metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m491-m492

2-[3-(2-Pyrid­yl)pyrazin-2-yl]pyridinium tetra­chloridoaurate(III)

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Shahid Beheshti University, GC, Evin, Tehran 1983963113, Iran, and cChemistry Department, Loughborough University, Loughborough Leics LE11 3TU, England
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 30 March 2009; accepted 1 April 2009; online 8 April 2009)

In the anion of the title compound, (C14H11N4)[AuCl4], the AuIII atom has an almost perfect square-planar coordination. In the crystal structure, an intra­molecular N—H⋯N and intermolecular C—H⋯Cl hydrogen bonds are observed. In addition, there is also a ring–metal inter­action between the pyrazine ring and the AuIII atom; the distance between the centroid of the pyrazine ring and the AuIII atom is 3.628 (2) Å.

Related literature

For proton-transfer systems involving [AuCl4], see: Calleja et al. (2001[Calleja, M., Johnson, K., Belcher, W. J. & Steed, W. (2001). Inorg. Chem. 40, 4978-4985.]); Hasan et al. (1999[Hasan, M., Kozhevnikov, I. V., Siddiqu, M. R. H., Steiner, A. & Winterton, N. (1999). Inorg. Chem. 38, 5637-5641.]); Hojjat Kashani et al. (2008[Hojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840-m841.]); Johnson & Steed (1998[Johnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479-1480.]); Safari et al. (2009[Safari, N., Amani, V., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m344.]); Yap et al. (1995[Yap, G. P. A., Rheingold, A. R., Das, P. & Crabtree, R. H. (1995). Inorg. Chem. 34, 3474-3476.]); Zhang et al. (2006[Zhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018-m2020.]).

[Scheme 1]

Experimental

Crystal data
  • (C14H11N4)[AuCl4]

  • Mr = 574.04

  • Monoclinic, P 21 /n

  • a = 7.4098 (6) Å

  • b = 15.5188 (13) Å

  • c = 14.6197 (12) Å

  • β = 90.380 (1)°

  • V = 1681.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.39 mm−1

  • T = 150 K

  • 0.19 × 0.14 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.238, Tmax = 0.430

  • 19688 measured reflections

  • 5261 independent reflections

  • 4363 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.052

  • S = 0.98

  • 5261 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au1—Cl1 2.2801 (8)
Au1—Cl2 2.2725 (8)
Au1—Cl3 2.2818 (8)
Au1—Cl4 2.2805 (8)
Cl3—Au1—Cl4 89.48 (3)
Cl1—Au1—Cl4 90.52 (3)
Cl1—Au1—Cl2 90.14 (3)
Cl1—Au1—Cl3 178.97 (3)
Cl2—Au1—Cl3 89.87 (3)
Cl2—Au1—Cl4 179.25 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N4 0.86 1.71 2.540 (3) 160
C9—H9⋯Cl3 0.93 2.81 3.699 (3) 161
C11—H11⋯Cl4i 0.93 2.83 3.497 (3) 130
Symmetry code: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

There are several proton transfer systems using HAuCl4 with proton acceptor molecules, such as [EMI][AuCl4] and [BMI]2[AuCl4].2H2O (Hasan et al., 1999), [H2bipy][AuCl4][Cl] (Zhang et al., 2006), [H7O3][15-crown-5][AuCl4] and [H5O2][benzo-15-crown-5]2[AuCl4] (Johnson & Steed, 1998), [H5O2]2[12-crown-4]2[AuCl4]2, [H3O][18-crown-6][AuCl4] and [H3O][4-nitrobenzo-18-crown-6][AuCl4] (Calleja et al., 2001), [DPpy.H][AuCl4] (Yap et al., 1995), [H2DA18C6][AuCl4].2H2O (Hojjat Kashani et al., 2008) and [dafonium][dafone][AuCl4] (Safari et al., 2009), where EMI is 1-ethyl-3-methylimidazolium, BMI is 1-butyl-3-methylimidazolium, H2bipy is 2, 2'-bipyridinium, DPpy.H is 2,6-diphenylpyridinium, H2DA18C6 is 1,10-diazonia-18-crown-6, dafonium is 9-oxo-4,5-diazafluoren-4-ium and dafone is 4,5-diazafluoren-9-one, have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound.

In the anion of the title compound (Fig. 1), the AuIII ion has a square-planar coordination. In the anion, the Au—Cl bond lengths and angles (Table 1) are within normal ranges.

In the crystal structure, inter- and intramolecular C—H···Cl hydrogen bonding interactions (Table 2) link the molecules. Furthermore, it is also observed a ring-metal interaction between the centroid of the pyrazine ring (N1/N2/C1–C4) and the atom Au1 (5/2 - x, -1/2 + y, 1/2 - z) with a distance of 3.628 (2) Å. The packing and the hydrogen bonding interactions of (I) down the a, b and c-axes are given in Figures 2, 3 and 4, respectively.

Related literature top

For proton-transfer systems involving [AuCl4], see: Calleja et al. (2001); Hasan et al. (1999); Hojjat Kashani et al. (2008); Johnson & Steed (1998); Safari et al. (2009); Yap et al. (1995); Zhang et al. (2006).

Experimental top

For the preparation of the title compound, a solution of 2,3-bis(2-pyridyl)pyrazine (0.13 g, 0.55 mmol) in acetonitrile (10 ml) was added to a solution of HAuCl4.3H2O, (0.21 g, 0.55 mmol) in ethanol (5 ml) and the resulting yellow solution was stirred for 15 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, yellow block crystals of the title compound were isolated (yield 0.23 g, 72.8%; m.p. 419 K).

Refinement top

All H atoms were found in a difference Fourier map. H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C or N). The highest residual peak is located 0.79 Å from atom Au1 and the deepest hole is located 1.55 Å from atom Au1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding interactions of the title compound, viewed down a-axis.
[Figure 3] Fig. 3. The packing and hydrogen bonding interactions of the title compound, viewed down b-axis.
[Figure 4] Fig. 4. The packing and hydrogen bonding interactions of the title compound, viewed down c-axis.
2-[3-(2-Pyridyl)pyrazin-2-yl]pyridinium tetrachloridoaurate(III) top
Crystal data top
(C14H11N4)[AuCl4]F(000) = 1080
Mr = 574.04Dx = 2.268 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6388 reflections
a = 7.4098 (6) Åθ = 2.6–30.4°
b = 15.5188 (13) ŵ = 9.39 mm1
c = 14.6197 (12) ÅT = 150 K
β = 90.380 (1)°Block, yellow
V = 1681.1 (2) Å30.19 × 0.14 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5261 independent reflections
Radiation source: sealed tube4363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 31.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.238, Tmax = 0.430k = 2221
19688 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.025P)2],
where P = (Fo2 + 2Fc2)/3
5261 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
(C14H11N4)[AuCl4]V = 1681.1 (2) Å3
Mr = 574.04Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4098 (6) ŵ = 9.39 mm1
b = 15.5188 (13) ÅT = 150 K
c = 14.6197 (12) Å0.19 × 0.14 × 0.09 mm
β = 90.380 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5261 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4363 reflections with I > 2σ(I)
Tmin = 0.238, Tmax = 0.430Rint = 0.034
19688 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 0.98Δρmax = 1.19 e Å3
5261 reflectionsΔρmin = 0.59 e Å3
208 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.1698 (4)0.52205 (18)0.12698 (19)0.0357 (8)
N21.1649 (4)0.54680 (16)0.3126 (2)0.0360 (9)
N31.0216 (3)0.30683 (16)0.16412 (16)0.0294 (8)
N41.0255 (3)0.32719 (16)0.33648 (16)0.0282 (7)
C11.2037 (5)0.5982 (2)0.1627 (3)0.0409 (11)
C21.1997 (5)0.6103 (2)0.2554 (3)0.0431 (13)
C31.1299 (4)0.4683 (2)0.2781 (2)0.0296 (9)
C41.1307 (4)0.45514 (18)0.1822 (2)0.0268 (8)
C51.0952 (4)0.37680 (19)0.1264 (2)0.0260 (8)
C61.1306 (4)0.3760 (2)0.0328 (2)0.0334 (9)
C71.0901 (4)0.3036 (2)0.0181 (2)0.0392 (10)
C81.0152 (4)0.2326 (2)0.0230 (2)0.0374 (10)
C90.9807 (4)0.2366 (2)0.1154 (2)0.0334 (9)
C101.0970 (4)0.40505 (19)0.3547 (2)0.0280 (8)
C111.1365 (4)0.4282 (2)0.4450 (2)0.0330 (10)
C121.0989 (4)0.3714 (2)0.5152 (2)0.0361 (10)
C131.0247 (4)0.2920 (2)0.4954 (2)0.0355 (10)
C140.9907 (4)0.2725 (2)0.4046 (2)0.0332 (9)
Au10.88109 (1)0.05497 (1)0.26548 (1)0.0239 (1)
Cl10.97121 (13)0.19452 (5)0.24868 (6)0.0427 (3)
Cl20.86854 (13)0.07321 (6)0.41954 (5)0.0401 (3)
Cl30.78564 (11)0.08392 (5)0.28205 (5)0.0346 (2)
Cl40.89453 (13)0.03479 (6)0.11117 (5)0.0418 (3)
H11.230800.644300.124500.0490*
H21.222200.665000.278800.0520*
H30.999800.307000.221800.0350*
H61.181100.424000.004800.0400*
H71.113700.302800.080500.0470*
H80.988500.183300.010600.0450*
H90.928000.189600.144300.0400*
H111.187900.481600.457800.0400*
H121.123500.386700.575500.0430*
H130.998400.252800.541600.0430*
H140.941400.219000.390400.0400*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0365 (15)0.0331 (14)0.0375 (15)0.0023 (12)0.0026 (12)0.0081 (12)
N20.0393 (15)0.0238 (14)0.0446 (17)0.0003 (11)0.0106 (13)0.0026 (11)
N30.0322 (13)0.0321 (14)0.0240 (12)0.0022 (11)0.0001 (10)0.0000 (10)
N40.0301 (13)0.0277 (13)0.0268 (12)0.0001 (10)0.0003 (10)0.0021 (10)
C10.0405 (19)0.0322 (18)0.050 (2)0.0046 (15)0.0005 (16)0.0094 (15)
C20.0360 (18)0.0280 (17)0.065 (3)0.0023 (14)0.0124 (17)0.0007 (16)
C30.0251 (14)0.0253 (14)0.0384 (18)0.0014 (11)0.0038 (12)0.0010 (13)
C40.0231 (14)0.0268 (15)0.0304 (15)0.0001 (11)0.0011 (11)0.0020 (12)
C50.0232 (13)0.0288 (15)0.0260 (14)0.0025 (11)0.0014 (11)0.0032 (12)
C60.0336 (16)0.0368 (17)0.0299 (16)0.0024 (13)0.0043 (13)0.0030 (13)
C70.0327 (17)0.055 (2)0.0298 (16)0.0009 (15)0.0047 (13)0.0038 (15)
C80.0367 (17)0.0423 (19)0.0333 (17)0.0008 (15)0.0012 (13)0.0121 (14)
C90.0399 (17)0.0312 (16)0.0289 (15)0.0063 (13)0.0030 (13)0.0006 (12)
C100.0272 (14)0.0268 (15)0.0300 (15)0.0050 (12)0.0001 (12)0.0030 (12)
C110.0303 (16)0.0327 (17)0.0359 (17)0.0044 (12)0.0045 (13)0.0061 (13)
C120.0411 (18)0.0435 (19)0.0236 (15)0.0077 (15)0.0049 (13)0.0024 (13)
C130.0385 (17)0.0395 (18)0.0286 (16)0.0011 (14)0.0004 (13)0.0044 (14)
C140.0368 (17)0.0331 (16)0.0296 (16)0.0038 (13)0.0032 (13)0.0025 (13)
Au10.0246 (1)0.0239 (1)0.0232 (1)0.0008 (1)0.0003 (1)0.0022 (1)
Cl10.0579 (5)0.0295 (4)0.0407 (4)0.0118 (4)0.0047 (4)0.0055 (3)
Cl20.0549 (5)0.0410 (4)0.0245 (4)0.0015 (4)0.0016 (3)0.0010 (3)
Cl30.0420 (4)0.0243 (3)0.0376 (4)0.0005 (3)0.0064 (3)0.0020 (3)
Cl40.0535 (5)0.0485 (5)0.0235 (4)0.0127 (4)0.0017 (3)0.0010 (3)
Geometric parameters (Å, º) top
Au1—Cl12.2801 (8)C6—C71.380 (4)
Au1—Cl22.2725 (8)C7—C81.374 (4)
Au1—Cl32.2818 (8)C8—C91.378 (4)
Au1—Cl42.2805 (8)C10—C111.397 (4)
N1—C41.348 (4)C11—C121.383 (4)
N1—C11.316 (4)C12—C131.379 (4)
N2—C21.319 (5)C13—C141.383 (4)
N2—C31.343 (4)C1—H10.9300
N3—C91.336 (4)C2—H20.9300
N3—C51.336 (4)C6—H60.9300
N4—C141.335 (4)C7—H70.9300
N4—C101.345 (4)C8—H80.9300
N3—H30.8600C9—H90.9300
C1—C21.369 (6)C11—H110.9300
C3—C101.510 (4)C12—H120.9300
C3—C41.417 (4)C13—H130.9300
C4—C51.487 (4)C14—H140.9300
C5—C61.395 (4)
Cl1···Cl43.2394 (12)C10···N33.222 (4)
Cl1···C2i3.471 (3)C11···Cl4xiv3.497 (3)
Cl1···Cl23.2230 (12)C11···C11ix3.419 (4)
Cl2···Cl33.2167 (12)C11···Cl4xii3.622 (3)
Cl2···Cl13.2230 (12)C12···N2ix3.440 (4)
Cl2···N1ii3.472 (3)C12···C8xiv3.483 (4)
Cl2···C5iii3.582 (3)C12···C9xiv3.592 (4)
Cl3···Cl23.2167 (12)C12···Cl4xiv3.627 (3)
Cl3···Cl43.2113 (11)C13···C7ii3.550 (4)
Cl4···Cl13.2394 (12)C14···C7ii3.395 (4)
Cl4···C11iv3.622 (3)C1···H7x3.0500
Cl4···C12v3.627 (3)C3···H32.8000
Cl4···C11v3.497 (3)C7···H1x2.9500
Cl4···Cl33.2113 (11)C7···H14viii2.9600
Cl1···H2i2.9000C9···H2iv2.9000
Cl1···H7vi3.0400C10···H32.5700
Cl2···H6ii2.9800C12···H8xiv3.0400
Cl2···H13vii3.0100C14···H32.7300
Cl3···H7ii2.9600C14···H1iv2.9000
Cl3···H142.8700C14···H7ii3.0400
Cl3···H92.8100H1···C14xii2.9000
Cl4···H8vi2.8700H1···C7x2.9500
Cl4···H12v3.0900H2···C9xii2.9000
Cl4···H11v2.8300H2···Cl1xi2.9000
N1···N22.741 (4)H3···C32.8000
N1···Cl2viii3.472 (3)H3···C102.5700
N2···C12ix3.440 (4)H3···N41.7100
N2···N12.741 (4)H3···C142.7300
N3···C103.222 (4)H6···N12.3500
N3···N42.540 (3)H6···Cl2viii2.9800
N4···N32.540 (3)H7···Cl1vi3.0400
N4···C53.212 (4)H7···C1x3.0500
N1···H62.3500H7···Cl3viii2.9600
N2···H112.3600H7···C14viii3.0400
N2···H12ix2.8900H7···H14viii2.4900
N4···H31.7100H8···Cl4vi2.8700
C1···C7x3.387 (5)H8···C12v3.0400
C2···Cl1xi3.471 (3)H9···Cl32.8100
C2···C9xii3.600 (5)H11···N22.3600
C5···N43.212 (4)H11···Cl4xiv2.8300
C5···Cl2xiii3.582 (3)H12···Cl4xiv3.0900
C7···C14viii3.395 (4)H12···N2ix2.8900
C7···C1x3.387 (5)H13···Cl2vii3.0100
C7···C13viii3.550 (4)H14···H7ii2.4900
C8···C12v3.483 (4)H14···Cl32.8700
C9···C2iv3.600 (5)H14···C7ii2.9600
C9···C12v3.592 (4)
Cl3—Au1—Cl489.48 (3)C3—C10—C11120.0 (3)
Cl1—Au1—Cl490.52 (3)N4—C10—C3120.2 (3)
Cl1—Au1—Cl290.14 (3)N4—C10—C11119.9 (3)
Cl1—Au1—Cl3178.97 (3)C10—C11—C12119.7 (3)
Cl2—Au1—Cl389.87 (3)C11—C12—C13119.7 (3)
Cl2—Au1—Cl4179.25 (3)C12—C13—C14117.8 (3)
C1—N1—C4119.7 (3)N4—C14—C13122.8 (3)
C2—N2—C3118.5 (3)N1—C1—H1120.00
C5—N3—C9122.3 (3)C2—C1—H1120.00
C10—N4—C14120.1 (2)C1—C2—H2119.00
C9—N3—H3119.00N2—C2—H2119.00
C5—N3—H3119.00C5—C6—H6120.00
N1—C1—C2120.7 (3)C7—C6—H6120.00
N2—C2—C1122.1 (3)C6—C7—H7120.00
C4—C3—C10129.9 (3)C8—C7—H7120.00
N2—C3—C4120.0 (3)C9—C8—H8121.00
N2—C3—C10110.1 (3)C7—C8—H8121.00
N1—C4—C5109.8 (3)N3—C9—H9119.00
N1—C4—C3118.9 (3)C8—C9—H9119.00
C3—C4—C5131.2 (3)C10—C11—H11120.00
C4—C5—C6120.8 (3)C12—C11—H11120.00
N3—C5—C6118.5 (3)C13—C12—H12120.00
N3—C5—C4120.6 (3)C11—C12—H12120.00
C5—C6—C7119.7 (3)C12—C13—H13121.00
C6—C7—C8120.3 (3)C14—C13—H13121.00
C7—C8—C9118.1 (3)C13—C14—H14119.00
N3—C9—C8121.1 (3)N4—C14—H14119.00
C4—N1—C1—C20.0 (5)N2—C3—C10—C1111.3 (4)
C1—N1—C4—C31.0 (5)C4—C3—C10—N414.0 (5)
C1—N1—C4—C5179.2 (3)C4—C3—C10—C11167.7 (3)
C3—N2—C2—C11.0 (5)N1—C4—C5—N3167.6 (3)
C2—N2—C3—C40.1 (5)N1—C4—C5—C69.6 (4)
C2—N2—C3—C10179.1 (3)C3—C4—C5—N312.7 (5)
C9—N3—C5—C4177.1 (3)C3—C4—C5—C6170.2 (3)
C9—N3—C5—C60.1 (4)N3—C5—C6—C70.3 (4)
C5—N3—C9—C80.9 (4)C4—C5—C6—C7177.6 (3)
C14—N4—C10—C3177.7 (3)C5—C6—C7—C80.0 (4)
C14—N4—C10—C110.7 (4)C6—C7—C8—C90.7 (4)
C10—N4—C14—C130.1 (4)C7—C8—C9—N31.1 (4)
N1—C1—C2—N21.1 (6)N4—C10—C11—C121.1 (4)
N2—C3—C4—N11.1 (4)C3—C10—C11—C12177.3 (3)
N2—C3—C4—C5179.2 (3)C10—C11—C12—C130.8 (4)
C10—C3—C4—N1177.9 (3)C11—C12—C13—C140.0 (4)
C10—C3—C4—C51.9 (5)C12—C13—C14—N40.5 (5)
N2—C3—C10—N4167.1 (3)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+5/2, y+1/2, z+1/2; (v) x1/2, y1/2, z1/2; (vi) x+2, y, z; (vii) x+2, y, z+1; (viii) x+1/2, y1/2, z1/2; (ix) x+2, y1, z+1; (x) x+2, y1, z; (xi) x, y1, z; (xii) x+5/2, y1/2, z+1/2; (xiii) x+3/2, y1/2, z+1/2; (xiv) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N40.861.712.540 (3)160
C6—H6···N10.932.352.667 (4)100
C9—H9···Cl30.932.813.699 (3)161
C11—H11···N20.932.362.680 (4)100
C11—H11···Cl4xiv0.932.833.497 (3)130
Symmetry code: (xiv) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C14H11N4)[AuCl4]
Mr574.04
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)7.4098 (6), 15.5188 (13), 14.6197 (12)
β (°) 90.380 (1)
V3)1681.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)9.39
Crystal size (mm)0.19 × 0.14 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.238, 0.430
No. of measured, independent and
observed [I > 2σ(I)] reflections
19688, 5261, 4363
Rint0.034
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.052, 0.98
No. of reflections5261
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 0.59

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Au1—Cl12.2801 (8)Au1—Cl32.2818 (8)
Au1—Cl22.2725 (8)Au1—Cl42.2805 (8)
Cl3—Au1—Cl489.48 (3)Cl1—Au1—Cl3178.97 (3)
Cl1—Au1—Cl490.52 (3)Cl2—Au1—Cl389.87 (3)
Cl1—Au1—Cl290.14 (3)Cl2—Au1—Cl4179.25 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N40.861.712.540 (3)160
C9—H9···Cl30.932.813.699 (3)161
C11—H11···Cl4i0.932.833.497 (3)130
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

NS and VA are grateful to Shahid Beheshti University for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalleja, M., Johnson, K., Belcher, W. J. & Steed, W. (2001). Inorg. Chem. 40, 4978–4985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHasan, M., Kozhevnikov, I. V., Siddiqu, M. R. H., Steiner, A. & Winterton, N. (1999). Inorg. Chem. 38, 5637–5641.  Web of Science CSD CrossRef CAS Google Scholar
First citationHojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840–m841.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479–1480.  Web of Science CSD CrossRef Google Scholar
First citationSafari, N., Amani, V., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYap, G. P. A., Rheingold, A. R., Das, P. & Crabtree, R. H. (1995). Inorg. Chem. 34, 3474–3476.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018–m2020.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m491-m492
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds