organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o950-o951

2-[(E)-2-(1H-Indol-3-yl)ethen­yl]-1-methyl­pyridinium 4-bromo­benzene­sulfonate

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 16 March 2009; accepted 27 March 2009; online 2 April 2009)

In the title compound, C16H15N2+·C6H4BrO3S, the cation exists in the E configuration and is essentially planar with a dihedral angle of 3.10 (5)° between the pyridinium ring and the indole ring system. The π-conjugated planes of the cation and the anion are inclined to each other at a dihedral angle of 64.32 (4)°. In the crystal structure, the cations are stacked in an anti­parallel manner along the a axis. The anions are linked into a chain along the a axis. The cations and the anions are linked into a three-dimensional network by N—H⋯O and weak C—H⋯O hydrogen bonds. The crystal structure is further stabilized by C—H⋯π inter­actions. A ππ inter­action between the five-membered heterocyclic ring of the indole system and the pyridinium ring is also observed with a centroid–centroid distance of 3.5855 (7) Å.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to non-linear optical materials research, see: Coe et al. (2003[Coe, B. J., Harris, J. A., Asselberghs, I., Wostyn, K., Clays, K., Persoons, A., Brunschwig, B. S., Coles, S. J., Gelbrich, T., Light, M. E., Hursthouse, M. B. & Nakatani, K. (2003). Adv. Funct. Mater. 13, 347-357.]); Dittrich et al. (2003[Dittrich, Ph., Bartlome, R., Montemezzani, G. & Günter, P. (2003). Appl. Surf. Sci. 220, 88-95.]); Ogawa et al. (2008[Ogawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836-842.]); Otero et al. (2002[Otero, M., Herranz, M. A., Seoane, C., Martín, N., Garín, J., Orduna, J., Alcalá, R. & Villacampa, B. (2002). Tetrahedron, 58, 7463-7475.]); Weir et al. (2003[Weir, C. A. M., Hadizad, T., Beaudin, A. M. R. & Wang, Z.-Y. (2003). Tetrahedron Lett. 44, 4697-4700.]); Yang et al. (2007[Yang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth Des. 7, 83-86.]). For related structures, see, for example: Chanawanno et al. (2008[Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882-o1883.]); Chantrapromma et al. (2006[Chantrapromma, S., Ruanwas, P., Fun, H.-K. & Patil, P. S. (2006). Acta Cryst. E62, o5494-o5496.], 2007[Chantrapromma, S., Suwanwong, T. & Fun, H.-K. (2007). Acta Cryst. E63, o821-o823.], 2008[Chantrapromma, S., Laksana, C., Ruanwas, P. & Fun, H.-K. (2008). Acta Cryst. E64, o574-o575.], 2009[Chantrapromma, S., Jansrisewangwong, P., Musor, R. & Fun, H.-K. (2009). Acta Cryst. E65, o217-o218.]); Jindawong et al. (2005[Jindawong, B., Chantrapromma, S., Fun, H.-K., Yu, X.-L. & Karalai, C. (2005). Acta Cryst. E61, o1340-o1342.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15N2+·C6H4BrO3S

  • Mr = 471.36

  • Monoclinic, P 21 /c

  • a = 7.5188 (1) Å

  • b = 13.3659 (2) Å

  • c = 20.2670 (3) Å

  • β = 98.850 (1)°

  • V = 2012.49 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.17 mm−1

  • T = 100 K

  • 0.31 × 0.27 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.548, Tmax = 0.706

  • 67716 measured reflections

  • 10581 independent reflections

  • 8073 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.085

  • S = 1.03

  • 10581 reflections

  • 267 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O2i 0.85 (2) 1.91 (2) 2.7593 (14) 175.2 (17)
C1—H1A⋯O3ii 0.93 2.53 3.2067 (16) 130
C7—H7A⋯O1 0.93 2.58 3.3095 (16) 136
C9—H9A⋯O1 0.93 2.58 3.2426 (16) 128
C14—H14A⋯O1iii 0.93 2.56 3.2987 (16) 137
C16—H16C⋯O1iii 0.96 2.36 3.2739 (17) 158
C19—H19A⋯O3iv 0.93 2.51 3.2052 (16) 131
C21—H21A⋯O2v 0.93 2.28 3.1310 (15) 152
C4—H4ACg3 0.93 2.82 3.5579 (13) 137
C16—H16ACg3vi 0.96 2.69 3.5731 (13) 154
C16—H16BCg1vii 0.96 2.74 3.4836 (14) 135
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y+2, -z+1; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x-1, y, z; (vi) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) -x+1, -y+2, -z+1. Cg1 and Cg3 are the centroids of the N2/C8–C10/C15 and C10–C15 rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Organic crystals with extensive conjugated π systems are attractive candidates for nonlinear optic (NLO) studies because of their large hyperpolariability (β) and ease of preparation (Coe et al., 2003; Dittrich et al., 2003; Ogawa et al., 2008; Otero et al., 2002; Weir et al., 2003; Yang et al., 2007). One strategy to enhance the hyperpolariability of the cations is by elongation of its π-conjugation system. Based on these studies, we have previously synthesized and reported the crystal structure of the pyridinium salts (Chanawanno et al., 2008; Chantrapromma et al., 2006, 2007, 2008, 2009; Jindawong et al., 2005) in order to study for their NLO properties. We herein report the crystal structure of the title compound, (I), which is another pyridinium salt.

Figure 1 shows the asymmetric unit of (I), which consists of a C16H15N2+ cation and a C6H4BrO3S- anion. The cation exists in the E configuration with respect to the C6C7 double bond [1.3568 (16) Å] and is essentially planar with a dihedral angle between the pyridinium and indole rings being 3.10 (5)°, the torsion angles C4–C5–C6–C7 = -2.13 (19)° and C6–C7–C8–C15 = 3.9 (2)°. The indole ring system is planar with the most deviation of -0.0137 (12) Å for atom C8. The π-conjugated planes of the cation and the anion are inclined to each other with the interplanar angle between them being 64.32 (4)°. The methyl group is co-planar with the attached N1/C1–C5 ring. The bond lengths in (I) are in normal ranges (Allen et al., 1987) and comparable with those in related structures (Chanawanno et al., 2008; Chantrapromma et al., 2006, 2007, 2008, 2009; Jindawong et al., 2005).

In the crystal packing (Fig. 2), all O atoms of the sulfonate group are involved in weak C—H···O interactions (Table 1). The arrangement of the cations and anions is interesting (Fig. 2). The cations are stacked in an antiparallel manner along the a axis and the anions are linked together into chains along the same direction. The cations are linked to the anions into a three dimensional network by N—H···O hydrogen bonds and weak C—H···O interactions (Table 1). The crystal structure is further stabilized by C—H···π interactions (Table 1). A ππ interaction with a distance Cg1···Cg2 = 3.5855 (7) Å (symmetry code: 2-x, 2-y, 1-z) is observed; Cg1 and Cg2 are the centroids of the N2/C8–C10/C15 and N1/C1–C5 rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For background to non-linear optical materials research, see: Coe et al. (2003); Dittrich et al. (2003); Ogawa et al. (2008); Otero et al. (2002); Weir et al. (2003); Yang et al. (2007). For related structures, see, for example: Chanawanno et al. (2008); Chantrapromma et al. (2006, 2007, 2008, 2009); Jindawong et al. (2005). For stability of the temperature controller, see: Cosier & Glazer (1986). Cg1 and Cg3 are the centroids of the N2/C8–C10/C15 and C10–C15 rings, respectively.

Experimental top

A solution of indole-3-carboxaldehyde (2.47 g, 17.02 mmol) in methanol (25 ml) was added dropwise to a stirred solution of 1,2-dimethylpyridinium iodide (4.00 g, 17.02 mmol) in methanol (15 ml) in the presence of piperidine (1.68 ml, 17.02 mmol) over a period of 15 mins at room temperature. The mixture was then refluxed for 1 hr in the nitrogen atmosphere. The solid formed was filtered, washed with diethyl ether and recrystallized from methanol to give orange crystals of 2-[(E)-2-(1H-Indol-3-yl) ethenyl]-1-methylpyridinium iodide (compound A) (5.61 g, 91%; m.p. 537-539 K).

Silver(I) p-bromobenzenesulfonate (compound B) was synthesized according to our previously reported procedure (Chantrapromma et al., 2006). The title compound was synthesized by disolving compound B (0.20 g, 0.58 mmol) in 20 ml methanol which upon heating was added a solution of compound A (0.21 g, 0.58 mmol) in hot methanol (30 ml). The mixture turned yellow and cloudy immediately. After stirring for 0.5 hr, the precipitate of silver iodide was filtered and the filtrate was evaporated to give an orange gum. Orange block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from methanol by slow evaporation of the solvent at room temperature after a few weeks (m.p. 508-510 K).

Refinement top

H atom attached to N was located from the difference map and refined isotropically. The remaining H atoms were placed in calculated positions with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic and CH, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.59 Å from S1 and the deepest hole is located at 0.36 Å from Br1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the b axis. Hydrogen bonds are shown as dashed lines.
2-[(E)-2-(1H-Indol-3-yl)ethenyl]-1-methylpyridinium 4-bromobenzenesulfonate top
Crystal data top
C16H15N2+·C6H4BrO3SF(000) = 960
Mr = 471.36Dx = 1.556 Mg m3
Monoclinic, P21/cMelting point = 508–510 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.5188 (1) ÅCell parameters from 10581 reflections
b = 13.3659 (2) Åθ = 2.0–37.5°
c = 20.2670 (3) ŵ = 2.17 mm1
β = 98.850 (1)°T = 100 K
V = 2012.49 (5) Å3Block, yellow
Z = 40.31 × 0.27 × 0.16 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10581 independent reflections
Radiation source: sealed tube8073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 37.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1112
Tmin = 0.548, Tmax = 0.706k = 2222
67716 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.9196P]
where P = (Fo2 + 2Fc2)/3
10581 reflections(Δ/σ)max = 0.003
267 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C16H15N2+·C6H4BrO3SV = 2012.49 (5) Å3
Mr = 471.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5188 (1) ŵ = 2.17 mm1
b = 13.3659 (2) ÅT = 100 K
c = 20.2670 (3) Å0.31 × 0.27 × 0.16 mm
β = 98.850 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10581 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
8073 reflections with I > 2σ(I)
Tmin = 0.548, Tmax = 0.706Rint = 0.033
67716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.02 e Å3
10581 reflectionsΔρmin = 0.66 e Å3
267 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat [Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.] operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.437510 (18)0.545613 (9)0.317640 (6)0.02094 (4)
S11.03248 (4)0.87587 (2)0.276111 (13)0.01297 (5)
O11.08595 (14)0.92518 (8)0.33975 (5)0.02417 (19)
O21.17976 (12)0.82343 (7)0.25255 (5)0.02343 (19)
O30.93322 (13)0.94158 (8)0.22583 (5)0.0253 (2)
C170.87426 (15)0.78270 (8)0.29047 (5)0.01413 (18)
C180.92454 (16)0.68277 (9)0.30078 (6)0.01618 (19)
H18A1.04380.66390.30120.019*
C190.79634 (16)0.61112 (9)0.31052 (6)0.0171 (2)
H19A0.82850.54420.31700.021*
C200.61934 (16)0.64165 (8)0.31029 (6)0.01558 (19)
C210.56765 (15)0.74130 (9)0.30144 (6)0.01596 (19)
H21A0.44910.76030.30230.019*
C220.69622 (15)0.81182 (8)0.29127 (6)0.01531 (18)
H22A0.66370.87870.28500.018*
N10.75652 (13)0.79242 (8)0.58104 (5)0.01574 (17)
N20.77966 (15)1.20325 (8)0.35483 (5)0.01918 (19)
C10.77944 (17)0.69502 (9)0.59983 (6)0.0196 (2)
H1A0.75810.67610.64210.024*
C20.83291 (18)0.62419 (9)0.55835 (7)0.0218 (2)
H2A0.84900.55800.57210.026*
C30.86283 (18)0.65363 (9)0.49483 (6)0.0210 (2)
H3A0.89720.60670.46530.025*
C40.84120 (17)0.75234 (9)0.47621 (6)0.0191 (2)
H4A0.86210.77170.43400.023*
C50.78805 (15)0.82472 (9)0.51967 (5)0.01522 (18)
C60.76564 (17)0.92976 (9)0.50349 (6)0.01701 (19)
H6A0.72610.97220.53460.020*
C70.79955 (16)0.96932 (9)0.44504 (6)0.01598 (19)
H7A0.83790.92500.41480.019*
C80.78260 (15)1.07202 (9)0.42496 (5)0.01529 (18)
C90.80825 (16)1.10341 (9)0.36157 (6)0.0178 (2)
H9A0.84041.06180.32860.021*
C100.73615 (16)1.24110 (9)0.41377 (6)0.0181 (2)
C110.69668 (18)1.33969 (10)0.42910 (7)0.0234 (2)
H11A0.69581.39090.39800.028*
C120.65886 (19)1.35765 (10)0.49284 (8)0.0270 (3)
H12A0.63051.42230.50470.032*
C130.66243 (19)1.28055 (11)0.53972 (7)0.0263 (3)
H13A0.63841.29530.58230.032*
C140.70096 (18)1.18259 (10)0.52424 (6)0.0210 (2)
H14A0.70271.13210.55590.025*
C150.73730 (16)1.16115 (9)0.45962 (6)0.01610 (19)
C160.69856 (17)0.86295 (10)0.62973 (6)0.0191 (2)
H16A0.68090.82720.66930.029*
H16B0.58770.89430.61050.029*
H16C0.78940.91320.64100.029*
H1N20.796 (2)1.2377 (15)0.3209 (10)0.028 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02422 (6)0.01477 (5)0.02501 (6)0.00464 (4)0.00755 (4)0.00167 (4)
S10.01221 (11)0.01335 (10)0.01371 (10)0.00058 (8)0.00315 (8)0.00260 (9)
O10.0282 (5)0.0241 (4)0.0212 (4)0.0076 (4)0.0070 (3)0.0102 (4)
O20.0167 (4)0.0236 (4)0.0319 (5)0.0008 (3)0.0096 (3)0.0090 (4)
O30.0191 (4)0.0244 (5)0.0314 (5)0.0025 (3)0.0008 (3)0.0130 (4)
C170.0150 (5)0.0134 (4)0.0139 (4)0.0011 (3)0.0021 (3)0.0009 (3)
C180.0155 (5)0.0147 (4)0.0185 (4)0.0037 (4)0.0031 (3)0.0000 (4)
C190.0210 (5)0.0130 (4)0.0177 (4)0.0029 (4)0.0044 (4)0.0003 (4)
C200.0187 (5)0.0128 (4)0.0156 (4)0.0010 (4)0.0035 (3)0.0006 (4)
C210.0150 (5)0.0147 (4)0.0183 (4)0.0008 (4)0.0030 (3)0.0006 (4)
C220.0161 (5)0.0118 (4)0.0181 (4)0.0018 (3)0.0032 (3)0.0004 (4)
N10.0177 (4)0.0157 (4)0.0134 (4)0.0026 (3)0.0012 (3)0.0000 (3)
N20.0209 (5)0.0179 (4)0.0184 (4)0.0003 (4)0.0023 (3)0.0052 (4)
C10.0216 (5)0.0172 (5)0.0191 (5)0.0032 (4)0.0004 (4)0.0039 (4)
C20.0241 (6)0.0150 (5)0.0253 (5)0.0007 (4)0.0004 (4)0.0023 (4)
C30.0229 (6)0.0165 (5)0.0230 (5)0.0023 (4)0.0020 (4)0.0021 (4)
C40.0234 (6)0.0175 (5)0.0164 (4)0.0021 (4)0.0032 (4)0.0001 (4)
C50.0159 (5)0.0156 (4)0.0138 (4)0.0009 (4)0.0011 (3)0.0007 (4)
C60.0207 (5)0.0151 (4)0.0157 (4)0.0013 (4)0.0044 (4)0.0006 (4)
C70.0180 (5)0.0153 (4)0.0145 (4)0.0004 (4)0.0020 (3)0.0002 (4)
C80.0157 (5)0.0152 (4)0.0148 (4)0.0000 (4)0.0017 (3)0.0008 (4)
C90.0180 (5)0.0186 (5)0.0166 (4)0.0000 (4)0.0025 (4)0.0017 (4)
C100.0161 (5)0.0164 (5)0.0210 (5)0.0002 (4)0.0006 (4)0.0012 (4)
C110.0200 (6)0.0151 (5)0.0338 (6)0.0013 (4)0.0004 (5)0.0019 (5)
C120.0230 (6)0.0178 (5)0.0402 (7)0.0017 (5)0.0045 (5)0.0072 (5)
C130.0269 (7)0.0238 (6)0.0290 (6)0.0002 (5)0.0073 (5)0.0085 (5)
C140.0241 (6)0.0197 (5)0.0197 (5)0.0005 (4)0.0054 (4)0.0030 (4)
C150.0154 (5)0.0152 (4)0.0173 (4)0.0001 (4)0.0016 (3)0.0002 (4)
C160.0233 (6)0.0200 (5)0.0143 (4)0.0028 (4)0.0043 (4)0.0022 (4)
Geometric parameters (Å, º) top
Br1—C201.8978 (12)C3—C41.3750 (18)
S1—O11.4492 (9)C3—H3A0.9300
S1—O21.4519 (9)C4—C51.4070 (16)
S1—O31.4604 (10)C4—H4A0.9300
S1—C171.7768 (12)C5—C61.4458 (16)
C17—C181.3952 (16)C6—C71.3568 (16)
C17—C221.3966 (16)C6—H6A0.9300
C18—C191.3942 (17)C7—C81.4318 (16)
C18—H18A0.9300C7—H7A0.9300
C19—C201.3913 (17)C8—C91.3929 (16)
C19—H19A0.9300C8—C151.4498 (16)
C20—C211.3913 (16)C9—H9A0.9300
C21—C221.3881 (16)C10—C111.3961 (18)
C21—H21A0.9300C10—C151.4153 (16)
C22—H22A0.9300C11—C121.386 (2)
N1—C11.3599 (16)C11—H11A0.9300
N1—C51.3712 (15)C12—C131.399 (2)
N1—C161.4782 (16)C12—H12A0.9300
N2—C91.3552 (16)C13—C141.3874 (19)
N2—C101.3821 (16)C13—H13A0.9300
N2—H1N20.850 (19)C14—C151.4079 (17)
C1—C21.3669 (19)C14—H14A0.9300
C1—H1A0.9300C16—H16A0.9600
C2—C31.3971 (19)C16—H16B0.9600
C2—H2A0.9300C16—H16C0.9600
O1—S1—O2113.02 (6)C5—C4—H4A119.3
O1—S1—O3112.93 (6)N1—C5—C4117.17 (10)
O2—S1—O3113.24 (6)N1—C5—C6118.76 (10)
O1—S1—C17105.91 (6)C4—C5—C6124.07 (10)
O2—S1—C17106.22 (6)C7—C6—C5123.06 (11)
O3—S1—C17104.63 (5)C7—C6—H6A118.5
C18—C17—C22120.21 (11)C5—C6—H6A118.5
C18—C17—S1121.51 (9)C6—C7—C8126.96 (11)
C22—C17—S1118.27 (8)C6—C7—H7A116.5
C19—C18—C17120.10 (11)C8—C7—H7A116.5
C19—C18—H18A120.0C9—C8—C7122.14 (11)
C17—C18—H18A119.9C9—C8—C15105.99 (10)
C20—C19—C18118.68 (10)C7—C8—C15131.86 (10)
C20—C19—H19A120.7N2—C9—C8110.32 (11)
C18—C19—H19A120.7N2—C9—H9A124.8
C21—C20—C19121.96 (11)C8—C9—H9A124.8
C21—C20—Br1117.86 (9)N2—C10—C11128.65 (12)
C19—C20—Br1120.10 (9)N2—C10—C15108.22 (10)
C22—C21—C20118.82 (11)C11—C10—C15123.14 (12)
C22—C21—H21A120.6C12—C11—C10116.88 (12)
C20—C21—H21A120.6C12—C11—H11A121.6
C21—C22—C17120.21 (10)C10—C11—H11A121.6
C21—C22—H22A119.9C11—C12—C13121.35 (12)
C17—C22—H22A119.9C11—C12—H12A119.3
C1—N1—C5121.55 (10)C13—C12—H12A119.3
C1—N1—C16117.47 (10)C14—C13—C12121.62 (13)
C5—N1—C16120.98 (10)C14—C13—H13A119.2
C9—N2—C10109.17 (10)C12—C13—H13A119.2
C9—N2—H1N2125.1 (13)C13—C14—C15118.67 (12)
C10—N2—H1N2125.5 (13)C13—C14—H14A120.7
N1—C1—C2121.83 (11)C15—C14—H14A120.7
N1—C1—H1A119.1C14—C15—C10118.33 (11)
C2—C1—H1A119.1C14—C15—C8135.36 (11)
C1—C2—C3118.42 (12)C10—C15—C8106.29 (10)
C1—C2—H2A120.8N1—C16—H16A109.5
C3—C2—H2A120.8N1—C16—H16B109.5
C4—C3—C2119.61 (12)H16A—C16—H16B109.5
C4—C3—H3A120.2N1—C16—H16C109.5
C2—C3—H3A120.2H16A—C16—H16C109.5
C3—C4—C5121.40 (11)H16B—C16—H16C109.5
C3—C4—H4A119.3
O1—S1—C17—C1898.92 (10)C3—C4—C5—C6179.02 (12)
O2—S1—C17—C1821.50 (11)N1—C5—C6—C7177.69 (11)
O3—S1—C17—C18141.54 (10)C4—C5—C6—C72.13 (19)
O1—S1—C17—C2281.05 (10)C5—C6—C7—C8179.49 (11)
O2—S1—C17—C22158.53 (9)C6—C7—C8—C9175.13 (12)
O3—S1—C17—C2238.49 (10)C6—C7—C8—C153.9 (2)
C22—C17—C18—C191.37 (17)C10—N2—C9—C80.64 (14)
S1—C17—C18—C19178.65 (9)C7—C8—C9—N2178.35 (11)
C17—C18—C19—C200.57 (17)C15—C8—C9—N20.92 (14)
C18—C19—C20—C210.76 (17)C9—N2—C10—C11179.84 (13)
C18—C19—C20—Br1175.97 (9)C9—N2—C10—C150.08 (14)
C19—C20—C21—C221.26 (17)N2—C10—C11—C12179.37 (13)
Br1—C20—C21—C22175.54 (8)C15—C10—C11—C120.53 (19)
C20—C21—C22—C170.44 (17)C10—C11—C12—C130.8 (2)
C18—C17—C22—C210.86 (17)C11—C12—C13—C141.1 (2)
S1—C17—C22—C21179.16 (9)C12—C13—C14—C150.1 (2)
C5—N1—C1—C20.78 (18)C13—C14—C15—C101.18 (18)
C16—N1—C1—C2179.93 (11)C13—C14—C15—C8179.66 (13)
N1—C1—C2—C30.56 (19)N2—C10—C15—C14178.40 (11)
C1—C2—C3—C41.17 (19)C11—C10—C15—C141.52 (18)
C2—C3—C4—C50.48 (19)N2—C10—C15—C80.48 (13)
C1—N1—C5—C41.44 (16)C11—C10—C15—C8179.60 (12)
C16—N1—C5—C4179.43 (11)C9—C8—C15—C14177.76 (14)
C1—N1—C5—C6178.40 (11)C7—C8—C15—C143.1 (2)
C16—N1—C5—C60.73 (16)C9—C8—C15—C100.84 (13)
C3—C4—C5—N10.81 (18)C7—C8—C15—C10178.33 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.85 (2)1.91 (2)2.7593 (14)175.2 (17)
C1—H1A···O3ii0.932.533.2067 (16)130
C7—H7A···O10.932.583.3095 (16)136
C9—H9A···O10.932.583.2426 (16)128
C14—H14A···O1iii0.932.563.2987 (16)137
C16—H16C···O1iii0.962.363.2739 (17)158
C19—H19A···O3iv0.932.513.2052 (16)131
C21—H21A···O2v0.932.283.1310 (15)152
C4—H4A···Cg30.932.823.5579 (13)137
C16—H16A···Cg3vi0.962.693.5731 (13)154
C16—H16B···Cg1vii0.962.743.4836 (14)135
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x+2, y+2, z+1; (iv) x+2, y1/2, z+1/2; (v) x1, y, z; (vi) x, y+1/2, z1/2; (vii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC16H15N2+·C6H4BrO3S
Mr471.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.5188 (1), 13.3659 (2), 20.2670 (3)
β (°) 98.850 (1)
V3)2012.49 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.17
Crystal size (mm)0.31 × 0.27 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.548, 0.706
No. of measured, independent and
observed [I > 2σ(I)] reflections
67716, 10581, 8073
Rint0.033
(sin θ/λ)max1)0.857
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.03
No. of reflections10581
No. of parameters267
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.02, 0.66

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.85 (2)1.91 (2)2.7593 (14)175.2 (17)
C1—H1A···O3ii0.932.533.2067 (16)130
C7—H7A···O10.932.583.3095 (16)136
C9—H9A···O10.932.583.2426 (16)128
C14—H14A···O1iii0.932.563.2987 (16)137
C16—H16C···O1iii0.962.363.2739 (17)158
C19—H19A···O3iv0.932.513.2052 (16)131
C21—H21A···O2v0.932.283.1310 (15)152
C4—H4A···Cg30.932.823.5579 (13)137
C16—H16A···Cg3vi0.962.693.5731 (13)154
C16—H16B···Cg1vii0.962.743.4836 (14)135
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x+2, y+2, z+1; (iv) x+2, y1/2, z+1/2; (v) x1, y, z; (vi) x, y+1/2, z1/2; (vii) x+1, y+2, z+1.
 

Footnotes

This paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of Science in Thailand.

Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors thank Prince of Songkla University for financial support through the Crystal Materials Research Unit. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882–o1883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Laksana, C., Ruanwas, P. & Fun, H.-K. (2008). Acta Cryst. E64, o574–o575.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jansrisewangwong, P., Musor, R. & Fun, H.-K. (2009). Acta Cryst. E65, o217–o218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Ruanwas, P., Fun, H.-K. & Patil, P. S. (2006). Acta Cryst. E62, o5494–o5496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Suwanwong, T. & Fun, H.-K. (2007). Acta Cryst. E63, o821–o823.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCoe, B. J., Harris, J. A., Asselberghs, I., Wostyn, K., Clays, K., Persoons, A., Brunschwig, B. S., Coles, S. J., Gelbrich, T., Light, M. E., Hursthouse, M. B. & Nakatani, K. (2003). Adv. Funct. Mater. 13, 347–357.  Web of Science CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDittrich, Ph., Bartlome, R., Montemezzani, G. & Günter, P. (2003). Appl. Surf. Sci. 220, 88–95.  Web of Science CrossRef CAS Google Scholar
First citationJindawong, B., Chantrapromma, S., Fun, H.-K., Yu, X.-L. & Karalai, C. (2005). Acta Cryst. E61, o1340–o1342.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOgawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836–842.  Web of Science CrossRef CAS Google Scholar
First citationOtero, M., Herranz, M. A., Seoane, C., Martín, N., Garín, J., Orduna, J., Alcalá, R. & Villacampa, B. (2002). Tetrahedron, 58, 7463–7475.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeir, C. A. M., Hadizad, T., Beaudin, A. M. R. & Wang, Z.-Y. (2003). Tetrahedron Lett. 44, 4697–4700.  Web of Science CrossRef CAS Google Scholar
First citationYang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth Des. 7, 83–86.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages o950-o951
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds