932.603.237 (3)126
C14—H14A···O2xiii0.962.563.401 (4)147
Symmetry codes: (vi) x+1, y+1, z; (ix) x1/2, y+1/2, z+1/2; (xi) x+3/2, y1/2, z+1/2; (xiii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H14N2O5S2
Mr354.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.9316 (9), 9.4828 (8), 17.6490 (17)
β (°) 103.169 (5)
V3)1618.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.28 × 0.22 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.909, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
17674, 4034, 2423
Rint0.060
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.128, 1.02
No. of reflections4034
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.36

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.862.252.839 (3)126
N2—H2N···O1ii0.862.142.922 (3)151
C8—H8···O20.932.493.116 (3)125
C9—H9···O4iii0.932.603.237 (3)126
C14—H14A···O2iv0.962.563.401 (4)147
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x1, y, z.
 

Acknowledgements

MA greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 042-120556-PS2-275).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H., Shad, H. A. & Tahir, M. N. (2009). Acta Cryst. E65, o57.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o648.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDeng, X. & Mani, N. S. (2006). Green Chem. 8, 835–838.  Web of Science CrossRef CAS Google Scholar
First citationEllingboe, J. W., Spinelli, W., Winkley, M. W., Nguyen, T. T., Parsons, R. W., Moubarak, I. F., Kitzen, J. M., Engen, D. V. & Bagli, J. F. (1992). J. Med. Chem., 35, 705–716.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShad, H. A., Tahir, M. N. & Chohan, Z. H. (2009). Acta Cryst. E65, o98–o99.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Chohan, Z. H., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o720.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1180
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds