organic compounds
3-{1-[(2,4-Dinitrophenyl)hydrazino]ethylidene}-5-(1-methylpropyl)pyrrolidine-2,4-dione
aBundesanstalt für Materialforschung und -prüfung, Abteilung Analytische Chemie; Referenzmaterialien, Richard-Willstätter-Strasse 11, D-12489 Berlin-Adlershof, Germany
*Correspondence e-mail: david.siegel@bam.de
In the title compound, C16H19N5O6, two intramolecular N—H⋯O hydrogen bonds help to establish the conformation. In the crystal, intermolecular N—H⋯O links result in chains propagating in [010].
Related literature
For the use of the title compound in instrumental analytical chemistry, see: Siegel et al. (2009). For the of the tenuazonic copper(II) salt, see: Dippenaar et al. (1977). For the structures of other 2,4-dinitrophenylhydrazones, see: Tameem et al. (2006); Monfared et al. (2007); Valente et al. (2008); Yin et al. (2008). Solubilized tetramic acids and their display a variety of tautomeric forms, see: Gelin et al. (1982); Nolte et al. (1980); Royles (1995); Yamaguchi et al. (1976a, 1976b). For the synthesis, see: Lebrun et al. (1988).
Experimental
Crystal data
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536809012458/kj2118sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809012458/kj2118Isup2.hkl
The tenuazonic acid natrium salt was supplied by the workgroup of Professor R. Faust (University of Kassel, Germany) by total synthesis from L-isoleucine according to a literature procedure (Lebrun et al., 1988). The title compound was synthesized by adding the tenuazonic acid natrium salt (1 eq.) to a 15 mM solution of 2,4-dinitrophenylhydrazine in 2 N HCl (2 eq.). After 30 minutes of shaking the precipitate was collected, washed with water, dissolved in ethyl acetate and dried with natrium sulfate. After evaporation of the solvent, a yellow powder was obtained, which was recrystallized from ethanol five times to obtain the title compound in analytical purity. For X-ray analysis yellow crystals of tenuazonic acid 2,4-dinitrophenylhydrazone were grown by solvent evaporation from ethanol at ambient temperature over a period of three weeks.
The hydrogen atoms were located in difference maps but positioned with idealized geometry and refined using the riding model, with N,C—H = 0.93–0.97 Å, and Uĩso~(H) = 1.2U~eq~(parent atom). Methyl groups (C14, C15, C16) were refined with Uĩso~(H) = 1.5U~eq~(parent atom).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C16H19N5O6 | F(000) = 396 |
Mr = 377.36 | Dx = 1.480 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2yb | Cell parameters from 25 reflections |
a = 10.671 (1) Å | θ = 60–69° |
b = 4.9387 (5) Å | µ = 0.98 mm−1 |
c = 16.839 (2) Å | T = 193 K |
β = 107.363 (4)° | Needles, yellow |
V = 846.98 (15) Å3 | 0.64 × 0.06 × 0.06 mm |
Z = 2 |
Enraf–Nonius CAD-4 diffractometer | 3103 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.025 |
Graphite monochromator | θmax = 73.6°, θmin = 2.8° |
ω/2θ scans | h = −13→13 |
Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971) | k = −5→6 |
Tmin = 0.78, Tmax = 0.94 | l = −20→20 |
3890 measured reflections | 3 standard reflections every 60 min |
3282 independent reflections | intensity decay: 2% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0778P)2 + 0.1634P] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max < 0.001 |
3282 reflections | Δρmax = 0.24 e Å−3 |
247 parameters | Δρmin = −0.21 e Å−3 |
1 restraint | Absolute structure: (Flack,1983) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.1 (2) |
C16H19N5O6 | V = 846.98 (15) Å3 |
Mr = 377.36 | Z = 2 |
Monoclinic, P21 | Cu Kα radiation |
a = 10.671 (1) Å | µ = 0.98 mm−1 |
b = 4.9387 (5) Å | T = 193 K |
c = 16.839 (2) Å | 0.64 × 0.06 × 0.06 mm |
β = 107.363 (4)° |
Enraf–Nonius CAD-4 diffractometer | 3103 reflections with I > 2σ(I) |
Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971) | Rint = 0.025 |
Tmin = 0.78, Tmax = 0.94 | 3 standard reflections every 60 min |
3890 measured reflections | intensity decay: 2% |
3282 independent reflections |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.111 | Δρmax = 0.24 e Å−3 |
S = 0.99 | Δρmin = −0.21 e Å−3 |
3282 reflections | Absolute structure: (Flack,1983) |
247 parameters | Absolute structure parameter: 0.1 (2) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.28853 (17) | 1.4445 (4) | 0.18665 (10) | 0.0394 (4) | |
O2 | 0.38017 (15) | 1.3663 (4) | 0.31656 (10) | 0.0373 (4) | |
O3 | −0.1297 (2) | 0.5644 (5) | 0.06973 (11) | 0.0559 (5) | |
O4 | −0.07342 (18) | 0.9300 (4) | 0.01932 (9) | 0.0444 (4) | |
O5 | 0.43857 (13) | 0.4033 (3) | 0.54411 (8) | 0.0277 (3) | |
O6 | 0.13063 (14) | 0.7678 (4) | 0.66874 (9) | 0.0348 (4) | |
N1 | 0.29520 (16) | 1.3174 (4) | 0.24909 (10) | 0.0267 (4) | |
N2 | −0.06562 (18) | 0.7738 (4) | 0.07614 (11) | 0.0339 (4) | |
N3 | 0.27686 (16) | 1.0106 (4) | 0.39501 (10) | 0.0280 (4) | |
H3N | 0.3538 | 1.1087 | 0.4007 | 0.034* | |
N4 | 0.29331 (16) | 0.8153 (4) | 0.45682 (10) | 0.0266 (4) | |
H4N | 0.3584 | 0.6959 | 0.4627 | 0.032* | |
N5 | 0.39181 (16) | 0.3303 (4) | 0.66688 (9) | 0.0262 (4) | |
H5N | 0.4542 | 0.2158 | 0.6856 | 0.031* | |
C1 | 0.20134 (18) | 1.0983 (4) | 0.24520 (12) | 0.0230 (4) | |
C2 | 0.11472 (18) | 1.0434 (4) | 0.16609 (11) | 0.0254 (4) | |
H2 | 0.1175 | 1.1462 | 0.1190 | 0.030* | |
C3 | 0.02556 (19) | 0.8361 (5) | 0.15868 (12) | 0.0265 (4) | |
C4 | 0.01923 (18) | 0.6831 (4) | 0.22646 (12) | 0.0271 (4) | |
H4 | −0.0428 | 0.5404 | 0.2195 | 0.032* | |
C5 | 0.10350 (19) | 0.7399 (4) | 0.30371 (12) | 0.0266 (4) | |
H5 | 0.0984 | 0.6356 | 0.3500 | 0.032* | |
C6 | 0.19821 (17) | 0.9503 (4) | 0.31639 (11) | 0.0240 (4) | |
C7 | 0.23382 (17) | 0.8356 (4) | 0.51605 (11) | 0.0231 (4) | |
C8 | 0.27239 (16) | 0.6612 (4) | 0.58383 (11) | 0.0221 (4) | |
C9 | 0.37640 (18) | 0.4572 (4) | 0.59406 (11) | 0.0212 (4) | |
C10 | 0.30819 (18) | 0.4349 (4) | 0.71460 (11) | 0.0242 (4) | |
H10 | 0.2515 | 0.2860 | 0.7250 | 0.029* | |
C11 | 0.22234 (17) | 0.6447 (4) | 0.65454 (11) | 0.0246 (4) | |
C12 | 0.38790 (18) | 0.5633 (4) | 0.79844 (11) | 0.0253 (4) | |
H12 | 0.4282 | 0.7347 | 0.7860 | 0.030* | |
C13 | 0.4990 (3) | 0.3758 (6) | 0.84642 (14) | 0.0444 (6) | |
H13A | 0.4600 | 0.2030 | 0.8572 | 0.053* | |
H13B | 0.5552 | 0.3350 | 0.8106 | 0.053* | |
C14 | 0.5849 (3) | 0.4865 (7) | 0.92845 (14) | 0.0501 (7) | |
H14A | 0.5337 | 0.4985 | 0.9680 | 0.075* | |
H14B | 0.6165 | 0.6671 | 0.9197 | 0.075* | |
H14C | 0.6599 | 0.3656 | 0.9508 | 0.075* | |
C15 | 0.2971 (2) | 0.6350 (9) | 0.84970 (15) | 0.0578 (9) | |
H15A | 0.3448 | 0.7459 | 0.8974 | 0.087* | |
H15B | 0.2664 | 0.4686 | 0.8696 | 0.087* | |
H15C | 0.2216 | 0.7368 | 0.8152 | 0.087* | |
C16 | 0.12597 (18) | 1.0397 (4) | 0.50566 (12) | 0.0278 (4) | |
H16A | 0.0503 | 0.9865 | 0.4589 | 0.042* | |
H16B | 0.1572 | 1.2181 | 0.4945 | 0.042* | |
H16C | 0.0999 | 1.0476 | 0.5567 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0475 (9) | 0.0367 (10) | 0.0360 (8) | −0.0111 (7) | 0.0159 (7) | 0.0053 (7) |
O2 | 0.0333 (7) | 0.0348 (9) | 0.0376 (7) | −0.0119 (7) | 0.0012 (6) | 0.0042 (7) |
O3 | 0.0587 (11) | 0.0619 (14) | 0.0401 (9) | −0.0337 (11) | 0.0039 (8) | −0.0078 (9) |
O4 | 0.0529 (9) | 0.0479 (11) | 0.0256 (7) | −0.0039 (9) | 0.0015 (6) | 0.0023 (8) |
O5 | 0.0263 (6) | 0.0311 (8) | 0.0265 (6) | 0.0058 (6) | 0.0092 (5) | −0.0005 (6) |
O6 | 0.0290 (7) | 0.0447 (10) | 0.0320 (7) | 0.0120 (7) | 0.0111 (5) | −0.0006 (7) |
N1 | 0.0266 (8) | 0.0226 (9) | 0.0316 (8) | −0.0008 (7) | 0.0099 (6) | 0.0016 (7) |
N2 | 0.0334 (9) | 0.0378 (12) | 0.0279 (8) | −0.0041 (8) | 0.0053 (7) | −0.0050 (8) |
N3 | 0.0256 (7) | 0.0300 (10) | 0.0246 (8) | −0.0046 (7) | 0.0020 (6) | 0.0053 (7) |
N4 | 0.0250 (7) | 0.0276 (9) | 0.0260 (8) | 0.0049 (7) | 0.0059 (6) | 0.0050 (7) |
N5 | 0.0311 (8) | 0.0242 (9) | 0.0226 (7) | 0.0071 (7) | 0.0073 (6) | 0.0004 (6) |
C1 | 0.0219 (8) | 0.0195 (10) | 0.0277 (9) | 0.0018 (7) | 0.0075 (7) | 0.0015 (7) |
C2 | 0.0262 (9) | 0.0244 (10) | 0.0257 (9) | 0.0029 (8) | 0.0082 (7) | 0.0012 (8) |
C3 | 0.0236 (8) | 0.0290 (11) | 0.0257 (9) | 0.0016 (8) | 0.0053 (7) | −0.0028 (8) |
C4 | 0.0239 (9) | 0.0249 (11) | 0.0336 (9) | −0.0028 (8) | 0.0104 (7) | −0.0028 (8) |
C5 | 0.0280 (9) | 0.0253 (11) | 0.0276 (9) | −0.0003 (8) | 0.0099 (7) | 0.0031 (8) |
C6 | 0.0210 (8) | 0.0254 (11) | 0.0254 (8) | 0.0021 (7) | 0.0064 (7) | −0.0011 (8) |
C7 | 0.0204 (8) | 0.0213 (9) | 0.0239 (8) | −0.0048 (7) | 0.0009 (6) | −0.0041 (7) |
C8 | 0.0200 (8) | 0.0209 (10) | 0.0228 (8) | 0.0004 (7) | 0.0025 (6) | −0.0032 (7) |
C9 | 0.0218 (8) | 0.0175 (10) | 0.0221 (8) | −0.0014 (7) | 0.0030 (6) | −0.0026 (7) |
C10 | 0.0254 (8) | 0.0240 (10) | 0.0237 (8) | −0.0011 (8) | 0.0083 (7) | −0.0014 (8) |
C11 | 0.0206 (8) | 0.0266 (11) | 0.0244 (8) | −0.0004 (8) | 0.0031 (6) | −0.0037 (8) |
C12 | 0.0274 (9) | 0.0266 (11) | 0.0209 (8) | 0.0008 (8) | 0.0056 (7) | −0.0016 (7) |
C13 | 0.0492 (13) | 0.0449 (16) | 0.0314 (10) | 0.0177 (12) | 0.0005 (9) | 0.0001 (10) |
C14 | 0.0420 (13) | 0.071 (2) | 0.0305 (11) | 0.0011 (13) | −0.0001 (9) | 0.0054 (12) |
C15 | 0.0391 (12) | 0.102 (3) | 0.0311 (11) | 0.0168 (15) | 0.0088 (9) | −0.0188 (14) |
C16 | 0.0229 (8) | 0.0242 (11) | 0.0330 (10) | 0.0017 (8) | 0.0032 (7) | 0.0003 (8) |
O1—N1 | 1.208 (2) | C5—H5 | 0.9500 |
O2—N1 | 1.248 (2) | C7—C8 | 1.391 (3) |
O3—N2 | 1.227 (3) | C7—C16 | 1.500 (3) |
O4—N2 | 1.212 (3) | C8—C11 | 1.445 (3) |
O5—C9 | 1.246 (2) | C8—C9 | 1.470 (3) |
O6—C11 | 1.235 (2) | C10—C11 | 1.544 (3) |
N1—C1 | 1.463 (3) | C10—C12 | 1.550 (2) |
N2—C3 | 1.472 (2) | C10—H10 | 1.0000 |
N3—C6 | 1.372 (2) | C12—C15 | 1.519 (3) |
N3—N4 | 1.391 (2) | C12—C13 | 1.531 (3) |
N3—H3N | 0.9328 | C12—H12 | 1.0000 |
N4—C7 | 1.336 (2) | C13—C14 | 1.514 (3) |
N4—H4N | 0.8942 | C13—H13A | 0.9900 |
N5—C9 | 1.343 (2) | C13—H13B | 0.9900 |
N5—C10 | 1.462 (2) | C14—H14A | 0.9800 |
N5—H5N | 0.8585 | C14—H14B | 0.9800 |
C1—C2 | 1.403 (3) | C14—H14C | 0.9800 |
C1—C6 | 1.413 (3) | C15—H15A | 0.9800 |
C2—C3 | 1.378 (3) | C15—H15B | 0.9800 |
C2—H2 | 0.9500 | C15—H15C | 0.9800 |
C3—C4 | 1.387 (3) | C16—H16A | 0.9800 |
C4—C5 | 1.372 (3) | C16—H16B | 0.9800 |
C4—H4 | 0.9500 | C16—H16C | 0.9800 |
C5—C6 | 1.421 (3) | ||
O1—N1—O2 | 121.99 (18) | N5—C9—C8 | 108.01 (16) |
O1—N1—C1 | 118.93 (16) | N5—C10—C11 | 102.55 (14) |
O2—N1—C1 | 119.08 (16) | N5—C10—C12 | 112.72 (16) |
O4—N2—O3 | 124.19 (18) | C11—C10—C12 | 112.29 (17) |
O4—N2—C3 | 118.86 (19) | N5—C10—H10 | 109.7 |
O3—N2—C3 | 116.95 (19) | C11—C10—H10 | 109.7 |
C6—N3—N4 | 118.40 (17) | C12—C10—H10 | 109.7 |
C6—N3—H3N | 118.5 | O6—C11—C8 | 129.87 (19) |
N4—N3—H3N | 111.9 | O6—C11—C10 | 123.60 (17) |
C7—N4—N3 | 121.63 (17) | C8—C11—C10 | 106.53 (16) |
C7—N4—H4N | 119.6 | C15—C12—C13 | 111.46 (19) |
N3—N4—H4N | 117.4 | C15—C12—C10 | 110.08 (17) |
C9—N5—C10 | 114.12 (17) | C13—C12—C10 | 111.18 (18) |
C9—N5—H5N | 120.9 | C15—C12—H12 | 108.0 |
C10—N5—H5N | 124.4 | C13—C12—H12 | 108.0 |
C2—C1—C6 | 122.02 (18) | C10—C12—H12 | 108.0 |
C2—C1—N1 | 115.71 (16) | C14—C13—C12 | 115.2 (2) |
C6—C1—N1 | 122.27 (16) | C14—C13—H13A | 108.5 |
C3—C2—C1 | 118.11 (18) | C12—C13—H13A | 108.5 |
C3—C2—H2 | 120.9 | C14—C13—H13B | 108.5 |
C1—C2—H2 | 120.9 | C12—C13—H13B | 108.5 |
C2—C3—C4 | 122.15 (17) | H13A—C13—H13B | 107.5 |
C2—C3—N2 | 119.00 (18) | C13—C14—H14A | 109.5 |
C4—C3—N2 | 118.85 (19) | C13—C14—H14B | 109.5 |
C5—C4—C3 | 119.32 (19) | H14A—C14—H14B | 109.5 |
C5—C4—H4 | 120.3 | C13—C14—H14C | 109.5 |
C3—C4—H4 | 120.3 | H14A—C14—H14C | 109.5 |
C4—C5—C6 | 121.87 (18) | H14B—C14—H14C | 109.5 |
C4—C5—H5 | 119.1 | C12—C15—H15A | 109.5 |
C6—C5—H5 | 119.1 | C12—C15—H15B | 109.5 |
N3—C6—C1 | 122.96 (18) | H15A—C15—H15B | 109.5 |
N3—C6—C5 | 120.45 (17) | C12—C15—H15C | 109.5 |
C1—C6—C5 | 116.52 (17) | H15A—C15—H15C | 109.5 |
N4—C7—C8 | 118.42 (17) | H15B—C15—H15C | 109.5 |
N4—C7—C16 | 118.82 (17) | C7—C16—H16A | 109.5 |
C8—C7—C16 | 122.73 (17) | C7—C16—H16B | 109.5 |
C7—C8—C11 | 128.27 (17) | H16A—C16—H16B | 109.5 |
C7—C8—C9 | 123.28 (16) | C7—C16—H16C | 109.5 |
C11—C8—C9 | 108.45 (16) | H16A—C16—H16C | 109.5 |
O5—C9—N5 | 124.91 (18) | H16B—C16—H16C | 109.5 |
O5—C9—C8 | 127.06 (17) | ||
C6—N3—N4—C7 | −105.2 (2) | N4—C7—C8—C11 | −179.71 (18) |
O1—N1—C1—C2 | 3.8 (3) | C16—C7—C8—C11 | −1.4 (3) |
O2—N1—C1—C2 | −175.79 (18) | N4—C7—C8—C9 | 0.7 (3) |
O1—N1—C1—C6 | −176.46 (19) | C16—C7—C8—C9 | 178.93 (17) |
O2—N1—C1—C6 | 4.0 (3) | C10—N5—C9—O5 | 179.12 (18) |
C6—C1—C2—C3 | −0.8 (3) | C10—N5—C9—C8 | −2.4 (2) |
N1—C1—C2—C3 | 179.01 (17) | C7—C8—C9—O5 | −3.5 (3) |
C1—C2—C3—C4 | 0.1 (3) | C11—C8—C9—O5 | 176.79 (19) |
C1—C2—C3—N2 | −179.57 (18) | C7—C8—C9—N5 | 178.00 (18) |
O4—N2—C3—C2 | −10.8 (3) | C11—C8—C9—N5 | −1.7 (2) |
O3—N2—C3—C2 | 169.4 (2) | C9—N5—C10—C11 | 5.1 (2) |
O4—N2—C3—C4 | 169.5 (2) | C9—N5—C10—C12 | −115.88 (19) |
O3—N2—C3—C4 | −10.3 (3) | C7—C8—C11—O6 | 4.6 (4) |
C2—C3—C4—C5 | 0.5 (3) | C9—C8—C11—O6 | −175.7 (2) |
N2—C3—C4—C5 | −179.82 (18) | C7—C8—C11—C10 | −174.97 (18) |
C3—C4—C5—C6 | −0.5 (3) | C9—C8—C11—C10 | 4.7 (2) |
N4—N3—C6—C1 | −162.77 (18) | N5—C10—C11—O6 | 174.63 (19) |
N4—N3—C6—C5 | 20.5 (3) | C12—C10—C11—O6 | −64.1 (2) |
C2—C1—C6—N3 | −176.16 (18) | N5—C10—C11—C8 | −5.7 (2) |
N1—C1—C6—N3 | 4.1 (3) | C12—C10—C11—C8 | 115.53 (17) |
C2—C1—C6—C5 | 0.7 (3) | N5—C10—C12—C15 | −172.8 (2) |
N1—C1—C6—C5 | −179.02 (17) | C11—C10—C12—C15 | 72.0 (3) |
C4—C5—C6—N3 | 176.88 (19) | N5—C10—C12—C13 | −48.8 (2) |
C4—C5—C6—C1 | −0.1 (3) | C11—C10—C12—C13 | −164.01 (19) |
N3—N4—C7—C8 | −168.70 (16) | C15—C12—C13—C14 | −58.2 (3) |
N3—N4—C7—C16 | 13.0 (3) | C10—C12—C13—C14 | 178.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···O2 | 0.93 | 1.99 | 2.630 (2) | 125 |
N4—H4N···O5 | 0.89 | 2.00 | 2.710 (2) | 135 |
N3—H3N···O5i | 0.93 | 2.36 | 2.949 (2) | 121 |
N4—H4N···O5i | 0.89 | 2.43 | 2.898 (2) | 113 |
N5—H5N···O2ii | 0.86 | 2.48 | 3.293 (2) | 159 |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+1, y−3/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C16H19N5O6 |
Mr | 377.36 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 193 |
a, b, c (Å) | 10.671 (1), 4.9387 (5), 16.839 (2) |
β (°) | 107.363 (4) |
V (Å3) | 846.98 (15) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 0.98 |
Crystal size (mm) | 0.64 × 0.06 × 0.06 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (CORINC; Dräger & Gattow, 1971) |
Tmin, Tmax | 0.78, 0.94 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3890, 3282, 3103 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.622 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.111, 0.99 |
No. of reflections | 3282 |
No. of parameters | 247 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.21 |
Absolute structure | (Flack,1983) |
Absolute structure parameter | 0.1 (2) |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···O2 | 0.93 | 1.99 | 2.630 (2) | 125 |
N4—H4N···O5 | 0.89 | 2.00 | 2.710 (2) | 135 |
N3—H3N···O5i | 0.93 | 2.36 | 2.949 (2) | 121 |
N4—H4N···O5i | 0.89 | 2.43 | 2.898 (2) | 113 |
N5—H5N···O2ii | 0.86 | 2.48 | 3.293 (2) | 159 |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+1, y−3/2, −z+1. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Dippenaar, A., Holzapfel, C. W. & Boeyens, J. C. A. (1977). J. Chem. Crystallogr. 7, 189–197. CAS Google Scholar
Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762. Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gelin, S., Chantegrel, B. & &Chabannet, M. (1982). Synth. Commun. 12, 431–437. CrossRef CAS Web of Science Google Scholar
Lebrun, M. H., Nicolas, L., Boutar, M., Gaudemer, F., Ranomenjanahary, S. & Gaudemer, A. (1988). Phytochemistry, 27, 77–84. CrossRef CAS Web of Science Google Scholar
Monfared, H. H., Pouralimardan, O. & Janiak, C. (2007). Z. Naturforsch. Teil B, 62, 717–720. Google Scholar
Nolte, M. J., Steyn, P. S. & Wessels, P. L. (1980). J. Chem. Soc. Perkin Trans. 1, pp. 1057–1065. CSD CrossRef Web of Science Google Scholar
Royles, B. J. L. (1995). Chem. Rev. 95, 1981–2001. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siegel, D., Rasenko, T., Koch, M. & Nehls, I. (2009). J. Chromatogr. A., doi:10.1016/j.chroma.2009.03.063. Google Scholar
Tameem, A. A., Salhin, A., Saad, B., Rahman, I. A., Saleh, M. I., Ng, S.-L. & Fun, H.-K. (2006). Acta Cryst. E62, o5686–o5688. Web of Science CSD CrossRef IUCr Journals Google Scholar
Valente, E. J., Pawar, D. M., Fronczek, F. R. & Noe, E. A. (2008). Acta Cryst. C64, o447–o449. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yamaguchi, T., Saito, K., Tsujimoto, T. & Yuki, H. (1976a). Bull. Chem. Soc. Jpn, 49, 1161–1162. CrossRef CAS Web of Science Google Scholar
Yamaguchi, T., Saito, K., Tsujimoto, T. & Yuki, H. (1976b). J. Heterocycl. Chem. 13, 533–537. CrossRef CAS Google Scholar
Yin, Z., Qian, H., Li, H., Hu, J. & Zhang, C. (2008). Acta Cryst. E64, o2421. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound is the condensation product of the Alternaria spp. mycotoxin tenuazonic acid and 2,4-dinitrophenylhydrazine. It is formed during the derivatization step of a novel HPLC-ESI multistage MS method for tenuazonic acid quantification in cereals (Siegel et al., 2009). While tenuazonic acid itself occurs as a non-crystallizable gum, the crystal structure of its copper salt has previously been reported (Dippenaar et al., 1977). For exemplary crystal structures of other 2,4-dinitrophenylhydrazones see Tameem et al., 2006, Monfared et al., 2007, Valente et al., 2008, Yin et al., 2008. The structure of the title compound is of particular interest, since solubilized tetramic acids and their hydrazones display a variety of tautomeric forms (Yamaguchi et al., 1976a,b, Nolte et al., 1980, Gelin et al., 1982, Royles, 1995, Siegel et al., 2009) (see Fig. 1). While the two rotameric groups I—II and III-IV (Fig. 1) may be differentiated using 1H-NMR, the tautomeric equilibria which are fast on the NMR timescale can not be characterized like that. Furthermore, although common NMR experiments allow for the differentiation of the two rotameric tautomers, the structural assignment of the predominant species is not possible. The presented crystal structure indicates that a six-membered ring involving an intramolecular hydrogen bond between the O5 and N4 is in fact favoured for this compound. On the basis of the presented crystal structure, it can also be assumed, that the thermodynamically favoured tautomer does not involve a double bond of N3 or N4 and thus is tautomer I (Fig. 1). Six N—H···O hydrogen bonds connect each molecule to four adjacent molecules, which are all screw images and span a length of four unit cells. As depicted in Fig. 3 these interactions result in indefinite chains along the b axis.