metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m523-m524

mer-(3,5-Di­chloro-2-oxidobenzaldehyde thio­semicarbazonato-κ3S,N1,O)(methanol-κO)(1,10-phenanthroline-κ2N,N′)nickel(II)

aKey Laboratory of Non-ferrous Metal Materials and Processing Technology, Department of Material and Chemical Engineering, Guilin University of Technology, Ministry of Education, Guilin 541004, People's Republic of China
*Correspondence e-mail: lisa4.6@163.com

(Received 19 March 2009; accepted 7 April 2009; online 18 April 2009)

In the title compound, [Ni(C8H5Cl2N3OS)(C12H8N2)(CH3OH)], the NiII atom is octa­hedrally coordinated by one N, one O and one S atom from a 3,5-dichloro-2-oxidobenzaldehyde thio­semicarbazonate ligand, another O atom from methanol and another two N atoms from 1,10-phenanthroline. The crystal structure is constructed by N—H⋯Cl, N—H⋯N, C—H⋯S and O—H⋯S hydrogen bonds.

Related literature

For nickel complexes with salicylic aldehyde thio­semi­carbazone ligands, see: Dapporto et al. (1984[Dapporto, P., De Munno, G. & Tomlinson, A. G. (1984). J. Chem. Res. 40, 501-502.]); Schulte et al. (1991[Schulte, G., Luo, X.-L., Crabtree, R. H. & Zimmer, M. (1991). Angew. Chem. Int. Ed. Engl. 30, 193-194.]); García-Reynaldos et al. (2007[García-Reynaldos, P. X., Hernández-Ortega, S., Toscano, R. A. & Valdés-Martínez, J. (2007). Supramol. Chem. 19, 613-619.]); Kolotilov et al. (2007[Kolotilov, S. V., Cador, O., Golhen, S., Shvets, O., Ilyin, V. G., Pavlishchuk, V. V. & Ouahab, L. (2007). Inorg. Chim. Acta, 360, 1883-1889.]); Qiu & Wu (2004[Qiu, X.-H. & Wu, H.-Y. (2004). Acta Cryst. E60, m1151-m1152.]). For related Cu(II) compounds with a distorted octahedral coordination as a result of the Jahn–Teller effect, see: García-Orozco et al. (2002[García-Orozco, I., Tapia-Benavides, A. R., Alvarez-Toledano, C., Toscano, R. A., Ramírez-Rosales, D., Zamorano-Ulloa, R. & Reyes-Ortega, Y. (2002). J. Mol. Struct. 604, 57-64.]). For bond-length data, see: Orpen et al. (1989[Orpen, A. G., Brammer, L. & Allen, F. H. (1989). J. Chem. Soc. Dalton Trans. pp. S1-84.]). For related structures, see: Seena & Kurup (2007[Seena, E. B. & Kurup, M. R. P. (2007). Polyhedron, 26, 829-836.]); Wang et al. (2008[Wang, Y., Liu, Z. & Gao, J.-Y. (2008). Acta Cryst. E64, m633-m634.]); Zhang et al. (2007[Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007). Acta Cryst. E63, m535-m536.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H5Cl2N3OS)(C12H8N2)(CH4O)]

  • Mr = 533.07

  • Monoclinic, P 21 /n

  • a = 12.058 (1) Å

  • b = 12.946 (1) Å

  • c = 14.973 (2) Å

  • β = 105.918 (1)°

  • V = 2247.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 298 K

  • 0.30 × 0.28 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.710, Tmax = 0.857

  • 10910 measured reflections

  • 3951 independent reflections

  • 2708 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.119

  • S = 1.06

  • 3951 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯S1i 0.82 2.49 3.310 (3) 174
N3—H3A⋯N2ii 0.86 2.24 3.087 (4) 170
N3—H3B⋯Cl1iii 0.86 2.86 3.573 (2) 142
C11—H11⋯S1iv 0.93 2.81 3.593 (5) 142
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+2, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a special kind of Schiff bases, thiosemicarbazones and their metal complexes have become the subjects of intensive study because of their wide ranging biological activities, analytical applications and interesting chemical and structural properties. By now there are not many nickel complexes with salicylic aldehyde thiosemicarbazone ligands [Dapporto et al. (1984); Schulte et al. (1991); García-Reynaldos et al. (2007); Kolotilov et al. (2007); Qiu et al. (2004)]. The additional use of 1,10-phenanthroline as the third ligand depicts another structural type.

In (I), the NiII atom is coordinated by one N, one O and one S atom from the tridentate dianionic 3,5-dichlorosalicylaldehyde thiosemicarbazonato ligand, one O atom from methanol and two N atoms from phen. The six atoms form a distorted octahedral coordination sphere around the metal because of Jahn-Teller effect (García-Orozco et al., 2002). The Ni—S bond length is 2.358 (1) Å, which is very close to 2.295Å (Orpen et al. 1989). The three-dimensional network of (I) is established by N–H···Cl, N–H···N, C–H···S and O–H···S hydrogen bonds (Fig.2).

Related literature top

For nickel complexes with salicylic aldehyde thiosemicarbazone ligands, see: Dapporto et al. (1984); Schulte et al. (1991); García-Reynaldos et al. (2007); Kolotilov et al. (2007); Qiu & Wu (2004). The six atoms form a distorted octahedral coordination environment around the metal as a result of the Jahn–Teller effect, see: García-Orozco et al. (2002);. For bond-length data, see: Orpen et al. (1989). For related structures, see: Seena & Kurup (2007); Wang & Gao (2008); Zhang et al. (2007).

Experimental top

A solution of 3,5-dichlorosalicylaldehyde (10 mmol) in EtOH (30 ml) was added dropwise to an aqueous solution (25 ml) of thiosemicarbazide (10 mmol) and 1.5 ml acetic anhydride with stirring at ca 70° C for 4.5 h. The light brown precipitate was removed by filtration and recrystallized from 1:1 (v/v) MeOH/EtOH. Then a mixture of the ligand (1 mmol) and nickel nitrate (1 mmol) in MeOH (35 ml) was stirred at ca 65° C for 2 h. After 1,10-phenanthroline (1 mmol) was added to the mixture heating was continued for another 2 h. The Ni complex was dissolved in DMF and the resulting red solution was filtrated. After 4 days, red block crystals were obtained by slow evaporation of the solvent from the filtrate.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H distances of 0.93-0.96Å, N-H distances of 0.86Å and O-H distances of 0.82Å,respectively, and Uiso(H) = 1.2-1.5Ueq(C), Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. Carbon-bound H atoms have been omitted.
[Figure 2] Fig. 2. Three-dimensional network of (I), broken lines show N–H···Cl, N–H···N, C–H···S and O–H···S hydrogen bonds.
mer-(3,5-Dichloro-2-oxidobenzaldehyde thiosemicarbazonato-κ3S,N1,O)(methanol- κO)(1,10-phenanthroline-κ2N,N')nickel(II) top
Crystal data top
[Ni(C8H5Cl2N3OS)(C12H8N2)(CH4O)]F(000) = 1088
Mr = 533.07Dx = 1.575 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.058 (1) ÅCell parameters from 3309 reflections
b = 12.946 (1) Åθ = 3.6–25.3°
c = 14.973 (2) ŵ = 1.22 mm1
β = 105.918 (1)°T = 298 K
V = 2247.6 (4) Å3Block, red
Z = 40.30 × 0.28 × 0.13 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3951 independent reflections
Radiation source: fine-focus sealed tube2708 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1314
Tmin = 0.710, Tmax = 0.857k = 1514
10910 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0487P)2 + 1.8417P]
where P = (Fo2 + 2Fc2)/3
3951 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Ni(C8H5Cl2N3OS)(C12H8N2)(CH4O)]V = 2247.6 (4) Å3
Mr = 533.07Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.058 (1) ŵ = 1.22 mm1
b = 12.946 (1) ÅT = 298 K
c = 14.973 (2) Å0.30 × 0.28 × 0.13 mm
β = 105.918 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3951 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2708 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.857Rint = 0.040
10910 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.06Δρmax = 0.64 e Å3
3951 reflectionsΔρmin = 0.37 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.79152 (4)0.87614 (4)0.19294 (3)0.03473 (17)
S10.73435 (9)1.01246 (8)0.27489 (7)0.0455 (3)
Cl10.88829 (11)0.63336 (11)0.01564 (9)0.0725 (4)
Cl21.32931 (13)0.62176 (14)0.18947 (12)0.0989 (6)
N10.9387 (3)0.8831 (2)0.2981 (2)0.0352 (7)
N20.9476 (3)0.9456 (3)0.3753 (2)0.0431 (8)
N30.8598 (3)1.0689 (3)0.4404 (2)0.0646 (12)
H3A0.91901.06940.48810.077*
H3B0.80241.10900.43850.077*
N40.6453 (3)0.8694 (2)0.0803 (2)0.0362 (7)
N50.8398 (3)0.9774 (2)0.1016 (2)0.0400 (8)
O10.8512 (2)0.7563 (2)0.13516 (18)0.0420 (7)
O20.7231 (3)0.7590 (2)0.2641 (2)0.0538 (8)
H20.72870.69800.25120.081*
C11.0316 (3)0.8325 (3)0.3000 (3)0.0394 (10)
H11.09400.84210.35190.047*
C21.0484 (3)0.7622 (3)0.2296 (3)0.0382 (9)
C30.9579 (3)0.7308 (3)0.1505 (3)0.0378 (9)
C40.9926 (4)0.6668 (3)0.0864 (3)0.0483 (11)
C51.1037 (4)0.6326 (4)0.0978 (3)0.0584 (12)
H51.12170.58980.05390.070*
C61.1881 (4)0.6634 (4)0.1761 (3)0.0579 (12)
C71.1614 (4)0.7264 (3)0.2404 (3)0.0503 (11)
H71.21940.74610.29260.060*
C80.8571 (3)1.0056 (3)0.3689 (3)0.0418 (10)
C90.5507 (4)0.8126 (3)0.0704 (3)0.0480 (11)
H90.54250.77470.12090.058*
C100.4635 (4)0.8078 (4)0.0128 (3)0.0587 (13)
H100.39900.76650.01750.070*
C110.4735 (4)0.8640 (3)0.0866 (3)0.0560 (13)
H110.41540.86150.14230.067*
C120.5710 (4)0.9260 (3)0.0794 (3)0.0460 (11)
C130.6555 (3)0.9246 (3)0.0063 (3)0.0371 (9)
C140.7589 (3)0.9836 (3)0.0181 (3)0.0385 (9)
C150.7722 (4)1.0463 (3)0.0550 (3)0.0501 (11)
C160.8737 (5)1.1054 (4)0.0371 (3)0.0611 (13)
H160.88601.14890.08290.073*
C170.9543 (4)1.0995 (4)0.0467 (4)0.0631 (14)
H171.02131.13870.05880.076*
C180.9340 (4)1.0331 (4)0.1140 (3)0.0532 (12)
H180.99001.02810.17060.064*
C190.5891 (4)0.9883 (4)0.1528 (3)0.0591 (13)
H190.53390.98840.21010.071*
C200.6836 (5)1.0465 (4)0.1410 (3)0.0614 (13)
H200.69181.08790.18960.074*
C210.6611 (6)0.7670 (5)0.3301 (5)0.108 (2)
H21A0.71220.78700.38880.162*
H21B0.62670.70150.33650.162*
H21C0.60170.81810.31050.162*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0340 (3)0.0319 (3)0.0326 (3)0.0002 (2)0.0005 (2)0.0013 (2)
S10.0426 (6)0.0409 (6)0.0424 (6)0.0096 (5)0.0065 (5)0.0087 (5)
Cl10.0662 (8)0.0739 (9)0.0733 (9)0.0054 (7)0.0119 (6)0.0356 (7)
Cl20.0624 (9)0.1247 (14)0.1059 (12)0.0483 (9)0.0165 (8)0.0035 (10)
N10.0361 (18)0.0347 (18)0.0302 (16)0.0029 (15)0.0015 (13)0.0019 (14)
N20.043 (2)0.044 (2)0.0340 (18)0.0084 (16)0.0028 (15)0.0093 (15)
N30.060 (2)0.074 (3)0.047 (2)0.022 (2)0.0076 (18)0.026 (2)
N40.0354 (18)0.0324 (18)0.0366 (18)0.0010 (15)0.0028 (14)0.0042 (15)
N50.0381 (18)0.0372 (19)0.0400 (19)0.0003 (15)0.0025 (15)0.0009 (15)
O10.0351 (16)0.0375 (16)0.0496 (16)0.0010 (12)0.0051 (12)0.0068 (13)
O20.071 (2)0.0428 (18)0.0553 (19)0.0042 (16)0.0301 (16)0.0033 (15)
C10.034 (2)0.045 (2)0.031 (2)0.0009 (19)0.0040 (17)0.0041 (18)
C20.041 (2)0.033 (2)0.039 (2)0.0036 (18)0.0088 (18)0.0083 (17)
C30.044 (2)0.027 (2)0.044 (2)0.0016 (18)0.0137 (19)0.0038 (17)
C40.053 (3)0.035 (2)0.056 (3)0.001 (2)0.012 (2)0.007 (2)
C50.064 (3)0.047 (3)0.070 (3)0.011 (2)0.028 (3)0.007 (2)
C60.047 (3)0.058 (3)0.069 (3)0.018 (2)0.016 (2)0.009 (3)
C70.046 (3)0.051 (3)0.050 (3)0.011 (2)0.006 (2)0.010 (2)
C80.040 (2)0.041 (2)0.037 (2)0.0004 (19)0.0015 (18)0.0050 (18)
C90.043 (3)0.042 (3)0.056 (3)0.003 (2)0.008 (2)0.006 (2)
C100.038 (3)0.054 (3)0.070 (3)0.003 (2)0.009 (2)0.013 (3)
C110.047 (3)0.050 (3)0.053 (3)0.011 (2)0.017 (2)0.016 (2)
C120.049 (3)0.045 (3)0.035 (2)0.010 (2)0.0034 (19)0.0093 (19)
C130.043 (2)0.030 (2)0.034 (2)0.0076 (18)0.0038 (18)0.0036 (17)
C140.046 (2)0.033 (2)0.035 (2)0.0056 (18)0.0080 (18)0.0007 (17)
C150.058 (3)0.044 (3)0.049 (3)0.008 (2)0.016 (2)0.007 (2)
C160.076 (4)0.052 (3)0.063 (3)0.004 (3)0.031 (3)0.018 (2)
C170.060 (3)0.051 (3)0.077 (4)0.013 (2)0.017 (3)0.009 (3)
C180.045 (3)0.054 (3)0.054 (3)0.009 (2)0.003 (2)0.002 (2)
C190.070 (3)0.061 (3)0.036 (2)0.015 (3)0.004 (2)0.002 (2)
C200.080 (4)0.064 (3)0.037 (3)0.019 (3)0.012 (2)0.012 (2)
C210.132 (6)0.090 (5)0.108 (5)0.016 (4)0.043 (5)0.021 (4)
Geometric parameters (Å, º) top
Ni1—O12.004 (3)C5—C61.383 (6)
Ni1—N12.026 (3)C5—H50.9300
Ni1—N42.081 (3)C6—C71.366 (6)
Ni1—N52.089 (3)C7—H70.9300
Ni1—O22.145 (3)C9—C101.393 (6)
Ni1—S12.3578 (11)C9—H90.9300
S1—C81.743 (4)C10—C111.357 (7)
Cl1—C41.746 (4)C10—H100.9300
Cl2—C61.745 (5)C11—C121.403 (6)
N1—C11.290 (5)C11—H110.9300
N1—N21.391 (4)C12—C131.403 (5)
N2—C81.321 (5)C12—C191.427 (6)
N3—C81.342 (5)C13—C141.430 (5)
N3—H3A0.8600C14—C151.406 (6)
N3—H3B0.8600C15—C161.405 (6)
N4—C91.331 (5)C15—C201.430 (6)
N4—C131.353 (5)C16—C171.362 (6)
N5—C181.314 (5)C16—H160.9300
N5—C141.362 (5)C17—C181.396 (6)
O1—C31.286 (4)C17—H170.9300
O2—C211.398 (7)C18—H180.9300
O2—H20.8200C19—C201.338 (7)
C1—C21.448 (5)C19—H190.9300
C1—H10.9300C20—H200.9300
C2—C71.407 (5)C21—H21A0.9600
C2—C31.433 (5)C21—H21B0.9600
C3—C41.415 (6)C21—H21C0.9600
C4—C51.376 (6)
O1—Ni1—N191.59 (11)C5—C6—Cl2118.4 (4)
O1—Ni1—N486.69 (11)C6—C7—C2121.6 (4)
N1—Ni1—N4177.11 (12)C6—C7—H7119.2
O1—Ni1—N590.32 (12)C2—C7—H7119.2
N1—Ni1—N597.97 (12)N2—C8—N3117.6 (3)
N4—Ni1—N579.74 (12)N2—C8—S1126.2 (3)
O1—Ni1—O284.23 (11)N3—C8—S1116.3 (3)
N1—Ni1—O291.15 (12)N4—C9—C10122.5 (4)
N4—Ni1—O290.98 (12)N4—C9—H9118.7
N5—Ni1—O2169.51 (12)C10—C9—H9118.7
O1—Ni1—S1174.34 (8)C11—C10—C9119.4 (4)
N1—Ni1—S183.20 (9)C11—C10—H10120.3
N4—Ni1—S198.62 (9)C9—C10—H10120.3
N5—Ni1—S192.58 (10)C10—C11—C12120.2 (4)
O2—Ni1—S193.65 (9)C10—C11—H11119.9
C8—S1—Ni194.43 (14)C12—C11—H11119.9
C1—N1—N2114.1 (3)C13—C12—C11116.5 (4)
C1—N1—Ni1124.4 (3)C13—C12—C19119.0 (4)
N2—N1—Ni1121.5 (2)C11—C12—C19124.4 (4)
C8—N2—N1114.1 (3)N4—C13—C12123.3 (4)
C8—N3—H3A120.0N4—C13—C14116.9 (3)
C8—N3—H3B120.0C12—C13—C14119.7 (4)
H3A—N3—H3B120.0N5—C14—C15122.9 (4)
C9—N4—C13118.0 (3)N5—C14—C13117.5 (3)
C9—N4—Ni1128.5 (3)C15—C14—C13119.6 (4)
C13—N4—Ni1113.3 (2)C16—C15—C14116.4 (4)
C18—N5—C14118.1 (4)C16—C15—C20124.5 (4)
C18—N5—Ni1129.5 (3)C14—C15—C20119.0 (4)
C14—N5—Ni1112.3 (3)C17—C16—C15120.6 (4)
C3—O1—Ni1125.6 (2)C17—C16—H16119.7
C21—O2—Ni1130.7 (3)C15—C16—H16119.7
C21—O2—H2109.5C16—C17—C18118.5 (4)
Ni1—O2—H2119.7C16—C17—H17120.7
N1—C1—C2126.6 (3)C18—C17—H17120.7
N1—C1—H1116.7N5—C18—C17123.4 (4)
C2—C1—H1116.7N5—C18—H18118.3
C7—C2—C3119.7 (4)C17—C18—H18118.3
C7—C2—C1116.6 (4)C20—C19—C12121.5 (4)
C3—C2—C1123.6 (4)C20—C19—H19119.3
O1—C3—C4119.8 (4)C12—C19—H19119.3
O1—C3—C2124.9 (4)C19—C20—C15121.1 (4)
C4—C3—C2115.3 (4)C19—C20—H20119.5
C5—C4—C3124.2 (4)C15—C20—H20119.5
C5—C4—Cl1118.2 (3)O2—C21—H21A109.5
C3—C4—Cl1117.5 (3)O2—C21—H21B109.5
C4—C5—C6118.5 (4)H21A—C21—H21B109.5
C4—C5—H5120.7O2—C21—H21C109.5
C6—C5—H5120.7H21A—C21—H21C109.5
C7—C6—C5120.6 (4)H21B—C21—H21C109.5
C7—C6—Cl2121.0 (4)
O1—Ni1—S1—C817.3 (9)C7—C2—C3—C42.1 (5)
N1—Ni1—S1—C85.61 (16)C1—C2—C3—C4176.2 (4)
N4—Ni1—S1—C8176.66 (17)O1—C3—C4—C5177.9 (4)
N5—Ni1—S1—C8103.33 (16)C2—C3—C4—C52.0 (6)
O2—Ni1—S1—C885.12 (16)O1—C3—C4—Cl14.5 (5)
O1—Ni1—N1—C110.5 (3)C2—C3—C4—Cl1175.6 (3)
N4—Ni1—N1—C143 (3)C3—C4—C5—C61.0 (7)
N5—Ni1—N1—C180.1 (3)Cl1—C4—C5—C6176.6 (4)
O2—Ni1—N1—C194.7 (3)C4—C5—C6—C70.1 (7)
S1—Ni1—N1—C1171.7 (3)C4—C5—C6—Cl2178.9 (4)
O1—Ni1—N1—N2170.2 (3)C5—C6—C7—C20.1 (7)
N4—Ni1—N1—N2137 (2)Cl2—C6—C7—C2178.7 (3)
N5—Ni1—N1—N299.2 (3)C3—C2—C7—C61.3 (6)
O2—Ni1—N1—N286.0 (3)C1—C2—C7—C6177.1 (4)
S1—Ni1—N1—N27.6 (3)N1—N2—C8—N3179.3 (4)
C1—N1—N2—C8173.2 (3)N1—N2—C8—S10.6 (5)
Ni1—N1—N2—C86.2 (4)Ni1—S1—C8—N25.3 (4)
O1—Ni1—N4—C987.0 (3)Ni1—S1—C8—N3175.9 (3)
N1—Ni1—N4—C9140 (2)C13—N4—C9—C100.4 (6)
N5—Ni1—N4—C9177.9 (4)Ni1—N4—C9—C10173.5 (3)
O2—Ni1—N4—C92.8 (3)N4—C9—C10—C111.0 (7)
S1—Ni1—N4—C991.0 (3)C9—C10—C11—C120.3 (7)
O1—Ni1—N4—C1387.1 (3)C10—C11—C12—C130.9 (6)
N1—Ni1—N4—C1334 (3)C10—C11—C12—C19179.6 (4)
N5—Ni1—N4—C133.8 (3)C9—N4—C13—C120.9 (6)
O2—Ni1—N4—C13171.3 (3)Ni1—N4—C13—C12175.7 (3)
S1—Ni1—N4—C1394.8 (2)C9—N4—C13—C14179.0 (3)
O1—Ni1—N5—C1896.3 (4)Ni1—N4—C13—C144.1 (4)
N1—Ni1—N5—C184.6 (4)C11—C12—C13—N41.6 (6)
N4—Ni1—N5—C18177.2 (4)C19—C12—C13—N4178.9 (4)
O2—Ni1—N5—C18154.8 (6)C11—C12—C13—C14178.3 (4)
S1—Ni1—N5—C1878.9 (4)C19—C12—C13—C141.2 (6)
O1—Ni1—N5—C1483.7 (3)C18—N5—C14—C150.4 (6)
N1—Ni1—N5—C14175.4 (3)Ni1—N5—C14—C15179.6 (3)
N4—Ni1—N5—C142.8 (3)C18—N5—C14—C13178.5 (4)
O2—Ni1—N5—C1425.2 (8)Ni1—N5—C14—C131.5 (4)
S1—Ni1—N5—C14101.1 (3)N4—C13—C14—N51.8 (5)
N1—Ni1—O1—C320.1 (3)C12—C13—C14—N5178.1 (4)
N4—Ni1—O1—C3157.6 (3)N4—C13—C14—C15177.2 (4)
N5—Ni1—O1—C377.9 (3)C12—C13—C14—C153.0 (6)
O2—Ni1—O1—C3111.1 (3)N5—C14—C15—C161.5 (6)
S1—Ni1—O1—C342.8 (10)C13—C14—C15—C16177.4 (4)
O1—Ni1—O2—C21178.3 (5)N5—C14—C15—C20178.8 (4)
N1—Ni1—O2—C2186.9 (5)C13—C14—C15—C202.3 (6)
N4—Ni1—O2—C2195.1 (5)C14—C15—C16—C171.0 (7)
N5—Ni1—O2—C21122.7 (7)C20—C15—C16—C17179.3 (5)
S1—Ni1—O2—C213.6 (5)C15—C16—C17—C180.3 (7)
N2—N1—C1—C2179.7 (4)C14—N5—C18—C171.1 (7)
Ni1—N1—C1—C20.3 (6)Ni1—N5—C18—C17178.9 (3)
N1—C1—C2—C7171.7 (4)C16—C17—C18—N51.5 (8)
N1—C1—C2—C36.6 (6)C13—C12—C19—C201.2 (7)
Ni1—O1—C3—C4160.4 (3)C11—C12—C19—C20179.3 (4)
Ni1—O1—C3—C219.7 (5)C12—C19—C20—C151.9 (7)
C7—C2—C3—O1177.8 (4)C16—C15—C20—C19179.8 (5)
C1—C2—C3—O13.9 (6)C14—C15—C20—C190.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···S1i0.822.493.310 (3)174
N3—H3A···N2ii0.862.243.087 (4)170
N3—H3B···Cl1iii0.862.863.573 (2)142
C11—H11···S1iv0.932.813.593 (5)142
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+2, y+2, z+1; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Ni(C8H5Cl2N3OS)(C12H8N2)(CH4O)]
Mr533.07
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.058 (1), 12.946 (1), 14.973 (2)
β (°) 105.918 (1)
V3)2247.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.30 × 0.28 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.710, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
10910, 3951, 2708
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.119, 1.06
No. of reflections3951
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.37

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···S1i0.8202.4933.310 (3)173.9
N3—H3A···N2ii0.8602.2373.087 (4)169.5
N3—H3B···Cl1iii0.8602.8593.573 (2)141.5
C11—H11···S1iv0.9312.8103.593 (5)142.4
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+2, y+2, z+1; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1, y+2, z.
 

Acknowledgements

We acknowledge financial support by the Key Laboratory of Non-ferrous Metal Materials and New Processing Technology, Ministry of Education, P. R. China.

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDapporto, P., De Munno, G. & Tomlinson, A. G. (1984). J. Chem. Res. 40, 501–502.  Google Scholar
First citationGarcía-Orozco, I., Tapia-Benavides, A. R., Alvarez-Toledano, C., Toscano, R. A., Ramírez-Rosales, D., Zamorano-Ulloa, R. & Reyes-Ortega, Y. (2002). J. Mol. Struct. 604, 57–64.  Web of Science CSD CrossRef CAS Google Scholar
First citationGarcía-Reynaldos, P. X., Hernández-Ortega, S., Toscano, R. A. & Valdés-Martínez, J. (2007). Supramol. Chem. 19, 613–619.  Google Scholar
First citationKolotilov, S. V., Cador, O., Golhen, S., Shvets, O., Ilyin, V. G., Pavlishchuk, V. V. & Ouahab, L. (2007). Inorg. Chim. Acta, 360, 1883–1889.  Web of Science CSD CrossRef CAS Google Scholar
First citationOrpen, A. G., Brammer, L. & Allen, F. H. (1989). J. Chem. Soc. Dalton Trans. pp. S1–84.  CrossRef Web of Science Google Scholar
First citationQiu, X.-H. & Wu, H.-Y. (2004). Acta Cryst. E60, m1151–m1152.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchulte, G., Luo, X.-L., Crabtree, R. H. & Zimmer, M. (1991). Angew. Chem. Int. Ed. Engl. 30, 193–194.  CSD CrossRef Google Scholar
First citationSeena, E. B. & Kurup, M. R. P. (2007). Polyhedron, 26, 829–836.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Liu, Z. & Gao, J.-Y. (2008). Acta Cryst. E64, m633–m634.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007). Acta Cryst. E63, m535–m536.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m523-m524
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds