organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1038

Imidazolium 3-nitro­benzoate

aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: hougy@tju.edu.cn

(Received 24 March 2009; accepted 7 April 2009; online 18 April 2009)

In the title compound, C3H5N2+·C7H4NO4, the benzene ring forms a dihedral angle of 40.60 (5)° with the imidizolium ring. The nitro­benzoate anion is approximately planar: the benzene ring makes dihedral angles of 3.8 (3) and 3.2 (1)° with the nitro and carboxyl­ate groups, respectively. In the crystal structure, the cations and anions are linked by inter­molecular N—H⋯O hydrogen bonds, forming a zigzag chain along the b axis.

Related literature

For general background to the physical and biological properties of imidazoles, see: Bunnage & Owen (2008[Bunnage, M. E. & Owen, D. R. (2008). Curr. Opin. Drug Discov. Dev. 11, 480-486.]); Ganellin & Fkyerat (1996[Ganellin, C. R. & Fkyerat, A. (1996). J. Med. Chem. 39, 3806-3813.]); Weinreb (2007[Weinreb, S. M. (2007). Nat. Prod. Rep. 24, 931-948.]). For related structures of salts of imidazole with carboxylic acid derivatives, see: Mcdonald & Dorrestein (2001[Mcdonald, J. C. & Dorrestein, P. C. (2001). Cryst. Growth Des. 1, 29-38.]).

[Scheme 1]

Experimental

Crystal data
  • C3H5N2+·C7H4NO4

  • Mr = 235.20

  • Monoclinic, P 21 /c

  • a = 12.209 (2) Å

  • b = 12.081 (2) Å

  • c = 7.3216 (15) Å

  • β = 106.38 (3)°

  • V = 1036.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.38 × 0.21 × 0.13 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.956, Tmax = 0.984

  • 10057 measured reflections

  • 2369 independent reflections

  • 1571 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.108

  • S = 1.02

  • 2369 reflections

  • 163 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O2 0.99 (2) 1.66 (2) 2.6502 (18) 177 (2)
N2—H2⋯O1i 0.94 (2) 1.74 (2) 2.677 (2) 175 (2)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). RAPID-AUTO and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). RAPID-AUTO and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Imidazole is a commonly utilized substructure within the pharmaceutical industry, as the imidazole ring impart unique physical and biological properties to compounds of interest (Weinreb, 2007; Bunnage & Owen, 2008; Ganellin & Fkyerat, 1996). Synthetic imidazoles are always present in many fungicides and antifungal antiprotozoal, and antihypertensive medications. The crystal structures of salts between nitrobenzoic acids and imidazoles have been analyzed (Mcdonald & Dorrestein, 2001). As an extension study of hydrogen bonding pattern of nitrobenzoic acids and imidazoles herein we report the crystal structure of the title compound, (I).

The structure of the crystal is shown in Fig. 1. The asymmetric unit of the title compund contains one 3-nitrobenzote anion and one imidazolium cation. A proton transfer from the carboxyl group of 3-nitrobenzoic acid to atom N3 of imidazole. The corresponding C8—N3—C9 angle of the imidazole ring is 108.11 (15)°. The dihedral angle between the benzene ring of 3-nitrobenzote and imidazole ring is 40.60 (5)°. And the dihedral angles of the benzene with the nitro and carboxyl groups are 3.8 (3) and 3.2 (1)°, respectively. In the crystal structure, the crystal packing is consolidated by N—H···O intermolecular hydrogen bond.

Related literature top

For general background to the physical and biological

properties of imidazoles, see: Bunnage & Owen (2008); Ganellin & Fkyerat (1996); Weinreb (2007). For related structures of salts of imidazole with carboxylic acid derivatives, see: Mcdonald & Dorrestein (2001).

Experimental top

3-Nitrobenzoic acid and imidazole were mixed in water in a 1:1 molar ratio, then the suspension was heated to 343 K. The clear colourless solution obtained was cooled naturally to room temperature. Colourless crystals were obtained. Then the product was taken out from the solvent by tweezers, and dried in the air at room temperature.

Refinement top

N-bound H atoms were located in a difference Fourier map and refined freely. Other H atoms are placed in calculated positions (C–H = 0.93 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku/MSC, 2004); cell refinement: RAPID-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Dashed lines show N—H···O hydrogen bonds.
Imidazolium 3-nitrobenzoate top
Crystal data top
C3H5N2+·C7H4NO4F(000) = 488
Mr = 235.20Dx = 1.508 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6213 reflections
a = 12.209 (2) Åθ = 3.4–27.5°
b = 12.081 (2) ŵ = 0.12 mm1
c = 7.3216 (15) ÅT = 298 K
β = 106.38 (3)°Block, colourless
V = 1036.1 (3) Å30.38 × 0.21 × 0.13 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
2369 independent reflections
Radiation source: rotating anode1571 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1514
Tmin = 0.956, Tmax = 0.984k = 1515
10057 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.1735P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2369 reflectionsΔρmax = 0.20 e Å3
163 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (3)
Crystal data top
C3H5N2+·C7H4NO4V = 1036.1 (3) Å3
Mr = 235.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.209 (2) ŵ = 0.12 mm1
b = 12.081 (2) ÅT = 298 K
c = 7.3216 (15) Å0.38 × 0.21 × 0.13 mm
β = 106.38 (3)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
2369 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1571 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.984Rint = 0.051
10057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.20 e Å3
2369 reflectionsΔρmin = 0.17 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.25763 (13)0.52628 (15)0.1825 (3)0.0382 (4)
C20.35926 (13)0.45955 (14)0.1673 (2)0.0337 (4)
C30.34637 (15)0.36098 (15)0.0674 (3)0.0409 (4)
H3A0.27330.33480.00820.049*
C40.44008 (17)0.30055 (16)0.0538 (3)0.0470 (5)
H4A0.42940.23450.01420.056*
C50.54890 (16)0.33750 (16)0.1401 (3)0.0463 (5)
H5A0.61250.29710.13320.056*
C60.56048 (14)0.43670 (15)0.2374 (2)0.0373 (4)
C70.46907 (13)0.49843 (14)0.2524 (2)0.0352 (4)
H7A0.48040.56520.31830.042*
C80.05956 (14)0.80035 (16)0.3479 (3)0.0417 (4)
H80.10480.86240.34900.050*
C90.00096 (16)0.63117 (17)0.3339 (3)0.0509 (5)
H90.00090.55450.32270.061*
C100.08242 (16)0.69552 (17)0.3607 (3)0.0485 (5)
H100.15280.67210.37190.058*
N10.67578 (12)0.48134 (15)0.3229 (2)0.0460 (4)
H10.160 (2)0.670 (2)0.304 (3)0.084 (8)*
H20.0847 (18)0.865 (2)0.384 (3)0.066 (6)*
N20.04454 (13)0.80152 (14)0.3686 (2)0.0432 (4)
N30.08885 (12)0.69827 (13)0.3259 (2)0.0423 (4)
O10.16009 (9)0.48714 (11)0.1101 (2)0.0507 (4)
O20.27753 (10)0.61707 (11)0.2665 (2)0.0510 (4)
O30.68555 (10)0.56865 (13)0.4101 (2)0.0574 (4)
O40.75732 (11)0.42975 (14)0.3012 (2)0.0721 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0339 (8)0.0330 (10)0.0495 (11)0.0009 (7)0.0148 (8)0.0051 (8)
C20.0350 (8)0.0296 (9)0.0380 (9)0.0006 (7)0.0129 (7)0.0043 (7)
C30.0442 (9)0.0352 (10)0.0444 (10)0.0038 (8)0.0143 (8)0.0009 (8)
C40.0624 (12)0.0311 (10)0.0527 (11)0.0026 (8)0.0246 (10)0.0023 (9)
C50.0506 (11)0.0402 (11)0.0548 (12)0.0155 (8)0.0256 (9)0.0076 (9)
C60.0340 (8)0.0392 (10)0.0406 (10)0.0064 (7)0.0139 (7)0.0082 (8)
C70.0363 (8)0.0310 (9)0.0411 (9)0.0023 (7)0.0157 (8)0.0010 (7)
N10.0340 (8)0.0561 (11)0.0499 (10)0.0087 (7)0.0152 (7)0.0108 (8)
O10.0309 (6)0.0412 (8)0.0769 (10)0.0044 (5)0.0100 (6)0.0008 (7)
O20.0354 (6)0.0370 (8)0.0836 (10)0.0003 (5)0.0215 (7)0.0128 (7)
O30.0398 (7)0.0578 (10)0.0742 (10)0.0063 (6)0.0154 (7)0.0032 (8)
O40.0378 (7)0.0952 (14)0.0870 (12)0.0218 (8)0.0234 (8)0.0012 (10)
C80.0346 (9)0.0400 (11)0.0514 (11)0.0031 (7)0.0137 (8)0.0015 (9)
C90.0518 (11)0.0373 (11)0.0667 (13)0.0075 (9)0.0221 (10)0.0067 (10)
C100.0375 (9)0.0534 (13)0.0583 (12)0.0082 (8)0.0194 (9)0.0060 (10)
N20.0373 (8)0.0435 (10)0.0500 (9)0.0054 (7)0.0144 (7)0.0031 (7)
N30.0352 (8)0.0413 (9)0.0523 (9)0.0039 (7)0.0153 (7)0.0048 (7)
Geometric parameters (Å, º) top
C8—N31.307 (2)C2—C31.383 (2)
C8—N21.322 (2)C2—C71.391 (2)
C8—H80.9300C3—C41.384 (3)
C9—C101.339 (3)C3—H3A0.9300
C9—N31.359 (2)C4—C51.375 (3)
C9—H90.9300C4—H4A0.9300
C10—N21.357 (2)C5—C61.381 (2)
C10—H100.9300C5—H5A0.9300
N2—H20.94 (2)C6—C71.372 (2)
N3—H10.99 (2)C6—N11.472 (2)
C1—O21.247 (2)C7—H7A0.9300
C1—O11.252 (2)N1—O31.221 (2)
C1—C21.510 (2)N1—O41.2223 (19)
N3—C8—N2109.25 (16)C7—C2—C1119.68 (15)
N3—C8—H8125.4C2—C3—C4121.27 (17)
N2—C8—H8125.4C2—C3—H3A119.4
C10—C9—N3107.59 (17)C4—C3—H3A119.4
C10—C9—H9126.2C5—C4—C3120.45 (18)
N3—C9—H9126.2C5—C4—H4A119.8
C9—C10—N2106.85 (16)C3—C4—H4A119.8
C9—C10—H10126.6C4—C5—C6117.64 (16)
N2—C10—H10126.6C4—C5—H5A121.2
C8—N2—C10108.20 (16)C6—C5—H5A121.2
C8—N2—H2125.1 (14)C7—C6—C5123.07 (17)
C10—N2—H2126.7 (14)C7—C6—N1117.95 (16)
C8—N3—C9108.11 (15)C5—C6—N1118.93 (15)
C8—N3—H1128.8 (14)C6—C7—C2118.93 (16)
C9—N3—H1123.1 (14)C6—C7—H7A120.5
O2—C1—O1124.82 (16)C2—C7—H7A120.5
O2—C1—C2117.12 (14)O3—N1—O4123.05 (17)
O1—C1—C2118.06 (16)O3—N1—C6118.65 (14)
C3—C2—C7118.62 (15)O4—N1—C6118.29 (17)
C3—C2—C1121.69 (15)
N3—C9—C10—N20.1 (2)C3—C4—C5—C60.8 (3)
N3—C8—N2—C100.5 (2)C4—C5—C6—C70.5 (3)
C9—C10—N2—C80.4 (2)C4—C5—C6—N1176.88 (16)
N2—C8—N3—C90.4 (2)C5—C6—C7—C20.5 (3)
C10—C9—N3—C80.2 (2)N1—C6—C7—C2177.96 (14)
O2—C1—C2—C3176.11 (16)C3—C2—C7—C61.3 (2)
O1—C1—C2—C33.7 (3)C1—C2—C7—C6179.92 (15)
O2—C1—C2—C72.6 (2)C7—C6—N1—O33.0 (2)
O1—C1—C2—C7177.59 (16)C5—C6—N1—O3179.45 (16)
C7—C2—C3—C41.0 (3)C7—C6—N1—O4176.07 (16)
C1—C2—C3—C4179.79 (16)C5—C6—N1—O41.5 (2)
C2—C3—C4—C50.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O20.99 (2)1.66 (2)2.6502 (18)177 (2)
N2—H2···O1i0.94 (2)1.74 (2)2.677 (2)175 (2)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC3H5N2+·C7H4NO4
Mr235.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.209 (2), 12.081 (2), 7.3216 (15)
β (°) 106.38 (3)
V3)1036.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.38 × 0.21 × 0.13
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.956, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
10057, 2369, 1571
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 1.02
No. of reflections2369
No. of parameters163
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: RAPID-AUTO (Rigaku/MSC, 2004), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O20.99 (2)1.66 (2)2.6502 (18)177 (2)
N2—H2···O1i0.94 (2)1.74 (2)2.677 (2)175 (2)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the SRCICT of Tianjin University.

References

First citationBunnage, M. E. & Owen, D. R. (2008). Curr. Opin. Drug Discov. Dev. 11, 480–486.  CAS Google Scholar
First citationGanellin, C. R. & Fkyerat, A. (1996). J. Med. Chem. 39, 3806–3813.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMcdonald, J. C. & Dorrestein, P. C. (2001). Cryst. Growth Des. 1, 29–38.  Google Scholar
First citationRigaku/MSC (2004). RAPID-AUTO and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeinreb, S. M. (2007). Nat. Prod. Rep. 24, 931–948.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Page o1038
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds