metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aquazinc(II)]-μ-trans-4,4′-diazenediyldibenzoato-κ4O,O′:O′′,O′′′]

aNational Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan, and Graduate School of Science and Technology, Kobe University, Nada Ku, Kobe, Hyogo 657-8501, Japan
*Correspondence e-mail: q.xu@aist.go.jp

(Received 27 February 2009; accepted 3 April 2009; online 10 April 2009)

The title compound, [Zn(C14H8N2O4)(H2O)2]n, consists of zigzag chains of Zn atoms bridged by azobenzene-4,4′-dicarboxyl­ate ligands. The ZnII atom, lying on a twofold rotation axis, is coordinated by four O atoms from the carboxyl­ate groups and two water mol­ecules, giving rise to a considerably distorted octa­hedral coordination envionment. The ligand lies on an inversion center. In the crystal structure, ππ inter­actions between the ligands [inter­planar distance = 3.527 (3) Å] assemble the chains into a sheet-like structure. O—H⋯O hydrogen bonds between the coordinated water mol­ecules and carboxyl­ate O atoms connect the sheets into a three-dimensional network.

Related literature

For related structures, see: Chen et al. (2008[Chen, Z.-F., Zhang, Z.-L., Tan, Y.-H., Tang, Y.-Z., Fun, H.-K., Zhou, Z.-Y., Abrahams, B. F. & Liang, H. (2008). CrystEngComm, 10, 217-231.]); Bai et al. (2008[Bai, J.-W., Wang, J., Hou, Y., Zhao, B.-Z. & Fu, Q. (2008). Acta Cryst. E64, m3-m4.]); Mukherjee et al. (2004[Mukherjee, P. S., Das, N., Kryschenko, Y. K., Arif, A. M. & Stang, P. L. (2004). J. Am. Chem. Soc. 126, 2464-2473.]); Reineke et al. (2000[Reineke, T. M., Eddaoudi, M., Moler, D., O'Keeffe, M. & Yaghi, O. M. (2000). J. Am. Chem. Soc. 122, 4843-4844.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C14H8N2O4)(H2O)2]

  • Mr = 369.63

  • Monoclinic, C 2/c

  • a = 22.392 (5) Å

  • b = 4.9308 (10) Å

  • c = 12.185 (2) Å

  • β = 90.30 (3)°

  • V = 1345.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.86 mm−1

  • T = 293 K

  • 0.14 × 0.09 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.781, Tmax = 0.865

  • 6205 measured reflections

  • 1532 independent reflections

  • 1194 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.109

  • S = 1.04

  • 1532 reflections

  • 110 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.37 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O3 1.985 (3)
Zn1—O2 2.572 (2)
Zn1—O1 1.995 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.82 1.92 2.735 (4) 171
O3—H3B⋯O2ii 0.81 (6) 1.91 (6) 2.712 (4) 173 (6)
Symmetry codes: (i) [-x, y-1, -z+{\script{3\over 2}}]; (ii) -x, -y, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Metal-organic frameworks, in which metal ions are bridged by organic ligands, have a rapid development in the past decade due to the various topologies and wide applications. Azodibenzoate-based ligands are a kind of typical aromatic carboxylate ligand employed in the generation of coordination networks, including azobenzene-4,4'-dicarboxylate and azobenzene-3,3'-dicarboxylate and so on. A series of coordination polymers have been reported by employing these ligands as linkers (Chen et al., 2008; Bai et al., 2008; Mukherjee et al., 2004; Reineke et al., 2000). The title compound (Fig. 1 and Table 1) is an analogue to the reported compound [Cd(C14H8N2O4)(H2O)2]n (Chen et al., 2008). The space group of the reported Cd complex is P21/m, while that of the title compound is determined to be C2/c. The seperation between the bridged Zn atoms is 17.211 (1) Å and the angle for the three neighboring Zn atoms is 95.84 (8)°. In comparison, the Oaq···Ocarboxylate distances for hydrogen bonds are 2.712 (4) and 2.735 (4) Å in the title compound (Table 2), while they are greater than 3.19 Å in the Cd complex. Face-to-face ππ interaction between the ligands exists in the title compound [interplane distance = 3.527 (3) Å], which assembles the Zn–ligand chains into a sheet. O—H···O hydrogen bonds between the coordinated water molecules and carboxylate O atoms connect the sheets into a three-dimensional network (Fig. 2).

Related literature top

For related structures, see: Chen et al. (2008); Bai et al. (2008); Mukherjee et al. (2004); Reineke et al. (2000).

Experimental top

The single crystals of the title compound were obtained by solvothermal reaction of Zn(NO3)2.6H2O (0.013 g) and azobenzene-4,4'-dicarboxylic acid (0.007 g) in a mixed solvent of DMSO and H2O (20 ml, volume ratio 1:1) at 393 K for 72 h.

Refinement top

Aromatic H atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located on a difference Fourier map. One (H3A) of the two water H atoms was fixed with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). The other H atom (H3B) was refined isotropically, with a distance restraint O—H = 0.82 (1) Å. In the final difference map, the highest peak and deepest hole were found to be 0.81 and 0.60 Å from N1 atom, respectively.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Part of the chain in the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (iii) -x, y, 3/2 - z; (iv) 1/2 - x, 5/2 - y, 1 - z.]
[Figure 2] Fig. 2. The crystal packing diagram showing hydrogen bonds (dashed lines).
catena-Poly[[diaquazinc(II)]-µ-trans-4,4'- diazenediyldibenzoato-κ4O,O':O'',O'''] top
Crystal data top
[Zn(C14H8N2O4)(H2O)2]F(000) = 752
Mr = 369.63Dx = 1.825 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1194 reflections
a = 22.392 (5) Åθ = 3.3–27.5°
b = 4.9308 (10) ŵ = 1.86 mm1
c = 12.185 (2) ÅT = 293 K
β = 90.30 (3)°Needle, orange
V = 1345.3 (5) Å30.14 × 0.09 × 0.08 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1532 independent reflections
Radiation source: rotating anode1194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2828
Tmin = 0.781, Tmax = 0.865k = 66
6205 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0399P)2 + 7.8756P]
where P = (Fo2 + 2Fc2)/3
1532 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 1.37 e Å3
8 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Zn(C14H8N2O4)(H2O)2]V = 1345.3 (5) Å3
Mr = 369.63Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.392 (5) ŵ = 1.86 mm1
b = 4.9308 (10) ÅT = 293 K
c = 12.185 (2) Å0.14 × 0.09 × 0.08 mm
β = 90.30 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1532 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1194 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 0.865Rint = 0.043
6205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0448 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.37 e Å3
1532 reflectionsΔρmin = 0.89 e Å3
110 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.08046 (11)0.75000.0287 (2)
O10.06809 (11)0.3407 (5)0.7428 (2)0.0270 (6)
O20.04382 (12)0.2669 (5)0.5705 (2)0.0343 (6)
C10.07463 (15)0.3874 (7)0.6402 (3)0.0233 (7)
O30.03292 (14)0.2000 (5)0.6496 (2)0.0364 (7)
H3A0.04580.32740.68570.055*
C20.12028 (14)0.5963 (7)0.6090 (3)0.0229 (7)
C60.16404 (19)0.9039 (8)0.4779 (4)0.0401 (10)
H60.16510.97680.40750.048*
C50.20375 (18)0.9943 (8)0.5579 (4)0.0399 (7)
C70.12236 (18)0.7023 (8)0.5038 (3)0.0332 (8)
H70.09600.63940.45030.040*
C30.16064 (17)0.6897 (8)0.6873 (3)0.0323 (8)
H30.15990.61790.75780.039*
C40.20196 (18)0.8879 (8)0.6617 (4)0.0399 (10)
H40.22860.94920.71500.048*
H3B0.037 (2)0.207 (12)0.584 (5)0.068 (18)*
N10.25044 (16)1.2046 (7)0.5460 (3)0.0415 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0257 (3)0.0176 (3)0.0429 (4)0.0000.0010 (2)0.000
O10.0319 (14)0.0247 (12)0.0244 (13)0.0017 (10)0.0061 (10)0.0034 (10)
O20.0348 (15)0.0331 (14)0.0351 (15)0.0108 (12)0.0020 (12)0.0059 (12)
C10.0230 (16)0.0196 (16)0.0274 (18)0.0033 (13)0.0045 (13)0.0015 (14)
O30.059 (2)0.0231 (13)0.0273 (16)0.0099 (13)0.0025 (14)0.0009 (11)
C20.0223 (16)0.0206 (15)0.0258 (17)0.0011 (13)0.0080 (13)0.0001 (14)
C60.045 (2)0.035 (2)0.041 (2)0.0047 (19)0.0167 (19)0.0171 (19)
C50.0342 (15)0.0342 (15)0.0513 (18)0.0033 (13)0.0110 (14)0.0006 (14)
C70.038 (2)0.034 (2)0.028 (2)0.0023 (17)0.0022 (16)0.0028 (16)
C30.0288 (19)0.0323 (19)0.036 (2)0.0057 (15)0.0039 (16)0.0006 (17)
C40.0274 (19)0.037 (2)0.056 (3)0.0095 (17)0.0043 (18)0.0082 (19)
N10.0368 (15)0.0375 (15)0.0505 (17)0.0050 (13)0.0094 (14)0.0012 (13)
Geometric parameters (Å, º) top
Zn1—O31.985 (3)C2—C31.389 (5)
Zn1—O3i1.985 (3)C6—C51.389 (6)
Zn1—O22.572 (2)C6—C71.401 (5)
Zn1—O11.995 (2)C6—H60.9300
Zn1—O1i1.995 (2)C5—C41.371 (6)
O1—C11.280 (4)C5—N11.480 (5)
O2—C11.243 (4)C7—H70.9300
C1—C21.501 (5)C3—C41.383 (5)
O3—H3A0.8200C3—H30.9300
O3—H3B0.81 (6)C4—H40.9300
C2—C71.385 (5)N1—N1ii1.207 (7)
O3—Zn1—O3i91.71 (17)C5—C6—C7119.6 (4)
O3—Zn1—O1134.60 (11)C5—C6—H6120.2
O3i—Zn1—O1101.17 (12)C7—C6—H6120.2
O3—Zn1—O1i101.17 (12)C4—C5—C6120.2 (4)
O3i—Zn1—O1i134.60 (11)C4—C5—N1112.5 (4)
O1—Zn1—O1i99.95 (15)C6—C5—N1127.3 (4)
C1—O1—Zn1104.5 (2)C2—C7—C6120.2 (4)
C1—O2—Zn178.6 (2)C2—C7—H7119.9
O2—C1—O1121.0 (3)C6—C7—H7119.9
O2—C1—C2122.1 (3)C4—C3—C2120.9 (4)
O1—C1—C2116.9 (3)C4—C3—H3119.6
Zn1—O3—H3A109.5C2—C3—H3119.6
Zn1—O3—H3B133 (4)C5—C4—C3120.1 (4)
H3A—O3—H3B117.4C5—C4—H4120.0
C7—C2—C3119.0 (3)C3—C4—H4120.0
C7—C2—C1121.3 (3)N1ii—N1—C5110.0 (5)
C3—C2—C1119.7 (3)
O3—Zn1—O1—C128.2 (3)C3—C2—C7—C61.1 (6)
O3i—Zn1—O1—C1131.9 (2)C1—C2—C7—C6177.8 (3)
O1i—Zn1—O1—C188.5 (2)C5—C6—C7—C20.8 (6)
Zn1—O1—C1—O23.7 (4)C7—C2—C3—C40.8 (6)
Zn1—O1—C1—C2175.3 (2)C1—C2—C3—C4178.0 (3)
O2—C1—C2—C712.6 (5)C6—C5—C4—C30.1 (6)
O1—C1—C2—C7166.5 (3)N1—C5—C4—C3179.6 (4)
O2—C1—C2—C3168.6 (3)C2—C3—C4—C50.4 (6)
O1—C1—C2—C312.3 (5)C4—C5—N1—N1ii178.8 (4)
C7—C6—C5—C40.3 (6)C6—C5—N1—N1ii0.7 (7)
C7—C6—C5—N1179.8 (4)
Symmetry codes: (i) x, y, z+3/2; (ii) x+1/2, y+5/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1iii0.821.922.735 (4)171
O3—H3B···O2iv0.81 (6)1.91 (6)2.712 (4)173 (6)
Symmetry codes: (iii) x, y1, z+3/2; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C14H8N2O4)(H2O)2]
Mr369.63
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)22.392 (5), 4.9308 (10), 12.185 (2)
β (°) 90.30 (3)
V3)1345.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.86
Crystal size (mm)0.14 × 0.09 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.781, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
6205, 1532, 1194
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.109, 1.04
No. of reflections1532
No. of parameters110
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.37, 0.89

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Zn1—O31.985 (3)Zn1—O11.995 (2)
Zn1—O22.572 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.821.922.735 (4)171
O3—H3B···O2ii0.81 (6)1.91 (6)2.712 (4)173 (6)
Symmetry codes: (i) x, y1, z+3/2; (ii) x, y, z+1.
 

Acknowledgements

We thank AIST and Kobe University for financial support. BL thanks MEXT for a Japanese Government Scholarship.

References

First citationBai, J.-W., Wang, J., Hou, Y., Zhao, B.-Z. & Fu, Q. (2008). Acta Cryst. E64, m3–m4.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, Z.-F., Zhang, Z.-L., Tan, Y.-H., Tang, Y.-Z., Fun, H.-K., Zhou, Z.-Y., Abrahams, B. F. & Liang, H. (2008). CrystEngComm, 10, 217–231.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, P. S., Das, N., Kryschenko, Y. K., Arif, A. M. & Stang, P. L. (2004). J. Am. Chem. Soc. 126, 2464–2473.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationReineke, T. M., Eddaoudi, M., Moler, D., O'Keeffe, M. & Yaghi, O. M. (2000). J. Am. Chem. Soc. 122, 4843–4844.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds