organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1108

N-(2-Amino­phen­yl)-2-anilinobenzamide

aSchool of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: qindabincwnu@yahoo.com.cn

(Received 16 March 2009; accepted 6 April 2009; online 25 April 2009)

In the title compound, C19H17N3O, the planes of the aromatic substituents attached to the benzamide moiety are almost perpendicular to one another, making a dihedral angle of 88.16 (7)°. The observed conformation of the mol­ecule is produced by an intra­molecular N—H⋯O hydrogen bond.

Related literature

For the synthesis, see: Martín et al. (2006[Martín, A., Mesa, M., Docampo, M. L., Gómez, V. & Pellón, R. F. (2006). Synth. Commun. 36, 271-277.]); Charton et al. (2006[Charton, J., Mizzi, S. G., Fontaine, M. A. D., Foufelle, F., Hainault, I., Espiard, J. G. B., Caignard, D. H. & Sergheraert, C. (2006). Bioorg. Med. Chem. 14, 4490-4518.]). For related structures, see: Yusof et al. (2003[Yusof, M. S. M., Yamin, B. M. & Shamsuddin, M. (2003). Acta Cryst. E59, o810-o811.]); Du et al. (2009[Du, P., Jiang, X. K. & Li, Z. T. (2009). Tetrahedron Lett. 50, 316-319.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17N3O

  • Mr = 303.36

  • Monoclinic, C c

  • a = 6.707 (3) Å

  • b = 25.95 (1) Å

  • c = 9.480 (5) Å

  • β = 103.398 (7)°

  • V = 1605.0 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 93 K

  • 0.40 × 0.27 × 0.10 mm

Data collection
  • Rigaku Spider diffractometer

  • Absorption correction: none

  • 6515 measured reflections

  • 1844 independent reflections

  • 1695 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.072

  • S = 1.00

  • 1844 reflections

  • 224 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.88 (3) 1.96 (3) 2.714 (3) 142 (2)

Data collection: RAPID-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nowadays many researchers are intrested in the synthesis of new insecticides. Benzamide or its derivatives or analogs are used in the pharmaceutical industry for this purpose. We herein report the crystal structure of the title compound.

Bond lengths and angles in the title molecule (Fig. 1) are within normal ranges. The planes of the aromatic substituents attached to the benzamide moiety (C7—C12 and C14—C19) are almost perpendicular to one another, with a dihedral angle of 88.16 (7)° whereas the dihedral angle between C7—C12 and C1—C6 measures to 47.28 (9)°. The planes between C7—C12 and the amide moiety C12/C13/N2/O1 enclose an angle of 63.06 (8)°.

Related literature top

For the synthesis, see: Martín et al. (2006); Charton et al. (2006). For related structures, see: Yusof et al. (2003); Du et al. (2009).

Experimental top

The title compound was prepared according to the reported procedure of Martín et al. (2006). and Charton et al. (2006). Colourless single crystals suitable for X-ray diffraction were obtained by recrystallization from dichloromethane.

Refinement top

H atoms were placed in calculated positions with N—H = 0.88–0.93 Å and C—H = 0.95 Å and refined using a riding model with Uiso(H) = 1.2Ueq(C,N). In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Computing details top

Data collection: RAPID-AUTO (Rigaku/MSC, 2004); cell refinement: RAPID-AUTO (Rigaku/MSC, 2004); data reduction: RAPID-AUTO (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.
N-(2-Aminophenyl)-2-anilinobenzamide top
Crystal data top
C19H17N3OF(000) = 640
Mr = 303.36Dx = 1.255 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2858 reflections
a = 6.707 (3) Åθ = 3.1–27.5°
b = 25.95 (1) ŵ = 0.08 mm1
c = 9.480 (5) ÅT = 93 K
β = 103.398 (7)°Platelet, colorless
V = 1605.0 (14) Å30.40 × 0.27 × 0.10 mm
Z = 4
Data collection top
Rigaku Spider
diffractometer
1695 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.029
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ω scansh = 88
6515 measured reflectionsk = 3331
1844 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0376P)2]
where P = (Fo2 + 2Fc2)/3
1844 reflections(Δ/σ)max < 0.001
224 parametersΔρmax = 0.14 e Å3
2 restraintsΔρmin = 0.15 e Å3
Crystal data top
C19H17N3OV = 1605.0 (14) Å3
Mr = 303.36Z = 4
Monoclinic, CcMo Kα radiation
a = 6.707 (3) ŵ = 0.08 mm1
b = 25.95 (1) ÅT = 93 K
c = 9.480 (5) Å0.40 × 0.27 × 0.10 mm
β = 103.398 (7)°
Data collection top
Rigaku Spider
diffractometer
1695 reflections with I > 2σ(I)
6515 measured reflectionsRint = 0.029
1844 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.14 e Å3
1844 reflectionsΔρmin = 0.15 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4009 (2)0.47225 (5)0.56166 (13)0.0295 (3)
N20.3896 (2)0.51617 (6)0.35407 (16)0.0257 (3)
N10.4426 (3)0.36962 (7)0.52152 (19)0.0368 (4)
N30.0087 (3)0.53595 (9)0.16236 (19)0.0418 (5)
H3A0.106 (4)0.5228 (9)0.121 (3)0.053 (7)*
H3B0.103 (4)0.5495 (10)0.097 (3)0.063 (8)*
C10.3021 (4)0.28921 (8)0.3998 (2)0.0435 (6)
H10.36470.29550.32120.052*
C20.1803 (4)0.24613 (9)0.3980 (3)0.0600 (7)
H20.16050.22300.31830.072*
C30.0878 (5)0.23638 (10)0.5100 (4)0.0725 (9)
H30.00280.20700.50800.087*
C40.1209 (5)0.27031 (10)0.6262 (4)0.0674 (8)
H40.05880.26380.70490.081*
C50.2422 (4)0.31325 (9)0.6295 (3)0.0470 (6)
H50.26330.33600.71000.056*
C60.3335 (3)0.32336 (8)0.5156 (2)0.0366 (5)
C70.5729 (3)0.38514 (8)0.4348 (2)0.0326 (5)
C80.7016 (3)0.34982 (9)0.3887 (2)0.0425 (5)
H80.69540.31440.41270.051*
C90.8377 (4)0.36594 (10)0.3087 (2)0.0475 (6)
H90.92310.34130.27730.057*
C100.8519 (3)0.41732 (10)0.2733 (2)0.0429 (6)
H100.94670.42810.21870.052*
C110.7264 (3)0.45261 (9)0.3184 (2)0.0331 (5)
H110.73660.48800.29520.040*
C120.5841 (3)0.43752 (8)0.39754 (18)0.0271 (4)
C130.4524 (3)0.47661 (7)0.44460 (18)0.0245 (4)
C140.2603 (3)0.55640 (7)0.38352 (19)0.0272 (4)
C150.3209 (3)0.58570 (8)0.5089 (2)0.0324 (4)
H150.45050.57970.57280.039*
C160.1931 (4)0.62359 (9)0.5410 (2)0.0420 (5)
H160.23410.64350.62690.050*
C170.0059 (4)0.63226 (10)0.4473 (2)0.0492 (6)
H170.08310.65790.46970.059*
C180.0532 (4)0.60405 (10)0.3216 (2)0.0468 (6)
H180.18210.61080.25770.056*
C190.0727 (3)0.56574 (8)0.2863 (2)0.0339 (5)
H1N0.400 (4)0.3966 (10)0.563 (3)0.053 (7)*
H2N0.414 (3)0.5148 (7)0.269 (2)0.030 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0355 (7)0.0417 (8)0.0137 (6)0.0010 (6)0.0106 (5)0.0004 (5)
N20.0232 (8)0.0413 (9)0.0144 (7)0.0023 (7)0.0076 (6)0.0006 (7)
N10.0459 (11)0.0375 (10)0.0305 (9)0.0001 (8)0.0162 (8)0.0020 (8)
N30.0251 (9)0.0777 (15)0.0209 (9)0.0039 (9)0.0022 (8)0.0025 (9)
C10.0528 (14)0.0313 (11)0.0418 (13)0.0092 (10)0.0019 (11)0.0049 (10)
C20.0694 (18)0.0288 (12)0.0729 (18)0.0060 (11)0.0017 (16)0.0033 (12)
C30.078 (2)0.0320 (14)0.107 (3)0.0012 (13)0.0214 (19)0.0199 (16)
C40.084 (2)0.0450 (15)0.081 (2)0.0042 (14)0.0353 (17)0.0261 (15)
C50.0580 (15)0.0393 (12)0.0475 (14)0.0108 (11)0.0199 (12)0.0167 (11)
C60.0423 (13)0.0324 (11)0.0330 (11)0.0081 (9)0.0043 (9)0.0101 (9)
C70.0315 (11)0.0456 (13)0.0207 (10)0.0045 (9)0.0058 (8)0.0018 (9)
C80.0457 (13)0.0486 (13)0.0325 (12)0.0126 (10)0.0076 (10)0.0025 (10)
C90.0411 (13)0.0673 (17)0.0364 (13)0.0193 (12)0.0137 (11)0.0061 (11)
C100.0275 (11)0.0734 (17)0.0294 (12)0.0091 (10)0.0098 (9)0.0053 (11)
C110.0226 (9)0.0560 (13)0.0207 (10)0.0036 (9)0.0050 (8)0.0017 (9)
C120.0239 (9)0.0413 (11)0.0151 (9)0.0032 (8)0.0025 (7)0.0017 (8)
C130.0198 (9)0.0383 (11)0.0153 (9)0.0034 (8)0.0037 (7)0.0020 (8)
C140.0263 (10)0.0371 (10)0.0193 (9)0.0006 (8)0.0079 (8)0.0041 (8)
C150.0366 (11)0.0403 (11)0.0211 (10)0.0017 (9)0.0082 (8)0.0019 (9)
C160.0592 (15)0.0385 (12)0.0340 (11)0.0015 (10)0.0225 (11)0.0003 (10)
C170.0615 (16)0.0546 (15)0.0392 (14)0.0227 (12)0.0274 (13)0.0120 (11)
C180.0390 (13)0.0721 (16)0.0319 (12)0.0204 (12)0.0132 (10)0.0145 (11)
C190.0287 (11)0.0548 (13)0.0196 (9)0.0035 (9)0.0085 (8)0.0064 (9)
Geometric parameters (Å, º) top
O1—C131.241 (2)C7—C81.397 (3)
N2—C131.342 (2)C7—C121.411 (3)
N2—C141.425 (2)C8—C91.380 (3)
N2—H2N0.86 (2)C8—H80.9500
N1—C71.391 (3)C9—C101.384 (4)
N1—C61.400 (3)C9—H90.9500
N1—H1N0.88 (3)C10—C111.377 (3)
N3—C191.389 (3)C10—H100.9500
N3—H3A0.90 (3)C11—C121.400 (3)
N3—H3B0.93 (3)C11—H110.9500
C1—C21.382 (4)C12—C131.480 (2)
C1—C61.389 (3)C14—C151.390 (3)
C1—H10.9500C14—C191.398 (3)
C2—C31.372 (4)C15—C161.384 (3)
C2—H20.9500C15—H150.9500
C3—C41.387 (4)C16—C171.378 (3)
C3—H30.9500C16—H160.9500
C4—C51.376 (4)C17—C181.376 (4)
C4—H40.9500C17—H170.9500
C5—C61.383 (3)C18—C191.394 (3)
C5—H50.9500C18—H180.9500
C13—N2—C14123.37 (15)C8—C9—C10121.1 (2)
C13—N2—H2N118.0 (13)C8—C9—H9119.4
C14—N2—H2N118.0 (13)C10—C9—H9119.4
C7—N1—C6128.24 (19)C11—C10—C9119.0 (2)
C7—N1—H1N110.2 (17)C11—C10—H10120.5
C6—N1—H1N118.5 (17)C9—C10—H10120.5
C19—N3—H3A117.9 (16)C10—C11—C12121.5 (2)
C19—N3—H3B113.5 (16)C10—C11—H11119.3
H3A—N3—H3B114 (2)C12—C11—H11119.3
C2—C1—C6120.4 (2)C11—C12—C7119.10 (18)
C2—C1—H1119.8C11—C12—C13119.91 (18)
C6—C1—H1119.8C7—C12—C13120.96 (17)
C3—C2—C1120.8 (3)O1—C13—N2122.03 (17)
C3—C2—H2119.6O1—C13—C12121.07 (17)
C1—C2—H2119.6N2—C13—C12116.89 (15)
C2—C3—C4118.7 (3)C15—C14—C19120.58 (18)
C2—C3—H3120.7C15—C14—N2119.84 (17)
C4—C3—H3120.7C19—C14—N2119.57 (17)
C5—C4—C3121.1 (3)C16—C15—C14120.2 (2)
C5—C4—H4119.4C16—C15—H15119.9
C3—C4—H4119.4C14—C15—H15119.9
C4—C5—C6120.1 (3)C17—C16—C15119.5 (2)
C4—C5—H5119.9C17—C16—H16120.2
C6—C5—H5119.9C15—C16—H16120.2
C5—C6—C1118.9 (2)C18—C17—C16120.5 (2)
C5—C6—N1116.9 (2)C18—C17—H17119.8
C1—C6—N1124.09 (19)C16—C17—H17119.8
N1—C7—C8120.88 (19)C17—C18—C19121.2 (2)
N1—C7—C12120.29 (18)C17—C18—H18119.4
C8—C7—C12118.77 (19)C19—C18—H18119.4
C9—C8—C7120.6 (2)N3—C19—C18120.96 (19)
C9—C8—H8119.7N3—C19—C14121.04 (19)
C7—C8—H8119.7C18—C19—C14117.92 (19)
C6—C1—C2—C30.2 (4)N1—C7—C12—C132.4 (3)
C1—C2—C3—C40.8 (4)C8—C7—C12—C13179.51 (17)
C2—C3—C4—C50.6 (4)C14—N2—C13—O10.2 (3)
C3—C4—C5—C60.1 (4)C14—N2—C13—C12179.19 (17)
C4—C5—C6—C10.7 (4)C11—C12—C13—O1145.63 (18)
C4—C5—C6—N1175.5 (2)C7—C12—C13—O132.5 (3)
C2—C1—C6—C50.5 (3)C11—C12—C13—N235.3 (2)
C2—C1—C6—N1175.4 (2)C7—C12—C13—N2146.50 (18)
C7—N1—C6—C5169.1 (2)C13—N2—C14—C1557.6 (2)
C7—N1—C6—C114.9 (3)C13—N2—C14—C19121.91 (19)
C6—N1—C7—C837.1 (3)C19—C14—C15—C161.8 (3)
C6—N1—C7—C12145.9 (2)N2—C14—C15—C16177.67 (18)
N1—C7—C8—C9176.8 (2)C14—C15—C16—C170.4 (3)
C12—C7—C8—C90.2 (3)C15—C16—C17—C180.9 (3)
C7—C8—C9—C100.7 (3)C16—C17—C18—C190.7 (3)
C8—C9—C10—C110.5 (3)C17—C18—C19—N3177.3 (2)
C9—C10—C11—C120.7 (3)C17—C18—C19—C140.7 (3)
C10—C11—C12—C71.6 (3)C15—C14—C19—N3178.58 (18)
C10—C11—C12—C13179.76 (18)N2—C14—C19—N30.9 (3)
N1—C7—C12—C11175.75 (17)C15—C14—C19—C182.0 (3)
C8—C7—C12—C111.3 (3)N2—C14—C19—C18177.54 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.88 (3)1.96 (3)2.714 (3)142 (2)

Experimental details

Crystal data
Chemical formulaC19H17N3O
Mr303.36
Crystal system, space groupMonoclinic, Cc
Temperature (K)93
a, b, c (Å)6.707 (3), 25.95 (1), 9.480 (5)
β (°) 103.398 (7)
V3)1605.0 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.27 × 0.10
Data collection
DiffractometerRigaku Spider
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6515, 1844, 1695
Rint0.029
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.072, 1.00
No. of reflections1844
No. of parameters224
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: RAPID-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.88 (3)1.96 (3)2.714 (3)142 (2)
 

Acknowledgements

The authors thank the Scientific Research Fund Projects of China West Normal University (grant No. 06B003) and the Youth Fund Projects of Sichuan Educational Department (grant No. 2006B039).

References

First citationCharton, J., Mizzi, S. G., Fontaine, M. A. D., Foufelle, F., Hainault, I., Espiard, J. G. B., Caignard, D. H. & Sergheraert, C. (2006). Bioorg. Med. Chem. 14, 4490–4518.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDu, P., Jiang, X. K. & Li, Z. T. (2009). Tetrahedron Lett. 50, 316–319.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartín, A., Mesa, M., Docampo, M. L., Gómez, V. & Pellón, R. F. (2006). Synth. Commun. 36, 271–277.  Google Scholar
First citationRigaku/MSC (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusof, M. S. M., Yamin, B. M. & Shamsuddin, M. (2003). Acta Cryst. E59, o810–o811.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1108
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds