metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m538-m539

Poly[[di­aqua­bis­(μ2-4,4′-bi­pyridine)­manganese(II)] bis­­[2-(2-carb­oxy­phenyl­di­sulfanyl)benzoate]]

aZhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface and Interface Science, Henan, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: humin@zzuli.edu.cn

(Received 9 March 2009; accepted 10 April 2009; online 22 April 2009)

The title complex, {[Mn(C10H8N2)2(H2O)2](C14H9O4S2)2}n, contains an octa­hedrally coordinated MnII cation and 2-(2-carboxy­phenyl­disulfan­yl)benzoate anions. The MnII center is situated on a crystallographic center of inversion and is coordinated by four 4,4′-bipyridine (4,4′-bipy) ligands and two water mol­ecules. The 4,4′-bipy ligands act as bridging ligands, producing a fishing-net-like two-dimensional framework. In the crystal structure, this positively charged framework is charge balanced by 2-(2-carboxy­phenyl­disulfan­yl)benzoate anions that form a separate anionic two-dimensional framework via inter­molecular O—H⋯O hydrogen bonds and C—H⋯π stacking inter­actions. Additional inter­molecular O—H⋯O hydrogen bonds link the cationic and anionic frameworks to form the three-dimensional crystal structure.

Related literature

For general background on the design and synthesis of coordination polymers, see: James (2003[James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Steel (2005[Steel, P. J. (2005). Acc. Chem. Res. 38, 243-250.]); Ye et al. (2005[Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545-565.]). For the crystal structures of related complexes with 4,4′-bipyridine ligands, see: Biradha et al. (2006[Biradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169-4179.]); Denning et al. (2008[Denning, M. S., Irwin, M. & Goicoechea, J. M. (2008). Inorg. Chem. 47, 6118-6120.]); Hoffart et al. (2007[Hoffart, D. J., Habermehl, N. C. & Loeb, S. J. (2007). Dalton Trans. pp. 2870-2875.]); Noro et al. (2002[Noro, S.-I., Kitaura, R., Kondo, M., Kitagawa, S., Ishii, T., Matsuzaka, H. & Yamashita, M. (2002). J. Am. Chem. Soc. 124, 2568-2583.]); Qin et al. (2007[Qin, J.-H., Li, X.-L. & Guo, H. (2007). Z. Kristallogr. New Cryst. Struct. 222, 318-320.]); Zhang et al. (2007[Zhang, J., Liu, R., Feng, P. & Bu, X. (2007). Angew. Chem. Int. Ed. 46, 8388 -8391.]). For metal–organic framework materials containing 2,2′-dithio­dibenzoic acid, see: Humphrey et al. (2004[Humphrey, S. M., Mole, R. A., Rawson, J. M. & Wood, P. T. (2004). Dalton Trans. pp. 1670-1678.]); Murugavel et al. (2001[Murugavel, R., Baheti, K. & Anantharaman, G. (2001). Inorg. Chem. 40, 6870-6878.]); Wang et al. (2004[Wang, S., Mao-Lin, H. & Chen, F. (2004). Acta Cryst. E60, m413-m415.]); Zhao et al. (2004[Zhao, W.-N., Zou, J.-W. & Yu, Q.-S. (2004). Acta Cryst. C60, m443-m444.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C10H8N2)2(H2O)2](C14H9O4S2)2

  • Mr = 1014.00

  • Triclinic, [P \overline 1]

  • a = 8.260 (5) Å

  • b = 11.771 (7) Å

  • c = 11.917 (7) Å

  • α = 94.334 (6)°

  • β = 102.339 (7)°

  • γ = 96.217 (7)°

  • V = 1119 (1) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 293 K

  • 0.41 × 0.13 × 0.09 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.807, Tmax = 0.952

  • 8248 measured reflections

  • 3921 independent reflections

  • 3242 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.081

  • S = 1.03

  • 3921 reflections

  • 304 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯O2 0.85 1.92 2.761 (3) 173
O1—H12⋯O3i 0.85 1.82 2.667 (3) 174
O5—H51⋯O2ii 0.82 1.83 2.637 (3) 169
C4—H4⋯S1iii 0.93 2.86 3.562 (3) 133
C23—H23⋯S2 0.93 2.66 3.191 (3) 117
C22—H22⋯Cg1iv 0.93 2.94 3.79 (2) 153
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y, z-1; (iii) -x, -y, -z; (iv) x+1, y, z. Cg1 is the centroid of the C12–C17 ring.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Rational design and synthesis of novel coordination polymers have achieved considerable progress in the field of supramolecular chemistry and crystal engineering. (James, 2003; Kitagawa et al., 2004; Steel, 2005; Ye et al., 2005). Particularly classical ligands are represented such as 4,4' -bipy. Numerous polymeric transition metal complexes with 4,4'-bipy have been synthesized and structurally characterized to date. 4,4'-bipyridine is an ideal connector between transition metal atoms for the propagation of coordination networks due to its two potential binding sites (Denning et al., 2008; Hoffart et al., 2007; Zhang et al., 2007; Qin et al., 2007; Noro et al., 2002; Biradha et al., 2006). During our investigation of the assembly of metal ions and mixed ligands (4,4'-bipyridine and 2,2'-dithiodibenzoic acid), we did not obtain the expected compound. The title complex,{[Mn(C10H8N2)2(H2O)2] (C14H9O4S2)2}n, (I) was synthesized. In contrast to many metal-organic framework materials containing 2,2'-dithiodibenzoic acid, the anions in I do not act as bridging ligands, but rather as extraframework guest molecules (Murugavel et al., 2001; Zhao et al., 2004; Humphrey et al., 2004; Wang et al., 2004). In the title crystal structure, each MnII center is separated by 4,4'-bipy spacers to give a large rhombic arrangement with each metal ion adopting an octahedral environment by binding to four 4,4' -bipy ligands and two water molecules (Fig. 1). All of the 4,4'-bipy molecules act as doubly bridging ligands. MnII centers are bridged by 4,4'-bipy ligands to form a fishing-net like, two-dimensional framework (Fig.2). In the crystal structure, the positively charged framework of I is charge balanced by 2-o-benzoato-disulfanyl-benzoic acid anions. Intermolecular O—H···O hydrogen bonds and C—H··· π stacking interactions (Table 1) (Fig.3) between anions link them to form a two-dimensional framework. Intermolecular O—H···O hydrogen bonds link the cationic and anionic frameworks (Fig.1, Table 1) to form the observed crystal structure.

Related literature top

For general background on the design and synthesis of coordination polymers, see: James (2003); Kitagawa et al. (2004); Steel (2005); Ye et al. (2005). For the crystal structures of related complexes with 4,4'-bipyridine ligands, see: Biradha et al. (2006); Denning et al. (2008); Hoffart et al. (2007); Noro et al. (2002); Qin et al. (2007); Zhang et al. (2007). For metal–organic framework materials containing 2,2'-dithiodibenzoic acid, see: Humphrey et al. (2004); Murugavel et al. (2001); Wang et al. (2004); Zhao et al. (2004).

Experimental top

A solution of 4,4'-bipy (0.05 mmol) and 2,2'-dithiodibenzoic acid (0.05 mmol) in CH3OH (10 ml) in the presence of excess 2,6-dimethylpyridine (ca. 0.05 ml for adjusting the pH value of the reaction system to basic conditions) was carefully layered on top of an aqueous solution (15 ml) of Mn(ClO4)2 (0.1 mmol) in a test tube. Yellow single crystals suitable for X-ray analysis appeared at the tube wall after ca. one month at room temperature (yield ~30% based on 4,4'-bipy). Elemental analysis calculated for (C48H38MnN4O10S4): H 3.78 C 56.86 N 5.53%; found: H 3.52, C 56.62, N 5.34%. IR (KBr pellet, cm-1): 3094br, 1690m, 1594vs, 1540 s, 1457m, 1412m, 1377 s, 1306w, 1258 s, 1232m, 1171w, 1144m, 1037m,1000w, 903w, 806m, 742 s, 689m, 649w, 622m, 542w, 468w.

Refinement top

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 Å and O—H = 0.82 (carboxylic) or 0.85 Å (water), and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and the intermolecular O–H···O hydrogen-bonding interactions. Displacement ellipsoids are drawn at the 30% probability level. The atoms labelled with the suffixes A, B, C, D, and E are generated by the symmetry operations (–x, –y, 1 –z), (–x, –y + 1, –z + 1), (–x, y - 1, z), (x, y, z + 1), and (–x, –y, –z), respectively.
[Figure 2] Fig. 2. Cationic two-dimensional network, parallel to the (001) plane, formed by [Mn(4,4'-bipy)4(H2O)2] units.
[Figure 3] Fig. 3. Anionic two-dimensional network, parallel to the (100) plane, formed by intermolecular O—H···O hydrogen bonds and C—H···π stacking interactions between 2-o-benzoato-disulfanyl-benzoic acid anions.
Poly[[diaquabis(µ2-4,4'-bipyridine)manganese(II)] bis[2-(2-carboxyphenyldisulfanyl)benzoate]] top
Crystal data top
[Mn(C10H8N2)2(H2O)2](C14H9O4S2)2Z = 1
Mr = 1014.00F(000) = 523
Triclinic, P1Dx = 1.504 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.260 (5) ÅCell parameters from 3063 reflections
b = 11.771 (7) Åθ = 2.6–27.3°
c = 11.917 (7) ŵ = 0.55 mm1
α = 94.334 (6)°T = 293 K
β = 102.339 (7)°Prism, yellow
γ = 96.217 (7)°0.41 × 0.13 × 0.09 mm
V = 1119 (1) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3921 independent reflections
Radiation source: fine-focus sealed tube3242 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.807, Tmax = 0.952k = 1414
8248 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0338P)2 + 0.4902P]
where P = (Fo2 + 2Fc2)/3
3921 reflections(Δ/σ)max = 0.001
304 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
[Mn(C10H8N2)2(H2O)2](C14H9O4S2)2γ = 96.217 (7)°
Mr = 1014.00V = 1119 (1) Å3
Triclinic, P1Z = 1
a = 8.260 (5) ÅMo Kα radiation
b = 11.771 (7) ŵ = 0.55 mm1
c = 11.917 (7) ÅT = 293 K
α = 94.334 (6)°0.41 × 0.13 × 0.09 mm
β = 102.339 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3921 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3242 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.952Rint = 0.018
8248 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
3921 reflectionsΔρmin = 0.21 e Å3
304 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.00000.50000.02618 (12)
C10.1323 (3)0.0099 (2)0.26331 (18)0.0413 (5)
H10.23130.02350.31950.050*
C20.1417 (3)0.0171 (2)0.14994 (18)0.0426 (6)
H20.24500.03580.13210.051*
C30.0016 (2)0.00339 (17)0.06212 (16)0.0288 (4)
C40.1492 (3)0.03266 (19)0.09752 (17)0.0367 (5)
H40.24960.04900.04280.044*
C50.1486 (3)0.03779 (19)0.21322 (17)0.0365 (5)
H50.24990.05800.23330.044*
C60.0798 (3)0.24339 (19)0.4099 (2)0.0470 (6)
H60.14570.19430.34840.056*
C70.0917 (3)0.35907 (19)0.4094 (2)0.0499 (6)
H70.16590.38530.34970.060*
C80.0067 (3)0.43706 (17)0.49789 (18)0.0329 (5)
C90.1167 (3)0.38947 (19)0.58152 (19)0.0420 (5)
H90.18800.43700.64190.050*
C100.1207 (3)0.27247 (19)0.57538 (19)0.0418 (5)
H100.19770.24410.63180.050*
C110.4897 (3)0.19836 (19)0.37959 (18)0.0366 (5)
C120.4734 (3)0.29917 (18)0.30933 (17)0.0344 (5)
C130.4283 (3)0.3990 (2)0.3568 (2)0.0488 (6)
H130.39840.39930.42780.059*
C140.4264 (4)0.4974 (2)0.3015 (2)0.0626 (8)
H140.39490.56330.33440.075*
C150.4719 (4)0.4971 (2)0.1964 (2)0.0560 (7)
H150.47410.56390.15950.067*
C160.5139 (3)0.3989 (2)0.14617 (19)0.0429 (6)
H160.54280.39980.07490.051*
C170.5139 (2)0.29761 (18)0.20047 (17)0.0330 (5)
C180.6650 (3)0.2313 (2)0.25469 (19)0.0427 (6)
C190.7963 (3)0.26720 (19)0.14760 (19)0.0400 (5)
C200.9572 (3)0.3118 (2)0.1525 (2)0.0571 (7)
H200.98280.31900.22410.069*
C211.0794 (3)0.3457 (3)0.0539 (3)0.0704 (9)
H211.18630.37540.05900.084*
C221.0418 (3)0.3351 (3)0.0525 (2)0.0638 (8)
H221.12370.35750.11950.077*
C230.8834 (3)0.2913 (2)0.0595 (2)0.0488 (6)
H230.85920.28500.13170.059*
C240.7592 (3)0.25648 (18)0.03888 (18)0.0369 (5)
N10.0201 (2)0.19659 (14)0.49270 (14)0.0338 (4)
N20.0105 (2)0.01530 (14)0.29787 (14)0.0309 (4)
O10.26802 (17)0.02247 (12)0.53842 (12)0.0354 (3)
H110.32860.08090.52560.042*
H120.33350.02010.57450.042*
O20.4542 (2)0.20761 (14)0.47789 (13)0.0493 (4)
O30.5396 (2)0.11191 (14)0.33731 (13)0.0466 (4)
O40.5199 (2)0.20487 (17)0.25451 (14)0.0602 (5)
O50.7208 (2)0.23484 (17)0.35055 (14)0.0606 (5)
H510.63760.21680.40330.073*
S10.55261 (7)0.19603 (5)0.03290 (5)0.04397 (16)
S20.56728 (7)0.16800 (5)0.13681 (5)0.03939 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0335 (2)0.0252 (2)0.0210 (2)0.00591 (17)0.00676 (18)0.00459 (17)
C10.0358 (12)0.0617 (15)0.0222 (11)0.0030 (11)0.0030 (9)0.0019 (10)
C20.0351 (12)0.0648 (16)0.0268 (11)0.0044 (11)0.0104 (9)0.0038 (11)
C30.0363 (11)0.0293 (11)0.0213 (10)0.0047 (9)0.0078 (8)0.0014 (8)
C40.0318 (11)0.0534 (14)0.0227 (11)0.0015 (10)0.0037 (9)0.0031 (9)
C50.0346 (12)0.0489 (13)0.0267 (11)0.0024 (10)0.0097 (9)0.0042 (9)
C60.0566 (15)0.0302 (12)0.0442 (14)0.0031 (11)0.0087 (11)0.0018 (10)
C70.0539 (15)0.0344 (13)0.0501 (15)0.0061 (11)0.0135 (12)0.0054 (11)
C80.0329 (11)0.0299 (11)0.0357 (11)0.0025 (9)0.0080 (9)0.0038 (9)
C90.0481 (14)0.0352 (12)0.0362 (12)0.0066 (10)0.0035 (10)0.0016 (10)
C100.0500 (14)0.0375 (13)0.0361 (12)0.0132 (10)0.0007 (11)0.0069 (10)
C110.0350 (12)0.0436 (13)0.0301 (12)0.0033 (10)0.0040 (9)0.0091 (10)
C120.0338 (11)0.0401 (12)0.0293 (11)0.0053 (9)0.0055 (9)0.0079 (9)
C130.0643 (16)0.0508 (15)0.0367 (13)0.0151 (12)0.0183 (12)0.0072 (11)
C140.095 (2)0.0449 (15)0.0562 (17)0.0262 (14)0.0249 (16)0.0083 (13)
C150.0811 (19)0.0419 (14)0.0492 (16)0.0164 (13)0.0145 (14)0.0188 (12)
C160.0522 (14)0.0476 (14)0.0323 (12)0.0096 (11)0.0125 (11)0.0129 (10)
C170.0298 (11)0.0399 (12)0.0282 (11)0.0061 (9)0.0019 (9)0.0069 (9)
C180.0582 (16)0.0414 (13)0.0326 (12)0.0110 (11)0.0155 (11)0.0073 (10)
C190.0455 (13)0.0426 (13)0.0353 (12)0.0120 (10)0.0124 (10)0.0068 (10)
C200.0574 (17)0.0724 (19)0.0480 (15)0.0075 (14)0.0245 (13)0.0110 (13)
C210.0445 (16)0.098 (2)0.068 (2)0.0070 (15)0.0194 (15)0.0086 (17)
C220.0462 (16)0.086 (2)0.0505 (16)0.0066 (14)0.0019 (13)0.0022 (15)
C230.0469 (14)0.0637 (16)0.0328 (12)0.0006 (12)0.0069 (11)0.0014 (11)
C240.0404 (12)0.0382 (12)0.0326 (12)0.0045 (10)0.0099 (10)0.0015 (9)
N10.0400 (10)0.0308 (9)0.0303 (9)0.0072 (8)0.0059 (8)0.0032 (7)
N20.0366 (10)0.0330 (9)0.0242 (9)0.0039 (7)0.0091 (8)0.0032 (7)
O10.0333 (8)0.0389 (8)0.0353 (8)0.0072 (6)0.0059 (6)0.0141 (6)
O20.0654 (11)0.0569 (11)0.0292 (8)0.0068 (8)0.0160 (8)0.0132 (7)
O30.0575 (10)0.0477 (10)0.0425 (9)0.0208 (8)0.0162 (8)0.0204 (8)
O40.0569 (12)0.0838 (14)0.0348 (9)0.0073 (10)0.0084 (8)0.0034 (9)
O50.0658 (12)0.0897 (14)0.0305 (9)0.0164 (10)0.0168 (8)0.0068 (9)
S10.0428 (3)0.0576 (4)0.0289 (3)0.0034 (3)0.0082 (2)0.0014 (3)
S20.0464 (3)0.0420 (3)0.0326 (3)0.0074 (3)0.0131 (2)0.0070 (2)
Geometric parameters (Å, º) top
Mn1—O12.1453 (18)C11—C121.505 (3)
Mn1—O1i2.1453 (18)C12—C131.387 (3)
Mn1—N1i2.312 (2)C12—C171.407 (3)
Mn1—N12.312 (2)C13—C141.376 (3)
Mn1—N22.384 (2)C13—H130.9300
Mn1—N2i2.384 (2)C14—C151.381 (4)
C1—N21.341 (3)C14—H140.9300
C1—C21.378 (3)C15—C161.374 (3)
C1—H10.9300C15—H150.9300
C2—C31.388 (3)C16—C171.399 (3)
C2—H20.9300C16—H160.9300
C3—C41.391 (3)C17—S21.792 (2)
C3—C3ii1.495 (4)C18—O41.206 (3)
C4—C51.384 (3)C18—O51.322 (3)
C4—H40.9300C18—C191.487 (3)
C5—N21.338 (3)C19—C201.390 (3)
C5—H50.9300C19—C241.405 (3)
C6—N11.338 (3)C20—C211.376 (4)
C6—C71.376 (3)C20—H200.9300
C6—H60.9300C21—C221.380 (4)
C7—C81.393 (3)C21—H210.9300
C7—H70.9300C22—C231.376 (4)
C8—C91.393 (3)C22—H220.9300
C8—C8iii1.495 (4)C23—C241.385 (3)
C9—C101.378 (3)C23—H230.9300
C9—H90.9300C24—S11.794 (2)
C10—N11.347 (3)O1—H110.8488
C10—H100.9300O1—H120.8488
C11—O31.249 (3)O5—H510.8220
C11—O21.267 (3)S1—S22.0539 (14)
O1—Mn1—O1i180.0C17—C12—C11121.76 (19)
O1—Mn1—N1i93.78 (6)C14—C13—C12121.6 (2)
O1i—Mn1—N1i86.22 (6)C14—C13—H13119.2
O1—Mn1—N186.22 (6)C12—C13—H13119.2
O1i—Mn1—N193.78 (6)C13—C14—C15119.2 (2)
N1i—Mn1—N1180.0C13—C14—H14120.4
O1—Mn1—N291.06 (5)C15—C14—H14120.4
O1i—Mn1—N288.94 (5)C16—C15—C14120.5 (2)
N1i—Mn1—N293.20 (6)C16—C15—H15119.8
N1—Mn1—N286.80 (6)C14—C15—H15119.8
O1—Mn1—N2i88.94 (5)C15—C16—C17121.0 (2)
O1i—Mn1—N2i91.06 (5)C15—C16—H16119.5
N1i—Mn1—N2i86.80 (6)C17—C16—H16119.5
N1—Mn1—N2i93.20 (6)C16—C17—C12118.4 (2)
N2—Mn1—N2i180.0C16—C17—S2122.06 (17)
N2—C1—C2124.3 (2)C12—C17—S2119.51 (16)
N2—C1—H1117.9O4—C18—O5122.9 (2)
C2—C1—H1117.9O4—C18—C19123.2 (2)
C1—C2—C3120.5 (2)O5—C18—C19113.9 (2)
C1—C2—H2119.7C20—C19—C24118.7 (2)
C3—C2—H2119.7C20—C19—C18121.1 (2)
C2—C3—C4115.27 (18)C24—C19—C18120.2 (2)
C2—C3—C3ii122.7 (2)C21—C20—C19121.6 (2)
C4—C3—C3ii122.0 (2)C21—C20—H20119.2
C5—C4—C3120.80 (19)C19—C20—H20119.2
C5—C4—H4119.6C20—C21—C22119.3 (3)
C3—C4—H4119.6C20—C21—H21120.3
N2—C5—C4123.71 (19)C22—C21—H21120.3
N2—C5—H5118.1C23—C22—C21120.1 (3)
C4—C5—H5118.1C23—C22—H22119.9
N1—C6—C7124.6 (2)C21—C22—H22119.9
N1—C6—H6117.7C22—C23—C24121.2 (2)
C7—C6—H6117.7C22—C23—H23119.4
C6—C7—C8120.3 (2)C24—C23—H23119.4
C6—C7—H7119.8C23—C24—C19119.0 (2)
C8—C7—H7119.8C23—C24—S1122.39 (17)
C7—C8—C9115.4 (2)C19—C24—S1118.59 (17)
C7—C8—C8iii121.8 (2)C6—N1—C10114.97 (18)
C9—C8—C8iii122.8 (2)C6—N1—Mn1121.51 (14)
C10—C9—C8120.5 (2)C10—N1—Mn1123.27 (14)
C10—C9—H9119.8C5—N2—C1115.39 (17)
C8—C9—H9119.8C5—N2—Mn1126.19 (13)
N1—C10—C9124.1 (2)C1—N2—Mn1118.17 (13)
N1—C10—H10118.0Mn1—O1—H11124.9
C9—C10—H10118.0Mn1—O1—H12127.9
O3—C11—O2124.6 (2)H11—O1—H12106.9
O3—C11—C12117.53 (19)C18—O5—H51105.1
O2—C11—C12117.8 (2)C24—S1—S2105.21 (8)
C13—C12—C17119.2 (2)C17—S2—S1104.13 (8)
C13—C12—C11118.9 (2)
N2—C1—C2—C30.7 (4)C20—C19—C24—C230.4 (3)
C1—C2—C3—C41.1 (3)C18—C19—C24—C23179.5 (2)
C1—C2—C3—C3ii179.9 (2)C20—C19—C24—S1178.70 (18)
C2—C3—C4—C51.3 (3)C18—C19—C24—S11.4 (3)
C3ii—C3—C4—C5179.7 (2)C7—C6—N1—C104.3 (4)
C3—C4—C5—N20.3 (3)C7—C6—N1—Mn1170.2 (2)
N1—C6—C7—C81.4 (4)C9—C10—N1—C64.3 (3)
C6—C7—C8—C91.6 (4)C9—C10—N1—Mn1170.04 (18)
C6—C7—C8—C8iii178.1 (3)O1—Mn1—N1—C6137.19 (18)
C7—C8—C9—C101.6 (3)O1i—Mn1—N1—C642.81 (18)
C8iii—C8—C9—C10178.1 (2)N1i—Mn1—N1—C6123 (100)
C8—C9—C10—N11.5 (4)N2—Mn1—N1—C645.92 (18)
O3—C11—C12—C13176.1 (2)N2i—Mn1—N1—C6134.08 (18)
O2—C11—C12—C133.0 (3)O1—Mn1—N1—C1048.84 (17)
O3—C11—C12—C170.6 (3)O1i—Mn1—N1—C10131.16 (17)
O2—C11—C12—C17178.5 (2)N1i—Mn1—N1—C1051 (100)
C17—C12—C13—C141.8 (4)N2—Mn1—N1—C10140.12 (18)
C11—C12—C13—C14173.8 (2)N2i—Mn1—N1—C1039.88 (18)
C12—C13—C14—C150.5 (4)C4—C5—N2—C12.0 (3)
C13—C14—C15—C161.8 (4)C4—C5—N2—Mn1172.24 (16)
C14—C15—C16—C170.9 (4)C2—C1—N2—C52.2 (3)
C15—C16—C17—C121.4 (3)C2—C1—N2—Mn1172.51 (19)
C15—C16—C17—S2179.74 (19)O1—Mn1—N2—C5176.09 (17)
C13—C12—C17—C162.7 (3)O1i—Mn1—N2—C53.91 (17)
C11—C12—C17—C16172.80 (19)N1i—Mn1—N2—C582.25 (17)
C13—C12—C17—S2178.41 (17)N1—Mn1—N2—C597.75 (17)
C11—C12—C17—S26.1 (3)N2i—Mn1—N2—C5142 (100)
O4—C18—C19—C20171.1 (2)O1—Mn1—N2—C19.86 (16)
O5—C18—C19—C206.7 (3)O1i—Mn1—N2—C1170.14 (16)
O4—C18—C19—C248.8 (4)N1i—Mn1—N2—C1103.70 (16)
O5—C18—C19—C24173.4 (2)N1—Mn1—N2—C176.30 (16)
C24—C19—C20—C210.2 (4)N2i—Mn1—N2—C133 (100)
C18—C19—C20—C21179.8 (3)C23—C24—S1—S29.7 (2)
C19—C20—C21—C220.1 (5)C19—C24—S1—S2169.35 (16)
C20—C21—C22—C230.2 (5)C16—C17—S2—S115.88 (19)
C21—C22—C23—C240.4 (4)C12—C17—S2—S1165.29 (15)
C22—C23—C24—C190.5 (4)C24—S1—S2—C1791.50 (11)
C22—C23—C24—S1178.6 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O20.851.922.761 (3)173
O1—H12···O3iv0.851.822.667 (3)174
O5—H51···O2v0.821.832.637 (3)169
C4—H4···S1ii0.932.863.562 (3)133
C23—H23···S20.932.663.191 (3)117
C22—H22···Cg1vi0.932.943.79 (2)153
Symmetry codes: (ii) x, y, z; (iv) x+1, y, z+1; (v) x, y, z1; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C10H8N2)2(H2O)2](C14H9O4S2)2
Mr1014.00
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.260 (5), 11.771 (7), 11.917 (7)
α, β, γ (°)94.334 (6), 102.339 (7), 96.217 (7)
V3)1119 (1)
Z1
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.41 × 0.13 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.807, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
8248, 3921, 3242
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 1.03
No. of reflections3921
No. of parameters304
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O20.851.922.761 (3)173
O1—H12···O3i0.851.822.667 (3)174
O5—H51···O2ii0.821.832.637 (3)169
C4—H4···S1iii0.932.863.562 (3)133
C23—H23···S20.932.663.191 (3)117
C22—H22···Cg1iv0.932.943.79 (2)153
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1; (iii) x, y, z; (iv) x+1, y, z.
 

Acknowledgements

This work was supported by the Startup Fund for PhDs of Natural Scientific Research of Zhengzhou University of Light Industry (grant No. 2006BSJJ001 to S-MF). We also thank Dr Chun-Sen Liu for helpful discussions and valuable suggestions.

References

First citationBiradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169–4179.  Web of Science CrossRef Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDenning, M. S., Irwin, M. & Goicoechea, J. M. (2008). Inorg. Chem. 47, 6118–6120.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHoffart, D. J., Habermehl, N. C. & Loeb, S. J. (2007). Dalton Trans. pp. 2870–2875.  Web of Science CSD CrossRef Google Scholar
First citationHumphrey, S. M., Mole, R. A., Rawson, J. M. & Wood, P. T. (2004). Dalton Trans. pp. 1670–1678.  Web of Science CSD CrossRef PubMed Google Scholar
First citationJames, S. L. (2003). Chem. Soc. Rev. 32, 276–288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationMurugavel, R., Baheti, K. & Anantharaman, G. (2001). Inorg. Chem. 40, 6870–6878.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNoro, S.-I., Kitaura, R., Kondo, M., Kitagawa, S., Ishii, T., Matsuzaka, H. & Yamashita, M. (2002). J. Am. Chem. Soc. 124, 2568–2583.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQin, J.-H., Li, X.-L. & Guo, H. (2007). Z. Kristallogr. New Cryst. Struct. 222, 318–320.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteel, P. J. (2005). Acc. Chem. Res. 38, 243–250.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, S., Mao-Lin, H. & Chen, F. (2004). Acta Cryst. E60, m413–m415.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYe, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545–565.  Web of Science CrossRef CAS Google Scholar
First citationZhang, J., Liu, R., Feng, P. & Bu, X. (2007). Angew. Chem. Int. Ed. 46, 8388 –8391.  Google Scholar
First citationZhao, W.-N., Zou, J.-W. & Yu, Q.-S. (2004). Acta Cryst. C60, m443–m444.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m538-m539
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds