metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1-Bis[4-(tri­fluoro­meth­yl)phen­yl]germetane

aDepartment of Chemistry, McMaster University, Hamilton, ON, Canada L8S 4M1
*Correspondence e-mail: leigh@mcmaster.ca

(Received 19 March 2009; accepted 23 April 2009; online 30 April 2009)

The inter­nal C—Ge—C bond angle in the germacyclo­butane ring of the title compound, C17H14F6Ge or [Ge(C3H6)(C7H4F3)2], is 77.8 (3)°. The –CF3 groups display rotational disorder [occupancies 0.604 (14):0.396 (14) and 0.410 (6):0.411 (6):0.179 (3)] and the germacyclo­butane ring also shows disorder [occupancies 0.604 (14):0.396 (14)].

Related literature

For the synthesis of the title compound, see: Leigh et al. (2008[Leigh, W. J., Potter, G. D., Huck, L. A. & Bhattacharya, A. (2008). Organometallics, 27, 5948-5959.]). For related compounds see: Tokitoh et al. (1995[Tokitoh, N., Matsumoto, T. & Okazaki, R. (1995). Chem. Lett. 12, 1087-1088.]); Eichler et al. (1999[Eichler, B. E., Powell, D. R. & West, R. (1999). Organometallics, 18, 540-545.]); Meiners et al. (2002[Meiners, F., Haase, D., Koch, R., Saak, W. & Weidenbruch, M. (2002). Organometallics, 21, 3990-3995.]); Tajima et al. (2005[Tajima, T., Sasaki, T., Sasamori, T., Takeda, N. & Tokitoh, N. (2005). Appl. Organomet. Chem. 19, 570-577.]). For 1,1-bis[3,5-bis(trifluoromethyl)phenyl]germetane, which exhibits similar structural features, see: Potter et al. (2009[Potter, G. D., Jenkins, H. A., Britten, J. F. & Leigh, W. J. (2009). Private communication (deposition number CCDC 724374). CCDC, Cambridge, England.]).

[Scheme 1]

Experimental

Crystal data
  • [Ge(C3H6)(C7H4F3)2]

  • Mr = 404.87

  • Monoclinic, P 21 /n

  • a = 13.596 (6) Å

  • b = 6.412 (3) Å

  • c = 20.243 (9) Å

  • β = 107.081 (7)°

  • V = 1687 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.87 mm−1

  • T = 173 K

  • 0.40 × 0.38 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan SADABS (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.484, Tmax = 0.688

  • 14478 measured reflections

  • 3867 independent reflections

  • 2378 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.097

  • S = 0.99

  • 3867 reflections

  • 258 parameters

  • 19 restraints

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Photolysis of 1,1-diarylgermetanes results in two competing modes of cycloreversion: (2 + 2) to yield the corresponding 1,1-diarylgermene (R2Ge=CH2) and ethylene, and (3 + 1) to yield the corresponding diarylgermylene (R2Ge) and cyclopropane (Leigh et al., 2008). While the quantum yield for decomposition of the germetane remains roughly constant regardless of aromatic substitutent (Φ ca 0.10), decreasing the electron density at germanium by aromatic ring substitution favors formation of the germylene and cyclopropane (Leigh et al., 2008). The molecular structure of (I) is shown in Figure 1. The internal C—Ge—C bond angle is 77.8 (3)°.

To our knowledge, there are no other reported crystal structures of germacyclobutanes (i.e. those in which the three carbon atoms of the four membered ring are all saturated) with which to compare these data. There are, however, several reported crystal structures of germacyclobutenes to which limited comparisons can be made (Tokitoh et al., 1995; Eichler et al., 1999; Meiners et al., 2002; Tajima et al., 2005). The endocyclic Ge—C bond distances are quite similar, despite the carbon-carbon double bond within the ring, and the endocyclic C—Ge—C angle is slightly smaller in these germacyclobutene molecules, which is to be expected. The 4-membered germacyclobutane ring of the title compound is not planar. The angle between the plane made by the carbon atoms in the ring (C15—C17) and the plane containing the germanium and two adjacent carbon atoms in the ring (C15, C17) is 24 (2)°. The aromatic rings are nearly perpendicular, with an angle of 85.8 (1)° between them.

The trifluoromethyl groups are disordered and have been refined as such (see refinement details). The two CF3 groups interact with each other and the germacyclobutane ring of neighbouring molecules (see the packing diagram - Figure 2). The non-planarity of the germacyclobutane ring results in disorder that has been refined over two occupancy sites.

The crystal structure of an analogue of (I) in which the aromatic rings are substituted at the 3 and 5 positions with CF3 groups [i.e. 1,1-bis(3,5-bis(trifluoromethyl)phenyl)germetane] exhibits similar structural features (Potter, et al., 2009).

Related literature top

For the synthesis of the title compound, see: Leigh et al. (2008). For related compounds see: Tokitoh et al. (1995); Eichler et al. (1999); Meiners et al. (2002); Tajima et al. (2005). For 1,1-bis(3,5-bis(trifluoromethyl)phenyl)germetane], which exhibits similar structural features, see: Potter et al. (2009).

Experimental top

Compound (I) was synthesized as described elsewhere (Leigh et al., 2008). Single crystals for x-ray diffraction were obtained via repeated recrystallizations from methanol.

Refinement top

The data were collected at -100°C on a single-crystal mounted in a cryoloop. X-ray crystallographic analysis was performed at the McMaster Analytical X-Ray (MAX) Diffraction Facility. Hydrogen atoms were treated as riding upon their parent atoms with C—H distances of 0.95 Å (aromatic) and 0.96 Å (CH2) and with Uiso(H) = 1.2Ueq(C). Fluorine atoms at C7/C7A were split over two positions, with approximately 60:40 occupancy. Fluorine atoms at C14/C14A/C14' were disordered over three positions (41:41:18 occupancy) with one thermal parameter (0.06). The propyl moiety of the germacycle is disordered over two sites (60:40 occupancy) and a restraint is applied so that the groups can twist away from each other but not leave the sphere of germanium.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structures of (I) drawn with 50% probability ellipsoids. H atoms not shown. Both trifluoromethyl groups and the (CH2)3 group are disordered but the disorder is not shown for clarity.
[Figure 2] Fig. 2. Packing diagram of (I) in the space group P 21/n.
1,1-Bis[4-(trifluoromethyl)phenyl]germetane top
Crystal data top
[Ge(C3H6)(C7H4F3)2]F(000) = 808
Mr = 404.87Dx = 1.594 Mg m3
Monoclinic, P21/nMelting point: 319 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 13.596 (6) ÅCell parameters from 5916 reflections
b = 6.412 (3) Åθ = 3.5–26.6°
c = 20.243 (9) ŵ = 1.87 mm1
β = 107.081 (7)°T = 173 K
V = 1687 (1) Å3Block, colourless
Z = 40.40 × 0.38 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3867 independent reflections
Radiation source: fine-focus sealed tube2378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
SADABS
h = 1717
Tmin = 0.484, Tmax = 0.688k = 88
14478 measured reflectionsl = 2625
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0275P)2 + 2.3419P]
where P = (Fo2 + 2Fc2)/3
3867 reflections(Δ/σ)max = 0.022
258 parametersΔρmax = 0.68 e Å3
19 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Ge(C3H6)(C7H4F3)2]V = 1687 (1) Å3
Mr = 404.87Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.596 (6) ŵ = 1.87 mm1
b = 6.412 (3) ÅT = 173 K
c = 20.243 (9) Å0.40 × 0.38 × 0.20 mm
β = 107.081 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3867 independent reflections
Absorption correction: multi-scan
SADABS
2378 reflections with I > 2σ(I)
Tmin = 0.484, Tmax = 0.688Rint = 0.053
14478 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04119 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.99Δρmax = 0.68 e Å3
3867 reflectionsΔρmin = 0.61 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge1A0.88719 (3)0.20119 (6)0.19017 (2)0.03626 (13)0.396 (14)
C15A0.7582 (7)0.347 (4)0.1861 (18)0.049 (3)0.396 (14)
H15C0.74830.37380.23190.058*0.396 (14)
H15D0.74660.47550.15760.058*0.396 (14)
C16A0.6994 (5)0.152 (3)0.1482 (9)0.058 (3)0.396 (14)
H16C0.64020.19310.10860.070*0.396 (14)
H16D0.67450.06380.18010.070*0.396 (14)
C17A0.7845 (7)0.034 (4)0.1227 (15)0.0493 (15)0.396 (14)
H17C0.78110.06240.07400.059*0.396 (14)
H17D0.78890.11770.13250.059*0.396 (14)
Ge10.88719 (3)0.20119 (6)0.19017 (2)0.03626 (13)0.604 (14)
C150.7486 (5)0.302 (3)0.1857 (11)0.049 (3)0.604 (14)
H15A0.72320.25250.22400.058*0.604 (14)
H15B0.74000.45510.17960.058*0.604 (14)
C160.7073 (5)0.1749 (18)0.1173 (6)0.058 (3)0.604 (14)
H16A0.69580.26600.07630.070*0.604 (14)
H16B0.64240.10220.11560.070*0.604 (14)
C170.7979 (11)0.013 (6)0.122 (2)0.0493 (15)0.604 (14)
H17A0.81720.00080.07860.059*0.604 (14)
H17B0.78740.12490.14070.059*0.604 (14)
C10.9675 (3)0.0705 (5)0.27568 (18)0.0341 (8)
C21.0113 (3)0.1241 (6)0.2752 (2)0.0445 (9)
H2A1.00300.19360.23240.053*
C31.0670 (3)0.2189 (6)0.3359 (2)0.0485 (10)
H3A1.09650.35260.33460.058*
C41.0799 (3)0.1212 (6)0.39821 (19)0.0407 (9)
C51.0369 (3)0.0734 (6)0.3998 (2)0.0471 (10)
H5A1.04560.14240.44270.056*
C60.9812 (3)0.1671 (5)0.3389 (2)0.0444 (9)
H6A0.95170.30060.34040.053*
C80.9769 (3)0.3844 (5)0.15718 (18)0.0379 (8)
C91.0823 (3)0.3923 (6)0.1889 (2)0.0470 (10)
H9A1.11260.30070.22620.056*
C101.1437 (3)0.5314 (6)0.1669 (2)0.0510 (10)
H10A1.21580.53450.18890.061*
C111.1000 (3)0.6659 (6)0.1130 (2)0.0448 (9)
C120.9955 (3)0.6588 (6)0.0806 (2)0.0512 (10)
H12A0.96530.75060.04330.061*
C130.9352 (3)0.5183 (6)0.1024 (2)0.0471 (10)
H13A0.86350.51300.07950.057*
C71.1400 (4)0.2268 (7)0.4628 (2)0.0561 (11)0.604 (14)
F11.1175 (11)0.4307 (12)0.4626 (7)0.083 (3)0.604 (14)
F21.1343 (13)0.146 (2)0.5219 (6)0.078 (4)0.604 (14)
F31.2396 (5)0.227 (3)0.4671 (8)0.072 (3)0.604 (14)
C7A1.1400 (4)0.2268 (7)0.4628 (2)0.0561 (11)0.396 (14)
F1A1.0871 (16)0.380 (3)0.4803 (12)0.106 (7)0.396 (14)
F2A1.1506 (18)0.091 (3)0.5158 (8)0.070 (5)0.396 (14)
F3A1.2337 (11)0.281 (4)0.4667 (12)0.091 (8)0.396 (14)
C141.1663 (3)0.8216 (7)0.0908 (2)0.0589 (11)0.410 (6)
F41.1154 (5)1.0064 (10)0.0742 (5)0.0613 (7)*0.410 (6)
F51.1939 (6)0.7630 (11)0.0372 (4)0.0613 (7)*0.410 (6)
F61.2236 (6)0.9328 (12)0.1444 (3)0.0613 (7)*0.410 (6)
C14'1.1663 (3)0.8216 (7)0.0908 (2)0.0589 (11)0.411 (6)
F4'1.1110 (5)0.9575 (12)0.0424 (5)0.0613 (7)*0.411 (6)
F5'1.2282 (6)0.7196 (11)0.0569 (4)0.0613 (7)*0.411 (6)
F6'1.2569 (6)0.8560 (12)0.1386 (4)0.0613 (7)*0.411 (6)
C14A1.1663 (3)0.8216 (7)0.0908 (2)0.0589 (11)0.179 (3)
F4A1.1322 (12)0.867 (2)0.0240 (6)0.0613 (7)*0.179 (3)
F5A1.2639 (10)0.769 (2)0.1061 (9)0.0613 (7)*0.179 (3)
F6A1.1623 (13)1.0042 (19)0.1205 (9)0.0613 (7)*0.179 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge1A0.0323 (2)0.03686 (19)0.0365 (2)0.00216 (19)0.00519 (16)0.0002 (2)
C15A0.042 (3)0.046 (7)0.062 (3)0.005 (3)0.021 (3)0.017 (4)
C16A0.032 (3)0.065 (4)0.072 (7)0.005 (3)0.006 (4)0.022 (6)
C17A0.042 (3)0.052 (5)0.045 (3)0.009 (4)0.002 (4)0.003 (3)
Ge10.0323 (2)0.03686 (19)0.0365 (2)0.00216 (19)0.00519 (16)0.0002 (2)
C150.042 (3)0.046 (7)0.062 (3)0.005 (3)0.021 (3)0.017 (4)
C160.032 (3)0.065 (4)0.072 (7)0.005 (3)0.006 (4)0.022 (6)
C170.042 (3)0.052 (5)0.045 (3)0.009 (4)0.002 (4)0.003 (3)
C10.0292 (19)0.0364 (17)0.034 (2)0.0018 (15)0.0055 (16)0.0001 (16)
C20.048 (2)0.045 (2)0.037 (2)0.0075 (18)0.0078 (19)0.0067 (17)
C30.051 (2)0.0427 (19)0.047 (2)0.0167 (19)0.007 (2)0.0012 (19)
C40.036 (2)0.0454 (19)0.039 (2)0.0012 (17)0.0077 (18)0.0022 (18)
C50.049 (2)0.051 (2)0.035 (2)0.0023 (19)0.0048 (19)0.0080 (19)
C60.043 (2)0.037 (2)0.047 (2)0.0069 (17)0.0042 (19)0.0044 (18)
C80.037 (2)0.0359 (17)0.035 (2)0.0027 (16)0.0030 (17)0.0011 (16)
C90.039 (2)0.048 (2)0.050 (2)0.0036 (18)0.006 (2)0.0091 (19)
C100.034 (2)0.056 (2)0.059 (3)0.0020 (19)0.007 (2)0.006 (2)
C110.044 (2)0.046 (2)0.045 (2)0.0039 (18)0.0148 (19)0.0005 (18)
C120.048 (2)0.055 (3)0.045 (2)0.004 (2)0.006 (2)0.0112 (19)
C130.035 (2)0.057 (2)0.041 (2)0.0023 (19)0.0019 (18)0.0086 (19)
C70.058 (3)0.063 (3)0.041 (2)0.009 (3)0.004 (2)0.006 (2)
F10.110 (8)0.054 (3)0.061 (6)0.009 (4)0.013 (4)0.019 (3)
F20.110 (8)0.089 (7)0.042 (4)0.048 (6)0.034 (4)0.022 (4)
F30.044 (5)0.093 (6)0.062 (5)0.014 (4)0.011 (4)0.014 (4)
C7A0.058 (3)0.063 (3)0.041 (2)0.009 (3)0.004 (2)0.006 (2)
F1A0.110 (12)0.108 (12)0.075 (12)0.022 (10)0.012 (7)0.050 (9)
F2A0.078 (7)0.099 (11)0.023 (5)0.012 (7)0.001 (5)0.015 (6)
F3A0.103 (13)0.122 (17)0.053 (8)0.080 (12)0.029 (8)0.013 (8)
C140.055 (3)0.062 (3)0.059 (3)0.005 (2)0.015 (2)0.006 (2)
C14'0.055 (3)0.062 (3)0.059 (3)0.005 (2)0.015 (2)0.006 (2)
C14A0.055 (3)0.062 (3)0.059 (3)0.005 (2)0.015 (2)0.006 (2)
Geometric parameters (Å, º) top
Ge1A—C11.944 (3)C3—C41.372 (5)
Ge1A—C81.947 (4)C3—H3A0.9500
Ge1A—C17A1.961 (4)C4—C51.382 (5)
Ge1A—C15A1.969 (5)C4—C71.486 (5)
Ge1A—C16A2.463 (6)C5—C61.381 (5)
C15A—C16A1.562 (11)C5—H5A0.9500
C15A—H15C0.9900C6—H6A0.9500
C15A—H15D0.9900C8—C131.384 (5)
C16A—C17A1.591 (13)C8—C91.389 (5)
C16A—H16C0.9900C9—C101.381 (5)
C16A—H16D0.9900C9—H9A0.9500
C17A—H17C0.9900C10—C111.382 (5)
C17A—H17D0.9900C10—H10A0.9500
C15—C161.563 (11)C11—C121.379 (5)
C15—H15A0.9900C11—C141.500 (6)
C15—H15B0.9900C12—C131.376 (5)
C16—C171.591 (13)C12—H12A0.9500
C16—H16A0.9900C13—H13A0.9500
C16—H16B0.9900C7—F21.326 (9)
C17—H17A0.9900C7—F31.331 (9)
C17—H17B0.9900C7—F11.342 (9)
C1—C61.383 (5)C14—F51.302 (8)
C1—C21.385 (5)C14—F61.340 (7)
C2—C31.381 (5)C14—F41.363 (7)
C2—H2A0.9500
C1—Ge1A—C8108.72 (15)C3—C2—C1121.0 (3)
C1—Ge1A—C17A118.9 (11)C3—C2—H2A119.5
C8—Ge1A—C17A118.7 (11)C1—C2—H2A119.5
C1—Ge1A—C15A120.2 (12)C4—C3—C2120.4 (3)
C8—Ge1A—C15A109.8 (11)C4—C3—H3A119.8
C17A—Ge1A—C15A77.8 (3)C2—C3—H3A119.8
C1—Ge1A—C16A120.4 (4)C3—C4—C5119.5 (3)
C8—Ge1A—C16A130.5 (4)C3—C4—C7119.3 (3)
C16A—C15A—Ge1A87.7 (4)C5—C4—C7121.2 (4)
C16A—C15A—H15C114.0C6—C5—C4119.8 (3)
Ge1A—C15A—H15C114.0C6—C5—H5A120.1
C16A—C15A—H15D114.0C4—C5—H5A120.1
Ge1A—C15A—H15D114.0C5—C6—C1121.4 (3)
H15C—C15A—H15D111.2C5—C6—H6A119.3
C15A—C16A—C17A103.0 (8)C1—C6—H6A119.3
C15A—C16A—Ge1A53.0 (3)C13—C8—C9118.1 (4)
C17A—C16A—Ge1A52.7 (2)C13—C8—Ge1A119.9 (3)
C15A—C16A—H16C111.2C9—C8—Ge1A121.9 (3)
C17A—C16A—H16C111.2C10—C9—C8120.9 (4)
Ge1A—C16A—H16C139.4C10—C9—H9A119.5
C15A—C16A—H16D111.2C8—C9—H9A119.5
C17A—C16A—H16D111.2C9—C10—C11119.9 (4)
Ge1A—C16A—H16D111.5C9—C10—H10A120.1
H16C—C16A—H16D109.1C11—C10—H10A120.1
C16A—C17A—Ge1A87.1 (5)C12—C11—C10119.8 (4)
C16A—C17A—H17C114.1C12—C11—C14120.4 (4)
Ge1A—C17A—H17C114.1C10—C11—C14119.8 (4)
C16A—C17A—H17D114.1C13—C12—C11119.8 (4)
Ge1A—C17A—H17D114.1C13—C12—H12A120.1
H17C—C17A—H17D111.3C11—C12—H12A120.1
C16—C15—H15A114.1C12—C13—C8121.4 (4)
C16—C15—H15B114.1C12—C13—H13A119.3
H15A—C15—H15B111.2C8—C13—H13A119.3
C15—C16—C17102.6 (8)F2—C7—F3105.6 (9)
C15—C16—H16A111.2F2—C7—F1108.0 (9)
C17—C16—H16A111.2F3—C7—F1103.0 (9)
C15—C16—H16B111.2F2—C7—C4117.0 (7)
C17—C16—H16B111.2F3—C7—C4110.1 (8)
H16A—C16—H16B109.2F1—C7—C4112.0 (7)
C16—C17—H17A114.1F5—C14—F6125.9 (6)
C16—C17—H17B114.1F5—C14—F4107.2 (5)
H17A—C17—H17B111.3F6—C14—F482.5 (6)
C6—C1—C2117.9 (3)F5—C14—C11113.7 (5)
C6—C1—Ge1A121.2 (3)F6—C14—C11111.6 (4)
C2—C1—Ge1A120.8 (3)F4—C14—C11110.2 (4)
C1—Ge1A—C15A—C16A102.4 (14)Ge1A—C1—C6—C5179.0 (3)
C8—Ge1A—C15A—C16A130.5 (14)C1—Ge1A—C8—C13170.8 (3)
C17A—Ge1A—C15A—C16A14 (2)C17A—Ge1A—C8—C1349.1 (6)
Ge1A—C15A—C16A—C17A18 (2)C15A—Ge1A—C8—C1337.5 (9)
C1—Ge1A—C16A—C15A102 (2)C16A—Ge1A—C8—C131.8 (7)
C8—Ge1A—C16A—C15A70 (2)C1—Ge1A—C8—C96.4 (4)
C17A—Ge1A—C16A—C15A158 (3)C17A—Ge1A—C8—C9133.7 (6)
C1—Ge1A—C16A—C17A100.0 (19)C15A—Ge1A—C8—C9139.7 (9)
C8—Ge1A—C16A—C17A88.2 (19)C16A—Ge1A—C8—C9179.0 (7)
C15A—Ge1A—C16A—C17A158 (3)C13—C8—C9—C100.7 (6)
C15A—C16A—C17A—Ge1A18 (2)Ge1A—C8—C9—C10176.5 (3)
C1—Ge1A—C17A—C16A104.0 (13)C8—C9—C10—C110.4 (6)
C8—Ge1A—C17A—C16A119.9 (14)C9—C10—C11—C120.9 (6)
C15A—Ge1A—C17A—C16A13.9 (19)C9—C10—C11—C14178.0 (4)
C8—Ge1A—C1—C686.7 (3)C10—C11—C12—C130.3 (6)
C17A—Ge1A—C1—C6133.3 (7)C14—C11—C12—C13178.6 (4)
C15A—Ge1A—C1—C640.9 (8)C11—C12—C13—C80.9 (6)
C16A—Ge1A—C1—C686.8 (6)C9—C8—C13—C121.4 (6)
C8—Ge1A—C1—C294.4 (3)Ge1A—C8—C13—C12175.9 (3)
C17A—Ge1A—C1—C245.6 (7)C3—C4—C7—F2167.6 (9)
C15A—Ge1A—C1—C2138.0 (8)C5—C4—C7—F212.3 (10)
C16A—Ge1A—C1—C292.1 (6)C3—C4—C7—F371.9 (9)
C6—C1—C2—C30.0 (6)C5—C4—C7—F3108.2 (9)
Ge1A—C1—C2—C3178.9 (3)C3—C4—C7—F142.2 (8)
C1—C2—C3—C40.0 (6)C5—C4—C7—F1137.8 (7)
C2—C3—C4—C50.1 (6)C12—C11—C14—F582.7 (6)
C2—C3—C4—C7179.9 (4)C10—C11—C14—F598.4 (6)
C3—C4—C5—C60.2 (6)C12—C11—C14—F6127.5 (6)
C7—C4—C5—C6179.8 (4)C10—C11—C14—F651.4 (7)
C4—C5—C6—C10.2 (6)C12—C11—C14—F437.7 (7)
C2—C1—C6—C50.1 (6)C10—C11—C14—F4141.2 (6)

Experimental details

Crystal data
Chemical formula[Ge(C3H6)(C7H4F3)2]
Mr404.87
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)13.596 (6), 6.412 (3), 20.243 (9)
β (°) 107.081 (7)
V3)1687 (1)
Z4
Radiation typeMo Kα
µ (mm1)1.87
Crystal size (mm)0.40 × 0.38 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
SADABS
Tmin, Tmax0.484, 0.688
No. of measured, independent and
observed [I > 2σ(I)] reflections
14478, 3867, 2378
Rint0.053
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.097, 0.99
No. of reflections3867
No. of parameters258
No. of restraints19
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.61

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for financial support and for a postgraduate scholarship to LAH.

References

First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEichler, B. E., Powell, D. R. & West, R. (1999). Organometallics, 18, 540–545.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeigh, W. J., Potter, G. D., Huck, L. A. & Bhattacharya, A. (2008). Organometallics, 27, 5948–5959.  Web of Science CrossRef CAS Google Scholar
First citationMeiners, F., Haase, D., Koch, R., Saak, W. & Weidenbruch, M. (2002). Organometallics, 21, 3990–3995.  Web of Science CSD CrossRef CAS Google Scholar
First citationPotter, G. D., Jenkins, H. A., Britten, J. F. & Leigh, W. J. (2009). Private communication (deposition number CCDC 724374). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTajima, T., Sasaki, T., Sasamori, T., Takeda, N. & Tokitoh, N. (2005). Appl. Organomet. Chem. 19, 570–577.  Web of Science CSD CrossRef CAS Google Scholar
First citationTokitoh, N., Matsumoto, T. & Okazaki, R. (1995). Chem. Lett. 12, 1087–1088.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds